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Abstract: We consider a container port, which consists of multiple terminals all run by the same erminal
operator. The terminal operator provides a number of vessel lines with the logistics services of container unload-
ing, loading, transporting and storing. He faces the combined decisions on strategic, tactical, and operational
level to provide a certain service level while running its operations with the smallest possible amount of re-
sources. Since these combined decisions are often too complex to be solved at once, the problem is often divided
into a number of subproblems, which are then solved subsequently, or alternatingly where possible. Existing
studies subdivide the combined problems in container operations according to the common categorization and
subsequently solve strategic, tactical and operational problems. In this research however, we propose a typically
different subdivision, such that each subproblem i) can be solved within the time allowed, ii) has not yet been
addressed in literature, an iii) is practically interesting in its own right. In this paper, we address this unique
subdivision in general and one of the resulting subproblems in particular: minimizi g the fuel usage of the
straddle carriers by intelligent berth and terminal planning. This research has financially been supported by
the terminal operator PSA HNN in Antwerp, Belgium. Results of a case study suggest sig ificant reductions in
the fuel usage of the straddle carries. Currently, results of this research have actually been implemented in one
of the terminals in Antwerp.
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1. Introduction

Since 1960, containerization has grown rapidly and
nowadays, annually over 150 million TEU’s (1 TEU,
Twenty feet Equivalent Unit, is a container of length
20 feet, width 8 feet and height 8 feet) are trans-
ported worldwide. In this worldwide network, a con-
tainer port not only serves as a connection between
land and sea container transportation, but also as
a transshipment hub for forwarding containers be-
tween vessels.

A terminal operator coordinates and performs the
facility logistics of discharging, loading, transporting
and storing containers of various vessel lines in a par-
ticular terminal. Each vessel line owns a vessel fleet
to maintain several repetitive loops along ports all
over the world. Commonly, the number and phasing
of the vessels of one loop are such that one vessel calls
on each of its ports exactly once a week. Hence, the
terminal operator has to service each customer (line)
according to a timetable, which is repeated cycle af-
ter cycle. One can compare such a timetable with
a bus or train schedule. The general levels of deci-
sion making in logistics networks can be applied to
a multi-terminal container port as follows:

Dependent on its assets, a terminal operator provides
its services at a certain number of terminals around
the world. Once a new terminal is to be built or an

existing one is to be overtaken, a terminal operator
can take part in a competitive bidding procedure for
operating this terminal in the future. These are long
term decisions and have a large impact on the overall
turnover of the operator. The expansion of the num-
ber of terminals is very expensive, but necessary to
cope with the exponential growth of container trans-
port. Hence, an operator has to continuously an-
ticipate on the future market while considering the
services in another terminal. Next, strategic deci-
sions have to be made on the way to operate a ter-
minal, e.g. which kind of resources (straddle carriers
vs. trucks and stacking cranes) are used to transport
the containers between quay and yard and how many
quay cranes are required at the quay.

In many multi-terminal container ports, various op-
erators take care of the logistics processes for con-
tainer handling. Commonly, the tasks are divided
such that one terminal operator is responsible for
one terminal (or at least for the major share of one
terminal). In an increasing number of ports (e.g.
Singapore, Rotterdam and Antwerp) however, one
terminal operator is responsible for multiple termi-
nals. Given the quay lengths and storage capacities
of the terminals, and given the load compositions of
the calling loops, the first tactical problem is then to
allocate i) a terminal and ii) a berthing time inter-
val to each of the loops. Secondly, a berth position
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has to be allocated to each loop and an appropriate
yard layout (which containers to stack where) has
to be constructed. Together this results in a tactical
timetable, which is reconsidered on the medium term
time scale.

The tactical timetable depicts the allocation if all
vessels arrive perfectly in time. However in prac-
tice, vessels are sometimes early or late (e.g. due
to breakdown or bad weather conditions), and may
have different call sizes and/or compositions each
week. Moreover, quay cranes and other resources
may brake down for an unknown period of time. The
daily operational tasks of a port operator involve the
management of the disrupted system to serve the ves-
sel lines as good as possible at minimal costs. First,
each vessel has to be allocated to a specific berth po-
sition within its terminal. The reference berth posi-
tion of a vessel is usually taken closest to the position
of its export containers in the stack. In this way, the
travel distance of container carriers between vessels
and stacks is reduced. Second, a schedule for quay
cranes along with resources and its drivers has to
be constructed to process a vessel within the agreed
service time. These decisions are usually made ev-
ery eight hours (one shift), and sometimes even a
replanning takes place after four hours (half a shift).
The detailed sequence of actual discharging, load-
ing, transporting and stacking containers is updated
at every container pick-up and drop-off.

The combined decisions are too complex to be solved
at once. A possible approach is to subdivide the
problem into subproblems, which are then solved
subsequently. Existing studies subdivide the com-
bined problems according to the general classification
(strategic, tactical, and operational), as depicted left
in Figure 1. We, however, apply a subdivision that
is typically different Hendriks (2009) and from the
traditional one. This subdivision is shown right in
Figure 1. First of all, we incorporate the, tradition-
ally strategic decision on the quay crane capacity,
while making the tactical decisions on the terminal
and berth time allocation. The goal in this first sub-
problem is to equally spread the vessel lines over the
different terminals for a certain amount of time while
the amount of inter-terminal transport is minimal.
In the next subproblem, we slightly adapt the re-
sulting timetable to increase its robustness to dis-
turbances on vessel arrivals. Only in the third sub-
problem, an actual berth position is allocated to each
of the vessel lines. This problem is solved in combi-
nation with the yard planning problem, i.e. the al-
location of the different container types to the yard
blocks. The results of the first three steps lead to a
tactical timetable, that can be repeated cycle after
cycle. In practice however, all kinds of disturbances
cause the system to deviate from this tactically pre-
ferred timetable. In the fourth step, we therefore
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Figure 1: Traditional (left) and proposed subdivision (right)
of decision making in container terminals.

develop an online rolling horizon approach that acts
upon (forecasts of) these disturbances to make cost-
efficient operational decisions.

In this paper, we address the third of these subprob-
lems, being the berth position and yard planning
problem. We assume the (robust) timetable of a ter-
minal to be derived during the previous substeps.
Hence, the arrival and departure times of the ves-
sels are given and cannot be controlled. Given the
timetable, the terminal operator has to run its opera-
tions with the smallest possible amount of resources
needed. In this case, we consider the resources of
straddle carriers (Figure 2) that transport contain-
ers between quay and yard. Goal is i) to allocate
berth positions and ii) to plan the yard, such that
the travel distance and, with that, the fuel usage of
the straddle carriers is minimized.

2. Related work

The well-known berth allocation problem (BAP) is
one of the key issues in container operations and has
been investigated extensively over the last decades.
The problem involves the allocation of container ves-
sels in time and space in order to minimize a certain
objective function. In most of the reported studies,
the objective is to minimize the vessels’ turnaround
times Guan and Cheung (2004), Monaco and Sam-
marra (2007), Imai et al. (2005), Cordeau et al.
(2005), Kim and Moon (2003). A limited number of
studies, considers a multi-objective problem, where
besides the turnaround times, the weighted devia-
tions from predetermined berth positions are mini-
mized Hansen et al. (2008), Wang and Lim (2007).
The authors in these studies consider predetermined,

Session "Sustainable Production" IV.55

XIV Summer School 'Francesco Turco'



Figure 2: Straddle carrier.

reference berth positions, which are chosen closest to
given positions of containers in the yard. In this way,
the distance that has to be covered by container car-
riers between quay and yard is tried to be reduced.

Of particular interest is the study in Moorthy and
Teo (2006). The authors mention that the total
travel distance strongly depends on the stack posi-
tions of containers in the yard. They assume that
all containers to/from a certain vessel are stacked
closest to the position where the particular vessel
berths and approximate the total carrier travel dis-
tance by the travel distances for transshipment con-
tainers between connecting vessels. In practice how-
ever, two main reasons exist to contradict that all
containers can be stacked close to a vessel’s berth
position. First of all, special container types (like re-
frigerated, dangerous goods, and empty containers)
have designated areas in the yard and hence cannot
be stacked arbitrarily. Second of all, once a stack
is filled up to its capacity, containers have to be al-
located to surrounding stacks, unavoidably inducing
additional travel distances for carriers.

The above mentioned studies all address the allo-
cation of vessels in space and time. According to
our specific subdivisions (see Figure 1) however, the
time allocation has already been determined in pre-
vious steps. Hence, we assume the time allocation
to be given and solve the berth position problem in
combination with another problem, the yard plan-
ning problem. The yard planning problem involves
the allocation of container types to different stacking

blocks in the yard for temporary storage. The com-
bined decisions on berth positions and yard planning
determine the carrier travel distance. In this study
we aim to minimize the total carrier travel distance.

The problem is different from the known capacitated
location allocation problem Brimberg et al. (2000),
Aras et al. (2008) and Durmaz et al. (2009) in two
ways: i) in our model vessels have to be allocated to
a berth position such that they do not overlap, while
in the mentioned studies it is allowed that multiple
facilities and customers are allocated to the same lo-
cation, and ii) the traditional capacitated location
allocation problem is static, while we consider a dy-
namic version, i.e. the berth allocation and yard plan
evolve over time. To the best of our knowledge, the
capacitated location allocation problem has not yet
found its application in container terminals, while it
is very relevant from a practical point of view.

We propose an appropriate mixed integer quadratic
program, which turns out to be non-convex and con-
sequently complex from a computational point of
view. The constraints however are separable in the
two decision variables being i) the berth position of
a vessel and ii) the amount of containers flowing be-
tween a vessel and a block. Since we consider a linear
(Manhattan) distance function, the problem can be
decoupled into two linear problems, an MILP and an
LP, being i) a vessel berth position problem and ii)
a yard planning problem, respectively. These prob-
lems are coupled in the objective function. A so-
lution technique, that continues alternating between
both linear programs, is proven to converge to a local
optimum Cooper (1972). Several other heuristics for
the location allocation problem can be found in Aras
et al. (2008) and Durmaz et al. (2009).

Although the alternating method is very fast, the
converged solution heavily depends on the initial
condition (see also Aras et al. (2008) and Durmaz
et al. (2009)) and a proper guess for this initial
condition is required to yield a satisfactory solu-
tion. To find a proper initial guess, we propose an
MILP, which allocates fixed-sized container groups to
blocks, rather than considering the groups sizes as a
decision variable. The found initial condition leads
to a solution that outperforms results obtained from
numerous random initial conditions. This approach
of finding a proper initial condition by considering
fixed-sized groups is slightly different from the well-
known quadratic assignment problem Cordeau et al.
(2006), in the sense that we consider a dynamic sce-
nario rather than a static one. A case study on a
handmade berth allocation and yard plan, provided
by the terminal operator PSA HNN, learns that the
proposed method is very efficient and suggests a re-
duction of more than 20% in the total carrier travel
distance.
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The outline of this paper is as follows: in Section 3,
problem is formally phrased and an MIQP is pro-
posed. Additionally, the alternating solution ap-
proach is addressed and the approach to find a proper
initial guess is discussed. Section 4 presents a case
study and shows results for random initial conditions
and the sophisticated initial conditions. We end with
conclusions and recommendations in Section 5.

3. Approach

3.1. Problem description

A simplified illustration of the problem can be seen
in Figure 3. Vessels have to be allocated to a position
at the quay, and containers to the blocks in the yard.
Straddle carriers have to travel a rectilinear distance
(between the blocks) to transport containers from
vessels to yard and vice versa. The combined deci-
sions on i) the position of a vessel at the quay, and
ii) the block(s) its corresponding containers in the
yard determine the straddle carrier travel distance
and with that its fuel usage. Given the timetable, the
goal is to find vessel positions and container blocks
such that the total straddle carrier fuel usage is min-
imal.

Due to space limitation in this paper, we only present
a simplified, static version of the model. Neverthe-
less, the simplification incorporates all phenomena
necessary to explain our approach.

Figure 3: Illustration of the considered problem.

3.2. MIQP

To model the problem, we define two decision vari-
ables, i) pv to be the position of vessel v at the quay,
and ii) yvn to be the amount of containers trans-
ported between vessel v and block n. Additionally,
we introduce an auxiliary variable zvn, being the rec-
tilinear distance between vessel v and block n, which
can directly be derived from the position of vessel

v. The straddle carrier travel distance can then be
defined as the product of yvn and zvn, which is the
objective function in model. Furthermore, there are
a number of (in)equality constraints for each of the
two decision variables pv, and yvn, which we do not
elaborate on due to space limitations. The left hand-
sides of these constraints are represented by the func-
tions g1(pv), g2(yvn), f1(pv), and f2(yvn). The corre-
sponding mixed integer quadratic problem (MIQP)
formulation is depicted in Figure 4. An analysis
of this formulation learns that it is very complex
from a computational point of view due to the non-
convexity of its objective function.

min
pv,yvn

∑

v∈V

∑

n∈N
yvn · zvn

s.t. g1(pv) ≤ 0
g2(yvn) ≤ 0
f1(pv) = 0
f2(yvn) = 0

Figure 4: MIQP for the simplified model.

3.3. Alternating procedure

A second analysis however learns that the formula-
tion has a typical structure: the constraints are de-
coupled in the decision variables pv, and yvn. The
model can thus be decoupled into two separate linear
programs, which are coupled in the objective func-
tion. This is presented in Figure 5. We start from
a (random) initial solution y�

vn for the yard planning
problem and solve the vessel position problem for
these parameters. Next, the optimal values p�

v are
passed to the yard planing problem, which is then
solved to optimality. The updated values of y�

vn are
again passed to the vessel position problem, and so
on and so on. It can readily be seen that this it-
eration method yields a convergent monotone non-
increasing sequence of values, which are bounded
by zero (see also Cooper (1972)). The algorithm is
stopped if the difference between the objective values
of two successive iterations is less than ε, ε > 0.

Although the alternating approach can be solved
within minutes for real-life problems, its performance
heavily depends on the chosen initial condition. In
the next section, this dependency is shown in an ex-
periment with a large number of random initial con-
ditions. Additionally, we propose a method to find
a proper guess for the initial condition. Finally, we
show results of a real-life case study initiated by PSA
HNN. Results suggest that starting from the sophis-
ticated initial guess results in a solution that out-
performs all results from random initial conditions.
Furthermore, these results suggest that the straddle
carriers’ fuel usage can be reduced by over 20%.

Session "Sustainable Production" IV.57

XIV Summer School 'Francesco Turco'



Again we have to stress that this is a simplified ver-
sion of the model. In the complete model, we explic-
itly distinguish between inbound and outbound con-
tainers, and between different container types (full,
empty, refrigerated, hazardous) and lengths (20 and
40 ft.). Furthermore, we take the time-evolution of
(dwell-time distributions) of arriving and departing
containers into account to prevent the exceeding of
the blocks’storages at any moment in time.

min
pv

∑

v∈V

∑

n∈N
y�

vn · zvn

s.t. g1(pv) ≤ 0
f1(pv) = 0

z�
vn

⏐
⏐
⏐
�

�
⏐
⏐
⏐ y�

vn

min
yvn

∑

v∈V

∑

n∈N
yvn · z�

vn

s.t. g2(yvn) ≤ 0
f2(yvn) = 0

Figure 5: Alternating solution approach.

3.4. Sophisticated initial guess

The performance of the alternating approach heavily
depends on the chosen initial condition. In this sub-
section, we discuss a mixed integer linear program
(MILP) that finds a good initial guess. The princi-
ple of the MILP is that the decision on the amount
of containers from a certain vessel to a certain block
is no longer a decision variable. Instead, we assume
fixed-sized container groups, and hence as decision
variable (besides the vessel position) we introduce
binary variables to indicate whether a gout is allo-
cated to a block or not. Each container group has
to be allocated to exactly one block. The number
of containers from a vessel to a block is no longer
a variable, but a parameter instead. This turns the
objective function into a linear relation rather than
a non-convex quadratic objective function as in sec-
tion 3.2. Basically, by solving this MILP, we solve a
coarse version of the MIQP of section 3.2.

4. Results

In this section, we present results for the alternating
approach starting from both a random initial condi-
tion and a sophisticated initial condition.

4.1. Random initial conditions

Results for one hundred experiments with random
initial conditions are depicted in Figure 6, where
a triangle represents the carrier travel distance for

quasi-randomly chosen blocks and variable berth po-
sitions (objective from the first step of the alternat-
ing procedure), and the circle straight below repre-
sents the carrier travel distance after convergence of
the alternating procedure for that particular initial
condition. The carrier travel distances are scaled to
the carrier travel distance corresponding to the pro-
vided data set by PSA HNN (grey dotted line). From
Figure 6 we learn the following:

• In each experiment, the alternating procedure
yields significant reductions in the carrier travel
distance starting from the initial condition.

• A good, randomly selected, initial condition
does not necessarily provide a good end solu-
tion. One of the possible reasons might be that,
while allocating the groups, the blocks’ capac-
ities are not taken into consideration. Hence,
several groups of containers might be allocated
to the same block, inducing a small travel dis-
tance, however exceeding the actual capacity.
Since the alternating optimization does take the
block capacities into account, the converged so-
lution might end up not being that good.

• The major part (about 80% of all triangles in
Figure 6) of the quasi-randomly generated initial
conditions leads to an allocation with a larger
carrier travel distance than in the allocation pro-
vided by PSA HNN.

• For each of the hundred performed experiments,
the alternating procedure yields a solution that
is at worst about 10% better than the provided
allocation.

• The best solution found (black marked circle)
outperforms the current allocation by almost
20%.
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Figure 6: Results of the alternating procedure for one hundred
random initial conditions.
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4.2. Sophisticated initial conditions

In this section, we apply the alternating optimization
for the initial condition generated by the MILP dis-
cussed in Section 3.4. Since the MILP consists of a
relatively large number of binary variables (whether
a container group is allocated to a certain block or
not), it cannot be solved to optimality within satis-
factory time. Hence, the following is proposed: the
provided allocation is reconstructed by fixing all vari-
ables accordingly. The objective function evaluates
the corresponding straddle carrier travel distance.
Next, the groups of containers are ordered accord-
ing to their contributions to the total carrier travel
distance. From this ordered set, we take the first
G container groups with the largest distance contri-
butions, declare the corresponding binary variables
(concerning the group to block allocation) and pv, ∀v
to be variables again, and run the MILP discussed
in section 3.4. Subsequently, the generated solution
is fed into the alternating optimization procedure of
Section 3.3 as an initial condition. Figure 7 shows the
results of the found initial condition and correspond-
ing converged solution as a function of G. From the
experiments shown in this Figure we conclude the
following:

• In each experiment, the alternating procedure
yields significant reductions in the carrier travel
distance starting from the initial condition. The
reduction however decreases as G increases. A
reason for this might be that for relatively large
values of G, the initial guess is that good that
less improvements can be obtained by the alter-
nating procedure.

• Each generated initial condition already outper-
forms the allocation in the data set provided by
PSA HNN.

• For G = 0 (zero groups can be modified) the
initial condition already outperforms the allo-
cation in the data set provided by PSA HNN.
Although the container block allocation is fixed
and cannot be changed for G = 0 while generat-
ing this initial condition, the berth positions of
the vessels are variable. Apparently, a modifica-
tion of only the vessels’ berth positions already
yields a reduction of about 3% in carrier travel
distance.

• As G increases, the found objective value for
the initial conditions (triangles) decreases. This
makes sense since if more container groups are
variable, no larger travel distance will result
from the optimization.

• A better initial condition (triangle) never yields
a worse converged solution (circle). This dis-
agrees with the observation made for Figure 6,

where a better initial condition not necessarily
led to a better converged solution. Apparently,
the reason we gave for this observation in the
first place is a crucial one. Namely, the method
to construct a proper initial guess does take the
blocks’ capacities into consideration right away.

• The modification of only the eight largest con-
tributions (and possible all vessels’ berth posi-
tions) already leads to a better solution than
the best found solution for a hundred random
initial conditions. The corresponding reduction
in travel distance with respect to the travel dis-
tance in the representative allocation is more
than 20%.

From these results we conclude that it pays off to
generate a proper initial condition rather than exe-
cuting an extensive number of experiments for ran-
dom initial conditions.
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Figure 7: Results of the alternating approach for sophisticated
initial conditions.

5. Conclusions

In this paper we considered the joint problem of find-
ing berth positions for vessels at the quay and stack
positions for containers in the yard. The well-known
berth allocation problem concerns the allocation of
vessels in space and time. In practice however, the
arrival and departure times of vessels are often im-
posed by the vessel lines’ schedules. In this paper,
the berth position problem is therefore addressed
jointly with the allocation of containers to blocks in
the yard to minimize the total travel distance and
with that the fuel usage of carriers operating between
vessels and yard.

First, an appropriate MIQP is formulated, which
chooses berth positions for vessels and amounts of
containers for blocks to minimize the carrier travel
distance. Since the objective is non-convex and con-
sequently real-life instances run forever, the prob-
lem is separated into an MILP, which represents the
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berth position allocation, and an LP, which presents
the container amounts to different blocks. These
problems are coupled in the objective function and
solved in an alternating fashion. The method con-
verges to a local optimum very fast, however appears
to be very sensitive to the initial condition.

Hence an MILP is proposed to find a proper initial
condition by allocating berth positions to vessels and
fixed-sized groups of containers to blocks. The solu-
tion found by this MILP is passed to the alternating
method as an initial condition. The alternating op-
timization now finds a solution, which outperforms
all solutions resulting from an extensive number of
randomly generated initial conditions. Applying the
alternating optimization on a representative data set
provided by PSA HNN suggests that a reduction of
more than 20% in the carrier travel distance can
be obtained. These results suggest that the same
amount of work can be done with less straddle car-
riers and less fuel.
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