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Abstract

In this paper we consider output feedback tracking of ships with position and
orientation measurements only. Ship dynamics are highly nonlinear, and for track-
ing control, as opposed to dynamic positioning, these nonlinearities have to be
taken into account in the control design. We propose an observer-controller scheme
which takes into account the complete ship dynamics, including Coriolis and cen-
tripetal forces and nonlinear damping, and prove that the closed-loop system is
semi-globally uniformly stable. Furthermore, a gain tuning procedure for the observer-
controller scheme is developed.

Experimental results are presented where the observer-controller scheme is
implemented onboard a Froude scaled 1:70 model supply ship. The experimen-
tally obtained results are compared with simulation results under ideal conditions
and both support the theoretical results on semi-global exponential stability of the
closed-loop system.



1 Introduction

Marine control systems [5] can be used to make operations more accurate, more
cost effective and safer, e.g. operations where a trajectory must be tracked with
a certain accuracy like dredging operations, towing operations and cable laying
operations. The ships used for this kind of operations are typically fully actuated
ships.

In general only the position and orientation of the ship are measured. Ship
velocities are reconstructed from the measured position and orientation by means
of an observer [10], since in any tracking controller also the ship velocities are nec-
essary. This paper considers the problem of output feedback tracking of a fully
actuated ship with only the position and orientation measurements available.

The development of observers and observer-controller schemes for fully actu-
ated ships stems for an important part from the issue of dynamic positioning (DP)
and position mooring of ships. Traditional DP systems are designed by linearizing
the kinematic equations of motion about a set of predefined constant yaw angles
such that linear control strategies can be applied. The kinematic equations are typ-
ically linearized about 36 different yaw angles (36 steps of 10 degrees) to cover the
whole heading envelope. The first DP systems were designed using conventional
PID controllers in cascade with low-pass and/or notch filters to suppress the wave-
induced motion components. From the 1970s more advanced control techniques
based on optimal control and Kalman-filter theory were used, see for an overview
[5] and references therein. But still these techniques use the 36 linearized systems,
from which there is no guarantee for global stability of the total system. In addi-
tion, controlling the total system by a set of linearized systems will decrease the
performance of the total system. Nonlinear observers and controllers are used to
remove these assumptions and make it possible to prove global stability of the total
system.

In [8, 6, 12, 2, 7] the dynamic positioning problem and position mooring prob-
lem for ships are considered, where the developed observer and controller are based
on a ship model not including the Coriolis and centripetal forces and moments nor
nonlinear damping. Because the velocities during position keeping and mooring
are close to zero, both the Coriolis and centripetal and the nonlinear damping terms
can be disregarded. However during trajectory tracking this assumption is not valid
anymore and both the Coriolis and centripetal and the nonlinear damping forces
and moments must be considered in the observer and controller. Output feedback
tracking control for fully actuated ships is considered in [11] and [1]. Also in [13] a
system with Coriolis and centripetal forces is considered.

In [11] the proposed approach is mainly based on the work of [4] and is based on
passivity in the sense that both the controller and observer are designed such that
the closed-loop system matches a predefined desired energy function. The ship
model includes the Coriolis and centripetal term, but does not include the nonlin-
ear damping term. The error dynamics is proven to be semi-globally exponentially
stable, while the error dynamics is globally exponentially stable if the Coriolis and
centripetal forces and moments are negligible.

In [1] an observer-controller scheme is proposed for an Euler-Lagrange system
not including the Coriolis and centripetal term, but including a nonlinear damp-
ing term. It is assumed that the nonlinear damping term satisfies the monotone
damping property, which in general is not satisfied in marine systems. For ap-
propriate choices of the output injection terms, the error dynamics is globally uni-
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formly asymptotically stable.
In [13] an observer-controller scheme is proposed for another class of Euler-

Lagrange systems. It is assumed that only linear damping is included and a rather
special form of the Coriolis and centripetal term is considered there. Notice that in
general in marine systems the Coriolis and centripetal term is not of this form.

In this paper our aim is to propose an observer-controller scheme for tracking
control of fully actuated ships with only position and orientation measurements
available. Therefore we have to take into account the full tracking model, including
both the nonlinear damping and the Coriolis and centripetal forces and moments
in the ship dynamics.

The approach of our study can be summarized in the following ways:

• In the observer design our approach is to consider the dynamic ship model
in the Earth-fixed frame, where we can use the properties of the Coriolis and
centripetal matrix written in Christoffel symbols.

• In the controller design we consider the dynamic ship model in the body-
fixed frame, so the stabilizing terms can be chosen with respect to the for-
ward, sideward and orientation errors. We use an existing controller [9],
which can be tuned like a second-order system due to the definition of the
control errors.

• An observer-controller scheme is proposed where the dynamic ship model
for the observer and controller is considered in the Earth-fixed frame and
the body-fixed frame respectively. Using a Lyapunov approach we are able to
prove semi-global uniform exponential stability of the closed-loop system.

• Experiments with a model ship in a basin are performed. The experimen-
tally obtained results are compared with computer simulations under ideal
conditions and both support the theoretical results.

The paper is organized as follows. In the next section the dynamic ship model is
presented and its properties are discussed. This dynamic ship model is used in Sec-
tion 3, where the observer, controller and observer-controller scheme are proposed.
The observer-controller scheme has been tested in simulations and experiments
and the corresponding results are presented in Section 4. Finally conclusions and
recommendations for future developments are drawn in Section 5.

In Appendix I some mathematical preliminaries used throughout the paper are
presented. The proofs of the propositions are shown in appendices II-IV.

2 Ship dynamics

The nonlinear manoeuvring model for surface ships is considered [5]

M(η)η̈ + C(η, η̇)η̇ + d(η, η̇) = τ, (1)
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where

M(η) = J(ψ)MJT (ψ)

C(η, η̇) = J(ψ)
(
C(JT (ψ)η̇) − MS(ψ̇)

)
JT (ψ)

d(η, η̇) = J(ψ)DJT (ψ)η̇ + J(ψ)Dn(J
T (ψ)η̇)

J(ψ) =

⎡
⎣ cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦

S(ψ̇) = S(r) =

⎡
⎣ 0 −r 0
r 0 0
0 0 0

⎤
⎦ .

(2)

The vector η represents the position and orientation in the Earth-fixed frame, i.e.
η = [x y ψ]T . The transformation matrix J(ψ) transforms the velocities in the
body fixed frame to the velocities in the Earth-fixed frame, i.e. η̇ = J(ψ)ν, where
ν = [u v r]T .

The matrix M is the system inertia matrix including added mass, C(ν) corre-
sponds to the Coriolis and centripetal forces and moments and also includes some
added mass, D is the linear damping matrix, the vectorDn(ν) includes the nonlin-
ear damping terms and τ is the vector of inputs. Notice that the matrices M, C(ν),
D and the vector Dn(ν) are described in the body-fixed frame.

The dynamic model (1) satisfies the following properties [5].

1. The system inertia matrix satisfies M(η) = MT (η) > 0.

2. The Coriolis and centripetal term is written in terms of Christoffel symbols
and satisfies

C(q, x)y = C(q, y)x, ∀ x, y. (3)

3. Since the rotation matrix J(ψ) is singularity free, the matrices M−1(η) and
C(η, η̇) are bounded in η, i.e.

‖M−1(η)‖ ≤MM , ‖C(η, x)‖ ≤ CM‖x‖ ∀ η, x. (4)

Hydrodynamic damping for marine vessels is mainly caused by: potential damp-
ing, skin friction, wave drift damping and damping due to vortex shedding. The
different damping terms contribute to both linear and quadratic damping. There-
fore, it is assumed that:
Assumption 1. The total damping term d(η, η̇) satisfies the following property

‖d(q, x) − d(q, y)‖ ≤
(
dM1 + dM2‖x− y‖

)
‖x− y‖. (5)

3 Observer-controller scheme

3.1 Observer

In this section an observer is proposed for output feedback tracking of a ship with
only position and orientation measurements. Due to the chosen observer struc-
ture, which is opposed to the structure of the observers proposed for dynamic po-
sitioning [8] [6] [12] [2] [7], we include nonlinear damping and the Coriolis and
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centripetal forces and moments. The nonlinear manoeuvring model is considered
in the Earth-fixed frame in order to use the nice property of the Coriolis and cen-
tripetal term written in the Christoffel symbols (3), which we do not have in the
nonlinear manoeuvring model expressed in the body-fixed frame. The following
observer is proposed

˙̂η = ˆ̇η + L1η̃

˙̂
η̇ = −M−1(η)C(η, ˙̂η) ˙̂η−M−1(η)d(η, ˙̂η)+M−1(η)τ+L2η̃

(6)

with the observer errors defined as

η̃ = η − η̂, ˙̃η = η̇ − ˙̂η, ¨̃η = η̈ − ¨̂η (7)

and the observer gainsL1 andL2 are chosen symmetric and positive definite. Then
the observer error is given by

¨̃η = − M−1(η)(C(η, η̇)η̇ − C(η, ˙̂η) ˙̂η)

− M−1(η)(d(η, η̇) − d(η, ˙̂η)) − L2η̃ − L1
˙̃η.

(8)

Notice that we assume that the velocity of the ship η̇ is bounded, i.e.

‖η̇‖ ≤ VM , (9)

which is a reasonable assumption because of the physical limitations of the ship.
Notice that in the observer-controller scheme this assumption is replaced by bounds
on the reference trajectory.

Proposition 3.1 Consider the ship described by the nonlinear model (1) in combination
with the observer (6). Given the initial estimates, η̂0 and ˙̂η0, chosen the observer gains
L1 and L2 symmetric and positive definite such that

λmin(L1) > 1, λmin(L2) ≥ 1 (10)

λmin(L2) >
1

2
MMCMVM +

1

4
MMdM1(VM ) (11)

λmax(L2) ≥ λmin(L2) (12)

λmin(L1) >
(2α11+γ2)+

√
(2α11+γ2)2−4(α2

11−γ1)

2
(13)

λmax(L1) ≤
λ2

min(L1) − 2α11λmin(L1) + α2
11 − γ1

γ2
(14)

where

α11 =
1

2
+ 3MMCMVM +

3

2
MMdM1(VM )

γ1 =(3MMCM+3MMdM2)
2(
λmax(L2)‖η̃0‖

2+‖ ˙̃η0‖
2
)

γ2 =(3MMCM+3MMdM2)
2
‖η̃0‖

2

η̃0 = η0 − η̂0, ˙̃η0 = η̇0 − ˙̂η0.

(15)

If Assumption 1 is satisfied and ‖η̇‖ ≤ VM then the observer error dynamics (8) is semi-
globally uniform exponential stable.
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For the proof, see Appendix II.
The observer gains can be chosen according to the following procedure:

1. Choose λmin(L2) such that (10) and (11) are satisfied.

2. Choose λmax(L2) such that (12) is satisfied.

3. Choose λmin(L1) such that (10) and (13) are satisfied.

4. Choose λmax(L1) such that (14) is satisfied and λmax(L1) ≥ λmin(L1). This
is possible since λmin(L1) satisfies (13).

3.2 Controller

In this section the controller proposed in [9] is discussed. Notice that a new stability
proof is developed, which assumes a bounded reference yaw velocity opposed to an
assumed physical bound on the ship’s yaw velocity in [9].

From a practical point of view it is important that the tuning procedure for
the controller is intuitive in the sense that the gains are tuned with respect to the
body-fixed errors. The price to be paid is that the stability can only be guaranteed
for bounded yaw rates. The control errors are defined such that disregarding the
rotations the closed loop system can be tuned like a second-order system.

The nonlinear manoeuvring model (1) is considered, however now the dynam-
ics described in the body-fixed frame is considered, i.e.

η̇ = J(ψ)ν

Mν̇ + C(ν)ν + d(ν) = τ,
(16)

where d(ν) = Dν + Dn(ν). Here J(η) is the transformation matrix between the
Earth-fixed frame and the body-fixed frame. The vector ν = [u v r]T includes the
forward velocity, the sideward velocity and the angular velocity respectively. Notice
that the dynamics in the body-fixed frame is independent of the orientation of the
ship, i.e. the mass matrix is constant and C(ν) consists of constants and products
of constants and the ship velocities.

The tracking errors are defined as [9]

eη = η − ηref

eν = ν − JT (eψ)νref

ėν = ν̇ − ST (ėψ)JT (eψ)νref − JT (eψ)ν̇ref,

(17)

where ηref is the reference position, νref the reference velocity and ν̇ref the reference
acceleration, eψ = ψ − ψref and notice that ėψ = er.

The following controller is proposed

τ = M
(
ST (ėψ)JT (eψ)νref + JT (eψ)ν̇ref

)
+ C(ν)ν

+Dn(ν) + DJT (eψ)νref − Kdeν − KpJ
T (ψ)eη,

(18)

where the gain matricesKp andKd are chosen positive definite. This is a passivity-
based controller, cf. [11, 4]. Then the error dynamics is given by

ėη = J(ψ)eν

ėν = −M−1(D + Kd)eν − M−1KpJ
T (ψ)eη.

(19)
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Notice that the proposed controller is the controller proposed in [9] without integral
action. Also notice that we assume that |rref| ≤ rmax

ref instead of a physical bound
on the yaw velocity.

Proposition 3.2 Consider the nonlinear manoeuvring model for surface ships (1) in
combination with the controller (18). Given the initial position and velocity of the ship
and |rref| ≤ rmax

ref , chosen the controller gains according to the following gain tuning

procedure

1. Choose

Kd = 2MΛΩ− D

Kp = MΩ2.
(20)

2. Choose Λ = ΛT > 0 and further choose Ω = ΩT > 0 such that

α = λmin(Q) − rmax
ref −

√
λmax(P)

λmin(P)
‖xe0‖ > 0, (21)

where

xe0 = [eη0 eν0]
T ,

eη0 = η0 − ηref0, eν0 = ν0 − JT (eψ0)νref0,

Q=

[
2Ω2 0
0 2Ω2

]
,P=

[
(2ΛΩ)2+Ω2+Ω4

2ΛΩ
I

I − I+Ω2

2ΛΩ

]
.

(22)

If the gains are chosen according to this procedure then the error dynamics (19) is semi-
globally uniform exponential stable.

For the proof, see Appendix III.
The controller gains can be chosen according to the following procedure:

1. Choose Λ = ΛT > 0.

2. Choose Ω = ΩT > 0 such that (21) is satisfied. This is possible since

λmin(Q) ∼ O(Ω2),
√
λmax(P)
λmin(P) ∼ O(Ω) and Λ influences the ratio λmax(P)

λmin(P)

3.3 Observer-controller scheme

In this section an observer-controller scheme is proposed based on the observer
and controller proposed in the previous sections.

For the reasons mentioned earlier, the dynamic ship model for the observer
design is considered in the Earth-fixed frame, while for the controller design the
dynamic ship model in the body-fixed frame is considered. It is assumed that the
orientation of the ship is exactly measured, so ν̂ = JT (ψ) ˙̂η. Since the orientation
of a ship is usually measured by a gyro compass, which has an accuracy better
than 1 degree and measurement noise typically less than 0.1 degree [11], this is a
reasonable assumption.
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The observer (6) is combined with the controller (18), which results in the
following observer-controller scheme

˙̂η= ˆ̇η + L1η̃

˙̂
η̇=−M−1(η)C(η, ˙̂η) ˙̂η−M−1(η)d(η, ˙̂η)+M−1(η)τ+L2η̃

ν̂ = JT (ψ) ˙̂η

τ = M
(
ST ( ˙̂eψ)JT (êψ)νref + J(êψ)T ν̇ref

)
+ C(ν̂)ν̂

+Dn(ν̂) + DJ(êψ)T νref − Kdêν − KpJ(ψ̂)T êη.

(23)

Notice that the reference velocity νref and the reference acceleration ν̇ref are as-
sumed to be bounded.

Proposition 3.3 Consider the ship modelled by the nonlinear manoeuvring model (1)
in combination with the observer-controller scheme (23). Given the initial position and
velocity of the ship, the initial estimates and |rref| ≤ rmax

ref , chosen the controller gains

according to the following gain tuning procedure

1. Choose

Kd = 2MΛΩ− D

Kp = MΩ2.
(24)

2. Choose Λ = ΛT > 0 and further choose Ω = ΩT > 0 such that

α1c = λmin(Q) − rmax
ref −

√
λmax(P)

λmin(P)
‖xe0‖ > 0, (25)

where

xe0 = [eη0 eν0]
T ,

eη0 = η0 − ηref0, eν0 = ν0 − JT (eψ0)νref0,

Q=

[
2Ω2 0
0 2Ω2

]
,P=

[
(2ΛΩ)2+Ω2+Ω4

2ΛΩ
I

I − I+Ω2

2ΛΩ

]
,

(26)

while ε3 is chosen such that

α1 =λmin(Q)− rmax
ref −ε23λmax(P)(MMλmax(Kp)

+MMλmax(Kd)+2MMλmax(D+Kd)‖νref‖+‖νref‖+

2CM‖νref‖ +dM3)−
(
1 +ε23λmax(P)(2CM + 2MM

λmax(Kp)+ 2‖νref‖+2‖ν̇ref‖)
) √

V0

λmin(P)
> 0

(27)

V0=λmax(P)‖xe0‖
2+(λmax(L2)+λmax(L1))‖η̃0‖

2+‖ ˙̃η0‖
2. (28)

7



while the observer gains L1 and L2 are chosen symmetric and positive definite such that

λmin(L1) > 1, λmin(L2) ≥ 1 (29)

λmin(L2) >
1

2
MMCM‖νref‖ +

1

4
MMdM1+2ε−2

3 λmax(P)MM

×(λmax(Kp)+λmax(Kd)+2λmax(D+Kd)‖νref‖)

+

(
1

2
MMCM+2ε−2

3 λmax(P)
(
2MMλmax(Kp)

+2‖νref‖+2‖ν̇ref‖
)) √

V0

λmin(P)
(30)

λmax(L2) ≥ λmin(L2) (31)

λmin(L1) >
(2α11+γ2)+

√
(2α11+γ2)2−4(α2

11−γ1)

2
(32)

λmax(L1) ≤
λ2

min(L1) − 2α11λmin(L1) + α2
11 − γ1

γ2
(33)

where

α11 =
1

2
+3MMCM‖νref‖+

3

2
MMdM1

+ε−2
3 λmax(P)(‖νref‖+2CM‖νref‖+dM3) (34)

γ = 2CM+2λmax(P)CM+2λmax(P)dM4

√
1

λmin(P)

+3MMCM +3MMdM2 (35)

γ1 = γ2
(
λmax(P)‖xe0‖

2+ λmax(L2)‖η̃0‖
2+ ‖ ˙̃η0‖

2
)

(36)

γ2 = γ2‖η̃0‖
2 (37)

η̃0 = η0 − η̂0, ˙̃η0 = η̇0 − ˙̂η0. (38)

If Assumption 1 is satisfied, the reference velocity νref and the reference acceleration ν̇ref are
bounded, then the observer-controller scheme is semi-globally uniform exponential stable.

For the proof, see Appendix IV.
The controller gains can be chosen according to the following procedure:

1. Choose Λ = ΛT > 0.

2. Choose Ω = ΩT > 0 such that (25) is satisfied. This is possible since

λmin(Q) ∼ O(Ω2),
√
λmax(P)
λmin(P) ∼ O(Ω) and Λ influences the ratio λmax(P)

λmin(P)

3. Choose ε3 such that (27) is satisfied.

4. Choose λmin(L2) such that (29) and (30) are satisfied.

5. Choose λmax(L2) such that (31) is satisfied.

6. Choose λmin(L1) such that (29) and (32) are satisfied.

7. Choose λmax(L1) such that (33) is satisfied and λmax(L1) ≥ λmin(L1). This
is possible since λmin(L1) satisfies (32).
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4 Computer simulations and experiment

4.1 Marine Cybernetics Laboratory

Experiments with the proposed observer-controller scheme are carried out at the
Marine Cybernetics Laboratory (MClab) located at Tyholt, Trondheim. The MClab
consist of a 40 m × 6.45 m concrete basin, a measurement system, a wave gen-
erator, a laptop running a user interface to control the experiments and a model
supply ship, see Figure 1 and 2. The model ship used during the experiments is
Cybership II.

The 6 DOF position of the ship is measured by a Proreflex motion capture
system. This system consists of 4 Earth-fixed mounted cameras, 4 active/passive
responders onboard of the ship and a position measurement program NyPOS run-
ning on a computer. The measurement frequency is set at 9 Hz. The area where
the position measurements are available is restricted to 8 m × 5 m.

A Dell Latitude D800 laptop with a 1.60 GHz Intel Prentium M processor and
512 MB RAM, working under Microsoft Windows XP Professional ver. 2002, is
used to run the user interface. The user interface is build in Labview ver. 6.2 and
allows us to control the ship by manual inputs, a joystick or an automatic controller.
The laptop is also used to build the observer-controller scheme in Matlab ver. 6.5.0
Release 13 and Simulink ver. 5.0. OPAL-RT ver. 6.2. is used to generate make-
files and transmits these files over a wireless network to the computer onboard the
ship. Eventually the system build in Simulink is running onboard the ship. The
differential equations are solved with a fixed step solver using the Euler algorithm.
Since the error is 2nd order w.r.t. time, a small step size is required. A step size of
0.05 s is used, or 20 Hz.

The basin is also equipped with a DHI wave maker system. This system can
generate all kind of predefined, regular and irregular, 2D waves in the basin.

Cybership II is a model supply ship, Froude scaled 1:70. The length of the ship
is 1.3 m and the weight about 24 kg. Five actuators actuate the ship: at the stern
two screw-rudder pairs and in the bow a two blade tunnel thruster. The maximum
actuated surge force is 2 N, the maximum sway force is 1.5 N and the maximum
yaw moment is 1.5 Nm. Thereafter the growth rate of the actuated forces is limited.
Onboard Cybership II a 300 MHz computer is located which runs the QNX 6.2
real-time operating system. This computer runs the observer-controller scheme
and communicates with the steppermotors of the rudders and the servomotors
controlling the rpms of the screws and the tunnel thruster through an H bridge
circuit.

The model matrices of the nonlinear manoeuvring model in the body-fixed
frame (16) are defined as

M =

⎡
⎣25.8 0 0

0 33.8 1.0115
0 1.0115 2.76

⎤
⎦

C(ν) =

⎡
⎣ 0 0 −33.8v − 1.0115r

0 0 25.8u
33.8v + 1.0115r −25.8u 0

⎤
⎦

D(ν) =

⎡
⎣0.72 + 1.33|u| 0 0

0 0.86 + 36.28|v| −0.11
0 −0.11 − 5.04|v| 0.5

⎤
⎦ .

(39)
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4.2 Trajectory and tuning

The ship is expected to track an elliptic trajectory with constant surge velocity. The
elliptic trajectory is chosen since the yaw velocity is not constant, the whole head-
ing envelope is covered and the trajectory can be repeatedly followed. The ship is
supposed to track 4 times an elliptic reference trajectory with a constant forward
speed. The ship starts with a forward speed of 0.05 m/s, which is increased after
every round to 0.1 m/s, 0.15 m/s and 0.2 m/s respectively.

The ship starts in position η0 = [3.8 − 1.2 1
2π]T with velocity ν0 = [0 0 0]T ,

while the initial estimates are set as η̂0 = [4 − 1 2.94]T and ˆ̇η0 = [0.5 0.5 − 0.5]T .
The gains of the observer are set as

L1 = diag(15, 15, 15)

L2 = diag(50, 50, 50),
(40)

while the controller gains are set as

Kd = 2MΛΩ− D

Kp = MΩ2.
(41)

with

Ω = diag(0.72, 0.42, 0.64)

Λ = diag(1, 1, 1).
(42)

4.3 Computer simulation and experimental results

The working of the observer-controller scheme is verified by both computer simu-
lations and experimentally obtained results.

The computer simulation is performed under ideal conditions, which implies
that the ship is simulated with the dynamic model used in the lab experiment,
there is no simulated measurement noise added and no effects of environmental
disturbances like wind, waves and current are included. The computer simulation
serve as a ideal reference and is used to do a back to back comparison with the
experimentally obtained results.

Experiments are performed with a model ship in a closed basin. The lab ex-
periment is performed with and without waves added to assess the robustness of
the scheme. The results are influenced by external disturbances and measurement
noise.

Only linear damping is implemented in the observer-controller scheme, since
numerical problems occurred by implementing the nonlinear damping term in the
observer-controller scheme. Although disregarding nonlinear damping decreases
the quality of the ship model and therefore decrease the performance of the ob-
server, it can be accepted since nonlinear damping is a stabilizing effect and has
the same effect as increasing the controller gain Kd.

In this paper we present only some representative results. For more results, the
interested reader is refered to [15].

4.3.1 Computer simulations

Computer simulations are performed with the same settings as in the lab exper-
iment. For the computer simulation a higher order solver and smaller time step
have been used.
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The top graph in Figure 3 shows XY plots of the reference (gray) and tracked tra-
jectory (black) in the computer simulation. Convergence of the trajectory towards
the reference is clearly seen.

Figure 4 shows the errors in the body-fixed x- and y-position and the heading
ψ in this simulation by means of the dashed line. The errors converge to exactly 0.
Even though the nonlinear damping is included in the observer controller scheme
the errors converge to exactly 0. This is clear from the graphs on the right, where
we zoom in on the error and let the simulation run longer

4.3.2 Lab experiments without waves

The bottom graph in Figure 3 shows XY plots of the reference (gray) and tracked
trajectory (black) in the lab experiments without waves. The tracked path converges
during the transient response towards the reference with only small deviations
around y = 0, for both extremal values of x.

Figure 4 shows the errors in the body-fixed x- and y-position and the heading
ψ in the lab experiment by means of the solid line. Similar to the numerical sim-
ulations, the errors converge to 0. However, when we zoom in on the error to the
centimeter scale, we see some small deviations in the x and y direction occuring.

As mentioned before, the speed of the ship is increased every round. It appears
that the size of the deviations is correlated to the speed of the ship. This is most
obvious in the y-direction. Opposed to the directly actuated body-fixed x-direction
(screw-rudder pair) and heading (tunnel thruster), the body-fixed y-direction is in-
directly actuated by a combination of the two aft screw-rudder pairs and the tunnel
thruster. The stronger correlation between the ships forward velocity and the error
in the body-fixed y-direction as seen in the experiment is possibly a combination of
higher loaded screws and tunnel thruster, the complicated way to actuate the body-
fixed y-direction and the increasing Coriolis and centripetal forces on the ship.

The stepwise increase of the ships forward velocity is also shown in Figure 5.
Only the 6 DOF position, η = [x y z φ θ ψ]T , of the ship can be measured. To
obtain a quantity for the real ship velocity to compare with the reference velocity,
the measured position is differentiated with a numerical differentiator. If measure-
ments are lost, the system takes the latest available measurement. The differenti-
ated position is then equal to 0 and the quantity for the real ship velocity becomes
unrealistic if after some time a position measurement is available. Because mea-
surement failure and of course also measurement noise disturb the differentiated
signal, the velocities obtained by the numerical differentiator and the reference
velocity are shown against time in Figure 5. The velocities seem to tend to their
reference values. The peaks around for instance 60, 360, 530, and 650 seconds re-
spectively are results of measurement failure. This is supported by the large peaks
in the velocities obtained by the numerical differentiator.

Allthough there is a small deviation between the numerical simulations and the
lab experiment, these differences are negligable. In particular when the measure-
ment failures are taken into account. Therefore, the experimental results in Figure
4 compare well with the numerical simulations, and thus support the theoretical
result of semi-global uniform exponential stability of the closed-loop errors.
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4.3.3 Lab experiments with waves

The robustness of the observer-controller scheme is explored by introducing waves
to the model ship in the experiment. To compare the performance of the scheme
between the experiments with and without waves and the computer simulation an
error index is defined

error index=
1

t2−t1

t2∫
t1

(exbody(t)
2+eybody(t)

2+eψ(t)2)dt. (43)

The waves are generated using the JONSWAP (Joint North Sea Wave Project)
distribution [5] with time mean period of 0.75 seconds, γ = 3.3 and a significant
wave height of 0.01 m. The JONSWAP distribution is commonly used to model
non-fully developed seas and is therefore more peaked then those representing
fully developed seas. The situation considered corresponds with WMO sea state
code 3 (moderate sea swell) in reality.

For the graphs resulting from these experiments the reader is refered to [15].
These are comparable to the results presented above for the lab experiments with-
out waves. The corresponding error indices are presented in Table 1. The results
show only small changes in the calculated error indices from which we can con-
clude some robustness against external disturbances in the scheme.

Table 1: Performance of observer-controller scheme

t1 t2 Error index
Simulation 0 714.2 9.305610−2

Experiment without waves 0 715.1 1.1145 10−1

Experiment with waves 0 730.6 1.2686 10−1

5 Conclusions

An observer-controller scheme is proposed to track a trajectory in real-time using
the position and heading measurements of the ship.

In the observer design the dynamic ship model in the Earth-fixed frame is con-
sidered, which has the advantage that the properties of the Coriolis and centripetal
matrix written in Christoffel symbols can be used.

In the controller design the dynamic ship model in the body-fixed frame is
considered, so that the stabilizing terms can be chosen with respect to the forward,
sideward and orientation error. Disregarding the rotations, the closed-loop system
can be tuned like a second-order system.

In the observer-controller design the dynamic ship model for the observer and
controller is considered in the Earth-fixed frame and the body-fixed frame respec-
tively. The closed-loop system is proven to be semi-globally uniform exponential
stable.

Experimental results from tests with a model ship are compared with simula-
tion results under ideal conditions. In ideal simulations the errors converge exactly
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to 0, while the experimental results tend to 0. Both experimental and simulation
results are comparable with the theoretical results on exponential convergence of
the closed loop-errors.

The experiments also show that the observer-controller scheme is robust with
respect to environmental disturbances.

Notice that the presented observer-controller scheme can also be used for other
Euler-Lagrange systems including nonlinear damping and Coriolis and centripetal
forces and moments.
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A Mathematical preliminaries

In this paper the following notations are used: The norm of a vector or matrix is
denoted as ‖.‖ and the norm of a scalar is denoted as |.|. The minimum eigenvalue
of a matrix A is denoted as λmin(A), while the maximum eigenvalue is denoted by
λmax(A).

The systems considered in this paper are of the form

ẋ = f(x) (44)

where f : R+ ×D → R
n is piecewise continuous on R+ ×D and locally Lipschitz

in x on R+ ×D, and D ⊂ R
n is a domain that contains the origin x = 0.

Definition A.1 The equilibrium point x = 0 is said to be semi-globally uniform expo-
nential stable if for each r > 0 and for all (t0, x(t0)) ∈ R+ × B, a function β ∈ KL
exists such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t ≥ t0 ≥ 0, ∀ x(t0) ∈ Br (45)

where β

β = k‖x(t0)‖ exp−γ(t−t0) k > 0, γ > 0 (46)

A modified version of the β-ball lemma plays a central role in the stability proof of
the systems. This modified version of the β-ball lemma [14] is presented in [3].

Lemma A.1 Given a dynamical system

ẋi = fi(x1, . . . , xm) and fi(0, . . . , 0) = 0,

xi ∈ R
n, t ≥ 0, i = 1, . . . ,m

(47)

Let fi(.) be locally Lipschitz with respect to x1, . . . , xm. Suppose a function V (.) :
R
n×m → R

+ is given such that

V (x1, . . . , xm) =

m∑
i,j=1

xTi Pijxj Pij = PT
ij > 0 (48)
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where for each i = 1, . . . ,m there exists a ξi > 0 such that

ξi‖xi‖
2 ≤ V (x1, . . . , xm) (49)

V̇ (x1, . . . , xm) ≤ −
∑
i∈I1

(αi −
∑
j∈I2

γij‖xj‖)‖xi‖
2

(50)

where αi, γij > 0, I2 ⊂ I1 ⊂ {1, . . . ,m}. Define V0 = V (x1(0), . . . , xm(0)). If for
all i ∈ I1

αi = αi −
∑
j∈I2

γijV
1

2

0 ξ
−

1

2

j > 0 (51)

then for all κi ∈ [0, αi] the following inequality holds

V̇ (x1, . . . , xm) ≤ −
∑
i∈I1

κi‖xi‖
2, ∀ t ≥ 0 (52)

B Proof of Proposition 4.1.

The following candidate Lyapunov function, which satisfies (48), is proposed

V (η̃, ˙̃η) =
1

2
η̃T (L2 + λL1)η̃ + λ ˙̃ηT η̃ +

1

2
˙̃ηT ˙̃η, (53)

and λ > 0.
Note that the cross terms can be rewritten by completion of squares, i.e.

‖λη̃‖‖ ˙̃η‖=−
1

2
(ελ‖η̃‖−ε−1‖ ˙̃η‖)2+

1

2
ε2λ2‖η̃‖2+

1

2
ε−2‖ ˙̃η‖2

≤
1

2
ε2λ2‖η̃‖2+

1

2
ε−2‖ ˙̃η‖2,

(54)

where the parameter ε > 0. The proposed candidate Lyapunov function can thus
be lower- and upperbounded such that (49) is satisfied, i.e.

1

2
(λmin(L2) + λλmin(L1) − λ2ε21)︸ ︷︷ ︸

ξ1

‖η̃‖2 +
1

2
(1 − ε−2

1 )︸ ︷︷ ︸
ξ2

‖ ˙̃η‖2

≤ V (η̃, ˙̃η) ≤

1

2
(λmax(L2) + λλmax(L1) + λ2ε21)‖η̃‖

2 +
1

2
(1 + ε−2

1 )‖ ˙̃η‖2.

(55)

The derivative of the proposed candidate Lyapunov function is

V̇ (η̃, ˙̃η)=−λη̃TL2η̃− ˙̃ηT (L1−λI) ˙̃η+(λη̃+ ˙̃η)T(
−M−1(η)(C(η, η̇)η̇−C(η, ˙̂η) ˙̂η)−M−1(η)(d(η, η̇)−d(η, ˙̂η))

)
.

(56)

Note that using property (3) it can be shown that

C(η, η̇)η̇−C(η, ˙̂η) ˙̂η = C(η, η̇)η̇−C(η, η̇)η̇+C(η, η̇) ˙̃η

+C(η, ˙̃η)η̇−C(η, ˙̃η) ˙̃η = 2C(η, η̇) ˙̃η−C(η, ˙̃η) ˙̃η.
(57)
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Now using (57), (9), (4), (5) and rewriting the cross term by completion of squares
(54), upperbounds can be found for

(λη̃ + ˙̃η)T
(
−M−1(η)(C(η, η̇)η̇ − C(η, ˙̂η) ˙̂η)

)
≤ (λ‖η̃‖ + ‖ ˙̃η‖)(2MMCMVM‖ ˙̃η‖ +MMCM‖ ˙̃η‖2)

≤
1

2
ε22λ

22MMCMVM‖η̃‖2 +
1

2
ε−2
2 2MMCMVM‖ ˙̃η‖2

+ 2MMCMVM‖ ˙̃η‖2 + (λ‖η̃‖ + ‖ ˙̃η‖)MMCM‖ ˙̃η‖2

(58)

and

(λη̃ + ˙̃η)
(
−M−1(η)(d(η, η̇) − d(η, ˙̂η))

)
≤ (λ‖η̃‖ + ‖ ˙̃η‖)MM (dM1‖ ˙̃η‖ + dM2‖ ˙̃η‖2)

≤
1

2
ε22λ

2MMdM1‖η̃‖
2 +

1

2
ε−2
2 MMdM1‖ ˙̃η‖2

+MMdM1‖ ˙̃η‖2+(λ‖η̃‖+‖ ˙̃η‖)MMdM2)‖ ˙̃η‖2.

(59)

Now using (58) and (59) the derivative of the proposed candidate Lyapunov func-
tion (56) can be upperbounded by

V̇(η̃, ˙̃η)≤−

(
λλmin(L2)−

1

2
ε22λ

2(2MMCMVM+MMdM1)

)
︸ ︷︷ ︸

α1

‖η̃‖2

−

(
λmin(L1)−λ−(2+ε−2

2 )MMCMVM−(1+
1

2
ε−2
2 )MMdM1

)
︸ ︷︷ ︸

α2

‖ ˙̃η‖2

+(λMMCM+λMMdM2)︸ ︷︷ ︸
γ21

‖η̃‖‖ ˙̃η‖2

+(MMCM+MMdM2)︸ ︷︷ ︸
γ22

‖ ˙̃η‖‖ ˙̃η‖2

(60)

We choose the observer gains L1 and L2 such that λmin(L1) > 1, λmin(L2) ≥ 1. In
addition we choose ε1 = 2 and λ = 1

2 in (55), such that

1

4
(‖η̃‖2 + ‖ ˙̃η‖2) ≤

1

4
‖η̃‖2 +

3

8
‖ ˙̃η‖2 ≤ V (η̃, ˙̃η)

≤ (λmax(L2) + λmax(L1))‖η̃‖
2 + ‖ ˙̃η‖2.

(61)

We choose ε2 = 1 in (60), which in analogy with (51) in Lemma 2.1 results in

α1=
1

2
λmin(L2) −

1

4
MMCMVM −

1

8
MMdM1

α2=λmin(L1)−α11−γ

√
λmax(L2)‖η̃0‖2+‖ ˙̃η0‖2+λmax(L1)‖η̃0‖2,

(62)

where

α11 =
1

2
+ 3MMCMVM +

3

2
MMdM1

γ =3MMCM + 3MMdM2

(63)
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From (62) and (63) a gain tuning procedure can be developed to guaranteeα1, α2 >

0. We can choose λmin(L2) such that α1 > 0, i.e.

λmin(L2) >
1

2
MMCMVM +

1

4
MMdM1, (64)

and without any further restrictions we can choose λmax(L2) ≥ λmin(L2). Given
the observer gain L2, α11 and γ are known and a lowerbound for λmin(L1) can be
found, i.e.

(λmin(L1)−α11)
2>γ2

(
(λmax(L1)+λmax(L2))‖η̃0‖

2+‖ ˙̃η0‖
2
)
. (65)

We define

γ1 = γ2
(
λmax(L2)‖η̃0‖

2 + ‖ ˙̃η0‖
2
)

γ2 = γ2‖η̃0‖
2

(66)

It follows from

(λmin(L1) − α11)
2 − γ1 > γ2λmax(L1) (67)

that necessarily

(λmin(L1) − α11)
2 − γ1 > γ2λmin(L1), (68)

which results in

λmin(L1) >
(2α11 + γ2) +

√
(2α11 + γ2)2 − 4(α2

11 − γ1)

2
. (69)

Finally to guarantee (65) we have to choose λmax(L1) such that

λmax(L1) ≤
(λmin(L1) − α11)

2 − γ1

γ2
. (70)

Now, we have proven that the observer gains L1 and L2 can be chosen such that
α1, α2 > 0. Then

V̇ (η̃, ˙̃η) ≤ −α1‖η̃‖
2 − α2‖ ˙̃η‖2 (71)

and from Lemma 1.1 it follows that

V̇ (η̃, ˙̃η) ≤ −κ1‖η̃‖
2 − κ2‖ ˙̃η‖2 ∀ κ1∈ [0, α1] and κ2∈ [0, α2] (72)

which shows that

V̇ (η̃, ˙̃η) ≤ −βV (η̃, ˙̃η) (73)

for some β > 0, and the observer error dynamics is locally uniformly exponentially
stable. Since for every initial condition the observer gains can be chosen such that
the observer error dynamics is locally uniformly exponentially stable, we can claim
a semi-global result. 
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C Proof of Proposition 4.2.

Writing xe = [eη eν ]
T , the closed loop system can be written as

ẋe = TT (ψ)AcT(ψ)xe, (74)

where T(ψ) is defined as T(ψ) = diag(JT (ψ), I) and

Ac = A − BK =

[
0 I

−M−1Kp −M−1(D + Kd)

]

B =

[
0

M−1

]
, K =

(
Kp Kd

)
.

(75)

Notice that the eigenvalues of TT (ψ)AcT(ψ) are equal to the eigenvalues of Ac,
since TT (ψ) = T−1(ψ).

Define z = T(ψ)xe, then

ż = Ṫ(ψ)TT (ψ)z + Acz = (Ac + ST (r))z, (76)

where ST (r) = diag(S(r), 0).
Choosing the gains

Kd = 2MΛΩ− D

Kp = MΩ2,
(77)

Λ = ΛT > 0 and Ω = ΩT > 0
results in

Ac =

[
0 I

−Ω2 −2ΛΩ

]
, (78)

The following candidate Lyapunov function is proposed

V = xTe TT (ψ)PT(ψ)xe = zTPz, (79)

where

P=

[
(2ΛΩ)2+Ω2+Ω4

2ΛΩ
I

I − I+Ω2

2ΛΩ

]
. (80)

The corresponding derivative is

V̇ = zT

⎛
⎜⎜⎜⎝

[
2Ω2 0
0 2Ω2

]
︸ ︷︷ ︸

Q

+

[
0 ST (r)

S(r) 0

]⎞
⎟⎟⎟⎠ z

≤ −(λmin(Q) − rmax
ref − |er|)‖xe‖

2.

(81)

Since (79) satisfies (49)

λmin(P)‖xe‖
2 ≤ V ≤ λmax(P)‖xe‖

2 (82)
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and (81) satisfies (50)

V̇ ≤−(λmin(Q)−rmax
ref︸ ︷︷ ︸

α

− 1︸︷︷︸
γ

|er|)‖xe‖
2,

(83)

Lemma 2.1 is used to prove stability. In analogy with (51)

α=λmin(Q)−rmax
ref −

√
λmax(P)

λmin(P)
‖xe0‖>0 (84)

Since λmin(Q) ∼ O(Ω2),
√
λmax(P)
λmin(P) ∼ O(Ω) and Λ influences the ratio λmax(P)

λmin(P) ,

we can choose Ω and Λ such that (84) is positive. Therefore we first choose the
relative damping ratio Λ and further choose Ω such that (84) is positive. Then
using Lemma 1.1 it follows that

V̇ ≤ −βV (85)

for some β > 0, and the controller error dynamics is locally exponentially stable.
Since for every initial condition the controller gains can be chosen such that α > 0,
we can claim a semi-global result. 


D Proof of Proposition 4.3.

The closed-loop errors can be written in the form

ėη=J(ψ)eν

ėν=−M−1(D+Kd)eν−M−1KpJ
T (ψ)eη+g(eη, eν , η̃, ˙̃η)

˙̃η= η̇ − ˙̂η

¨̃η=−M−1(η)(C(η, η̇)η̇ − C(η, ˙̂η) ˙̂η)

− M−1(η)(d(η, η̇) − d(η, ˙̂η)) − L2η̃ − L1
˙̃η,

(86)

where

g(eη, eν , η̃, ˙̃η)=−M−1KpJ
T(ψ)(J(ψ̃)−I)eη+M−1KpJ

T(ψ)J(ψ̃)η̃

+M−1Kdν̃+(M−1(D+Kd)J
T(eψ)(J(ψ̃)−I)−ST(̃r)JT(eψ))νref

+ST(er)J
T(eψ)(J(ψ̃)−I)νref +JT (eψ)(J(ψ̃)−I)ν̇ref−C(ν)ν̃

+C(̃ν)(ν−ν̃)+Dn(ν)−Dn(̂ν).

(87)

By collecting the states xe = [eη eν ]
T , we propose the following candidate Lyapunov

function

V (xe, η̃, ˙̃η) = xTe TT (ψ)PT(ψ)xe

+
1

2
η̃T (L2 +

1

2
L1)η̃ +

1

2
˙̃ηT η̃ +

1

2
˙̃ηT ˙̃η,

(88)

which is a linear combination of the Lyapunov functions of the separate observer
and separate controller. From (61) and (82) a lowerbound and an upperbound for
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V (xe, η̃, ˙̃η) can be found, i.e.

λmin(P)‖xe‖
2 +

1

4
(‖η̃‖2 + ‖ ˙̃η‖2) ≤ V (xe, η̃, ˙̃η) ≤

λmax(P)‖xe‖
2+(λmax(L2)+λmax(L1))‖η̃‖

2+‖ ˙̃η‖2.

(89)

From (2) and Assumption 1 it can be seen that the Coriolis and centripetal term
can be upperbouned, i.e.

C(ν)ν̃+C(̃ν)(ν−ν̃)=C(eν+JT(eψ)νref)ν̃+C(̃ν)(eν+JT(eψ)νref)

−C(̃ν)ν̃≤2CM‖eν‖‖ν̃‖+2CM‖νref‖‖ν̃‖+CM‖ν̃‖2.
(90)

Using (90), Assumption 2 and ‖ν̃‖ = ‖ ˙̃η‖, the term g(eη, eν , η̃, ˙̃η) can be upper-
bounded, i.e.

g(xe, η̃, ˙̃η)≤MM (2λmax(Kp)‖xe‖‖η̃‖+λmax(Kp)‖η̃‖

+λmax(Kd)‖ ˙̃η‖+2λmax(D+Kd)‖νref‖
)

+ 2‖xe‖‖νref‖‖η̃‖

+‖νref‖‖ ˙̃η‖+2‖ ˙̃η‖‖ν̇ref‖‖η̃‖+2CM‖eν‖‖ν̃‖

+2CM‖νref‖‖ν̃‖+CM‖ν̃‖2+(dM3 + dM4‖ ˙̃η‖)‖ ˙̃η‖.

(91)

Now using (60), (81) and (91) the derivative of the proposed candidate Lyapunov
function (88) can be upperbounded by

V̇ (xe, η̃, ˙̃η)≤−(λmin(Q)− rmax
ref − |er|)‖xe‖

2

−

(
1

2
λmin(L2)−

1

4
MMCM‖νref‖−

1

8
MMdM1

)
‖η̃‖2

−

(
λmin(L1)−

1

2
−2MMCM‖νref‖−MMdM1−MMCM‖νref‖

−
1

2
MMdM1

)
‖ ˙̃η‖2+

(
1

2
MMCM+

1

2
MMdM2

)
‖η̃‖‖ ˙̃η‖2

+(MMCM+MMdM2)‖ ˙̃η‖‖ ˙̃η‖2+
1

4
MMCM‖xe‖‖η̃‖

2+2MMCM

‖xe‖‖ ˙̃η‖2+2λmax(P)MM

(
2λmax(Kp)‖η̃‖‖xe‖

2+λmax(Kp)‖η̃‖

‖xe‖+λmax(Kd)‖ ˙̃η‖‖xe‖+2λmax(D+ Kd)‖νref‖‖xe‖‖η̃‖
)
+

4λmax(P)‖νref‖‖η̃‖‖xe‖
2+2λmax(P)‖νref‖‖ ˙̃η‖‖xe‖+4λmax(P)

‖ν̇ref‖‖η̃‖‖xe‖
2+4λmax(P)CM‖νref‖‖ ˙̃η‖‖xe‖+4λmax(P)CM

‖ ˙̃η‖‖xe‖
2+2λmax(P)CM‖xe‖‖ ˙̃η‖2+2λmax(P)dM3‖xe‖‖ ˙̃η‖

+2λmax(P)dM4‖xe‖‖ ˙̃η‖2.

(92)
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Rewriting the cross terms in (92) by completion of squares (54),

V̇ (xe, η̃, ˙̃η)≤−(λmin(Q)− rmax
ref − |er|)‖xe‖

2

+ε23λmax(P)(MMλmax(Kp)+MMλmax(Kd)+2MMλmax(D+

Kd)‖νref‖+‖νref‖+2CM‖νref‖+2CM‖xe‖ +dM3+

2MMλmax(Kp)‖xe‖+2‖νref‖‖xe‖+2‖ν̇ref‖‖xe‖)‖xe‖
2

−

(
1

2
λmin(L2) −

1

4
MMCM‖νref‖ −

1

8
MMdM1

)
‖η̃‖2

+
1

4
MMCM‖xe‖‖η̃‖

2

+ε−2
3 λmax(P)(MMλmax(Kp)+MMλmax(Kd)+2MMλmax(D+Kd)

‖νref‖+2MMλmax(Kp)‖xe‖+2‖νref‖‖xe‖+2‖ν̇ref‖‖xe‖)‖η̃‖
2

−

(
λmin(L1)−

1

2
−2MMCM‖νref‖−MMdM1−MMCM‖νref‖

−
1

2
MMdM1

)
‖ ˙̃η‖2+

(
1

2
MMCM+

1

2
MMdM2

)
‖η̃‖‖ ˙̃η‖2

+(MMCM+MMdM2)‖ ˙̃η‖‖ ˙̃η‖2

+ ε−2
3 λmax(P)(‖νref‖+2CM‖νref‖+2CM‖xe‖+dM3)‖ ˙̃η‖2

+ (2λmax(P)CM + 2λmax(P)dM4)‖xe‖‖ ˙̃η‖2

(93)

In analogy with (51), we obtain from (93) α1, α2 and α3, i.e.

α1 =λmin(Q)− rmax
ref −ε23λmax(P)(MMλmax(Kp)

+MMλmax(Kd)+2MMλmax(D+Kd)‖νref‖+‖νref‖+

2CM‖νref‖ +dM3)−
(
1 +ε23λmax(P)(2CM + 2MMλmax(Kp)

+2‖νref‖+2‖ν̇ref‖))

√
V0

λmin(P)

α2=
1

2
λmin(L2)−

1

4
MMCM‖νref‖ −

1

8
MMdM1−ε

−2
3 λmax(P)

(MMλmax(Kp)+MMλmax(Kd)+2MMλmax(D+Kd)‖νref‖)

−

(
1

4
MMCM+ε−2

3 λmax(P)(2MMλmax(Kp)+2‖νref‖+2‖ν̇ref‖)

)
√

V0

λmin(P)

α3 =λmin(L1)−
1

2
−3MMCM‖νref‖−MMdM1

−
1

2
MMdM1−ε

−2
3 λmax(P)(‖νref‖+2CM‖νref‖+dM3)

−

(
(2CM+2λmax(P)CM+2λmax(P)dM4)

√
1

λmin(P)

+3MMCM+3MMdM2)
√
V0

(94)

21



where

V0≤λmax(P)‖xe0‖
2+(λmax(L2)+λmax(L1))‖η̃0‖

2+‖ ˙̃η0‖
2 (95)

From (94) and (95) a gain tuning procedure is developed to guarantee α1, α2, α3 >

0. In analogy with the gain tuning procedure for the controller in Section 4.2, we
choose

Kd = 2MΛΩ− D

Kp = MΩ2.
(96)

Then choose Λ and given Λ, Ω is chosen such that

α1c=λmin(Q)− rmax
ref −

√
V0

λmin(P)
>0, (97)

where

Q=

[
2Ω2 0
0 2Ω2

]
,P=

[
(2ΛΩ)2+Ω2+Ω4

2ΛΩ
I

I − I+Ω2

2ΛΩ

]
, (98)

while ε3 is chosen such that α1 > 0.
Since ε3 is known, we can choose λmin(L2) such that α2 > 0, i.e.

λmin(L2)>
1

2
MMCM‖νref‖ +

1

4
MMdM1+2ε−2

3 λmax(P)

(MMλmax(Kp)+MMλmax(Kd)+2MMλmax(D+Kd)‖νref‖)

+

(
1

2
MMCM+2ε−2

3 λmax(P)(2MMλmax(Kp)+2‖νref‖+2‖ν̇ref‖)

)
√

V0

λmin(P)

(99)

and without any further restriction we can choose λmax(L2) ≥ λmin(L2). In anal-
ogy with the gain tuning procedure for the observer in Section 4.1, we define

α11 =
1

2
+3MMCM‖νref‖+

3

2
MMdM1

+ε−2
3 λmax(P)(‖νref‖+2CM‖νref‖+dM3)

γ= 2CM+2λmax(P)CM+2λmax(P)dM4

√
1

λmin(P)
+3MMCM

+3MMdM2

γ1 = γ2
(
λmax(P)‖xe0‖

2 + λmax(L2)‖η̃0‖
2 + ‖ ˙̃η0‖

2
)

γ2 = γ2‖η̃0‖
2

(100)

Given the already known controller gains Kp and Kd and the observer gain L2, a
lower bound for λmin(L1) can be found, i.e.

(λmin(L1)−α11)
2>

γ2
(
λmax(P)‖xe0‖

2+ (λmax(L1)+λmax(L2))‖η̃0‖
2+‖ ˙̃η0‖

2
)
.

(101)
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It follows from

(λmin(L1) − α11)
2 − γ1 > γ2λmax(L1) (102)

that necessarily

(λmin(L1) − α11)
2 − γ1 > γ2λmin(L1), (103)

which results in

λmin(L1) >
(2α11 + γ2) +

√
(2α11 + γ2)2 − 4(α2

11 − γ1)

2
. (104)

Finally to guarantee (101) we have to choose λmax(L1) such that

λmax(L1) ≤
(λmin(L1) − α11)

2 − γ1

γ2
. (105)

Now, we have proven that the observer gains L1 and L2 can be chosen such that
α2, α3 > 0.

Then using Lemma 1.1 it follows that

V̇ ≤ −βV (106)

for some β > 0, and the observer-controller error dynamics is locally exponential
stable for bounded ‖νref‖ and ‖ν̇ref‖. Since for every initial condition the observer
and controller gains can be chosen such that α1, α2, α3 > 0, we can claim a semi-
globally result. 
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Figure 1: Basin at the Marine Cybernetics Laboratory located at Tyholt, Trond-
heim.
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Figure 2: Cybership II, a model supply ship, Froude scaled 1:70.
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Figure 3: XY plot of the reference and tracked trajectories in the experiment
without waves and computer simulation.
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Figure 4: Position errors of the observer-controller scheme: exbody, eybody and
eψ.
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Figure 5: Desired velocity uref, vref and rref and ship velocity u, v and r estimated
by the numerical differentiator.
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