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Abstract

We consider a port consisting of a cluster of inter-related terminals, where container ves-
sels arrive cyclically. The problem is to strategically assign a terminal and a time interval of
berthing to each of the vessels in the cycle. Restricting properties are terminal quay lengths
and quay crane capacity. Conflicting objectives are i) minimizing the number of required
quay cranes, ii) minimizing the amount of inter-terminal traffic and iii) minimizing the to-
tal weighted deviation from desired berthing intervals. We formulate both a straightforward
and an alternative mixed integer linear program to model this system. Results show that the
alternative model is much faster solvable and enables to optimize real-life problems within a
couple of hours.



1 Introduction

In 1960 people started using containers for international conveyance of sea freight for the
first time. Since then the containerization has grown rapidly. Nowadays, deep-sea vessels can
carry about 15 thousand TEU’s (Twenty feet Equivalent Units) and mega container ports are
processing up to 15 million TEU’s a year. In order to cope with these tremendous amounts of
cargo, port operators have to develop efficient logistics systems. Descriptions and classifica-
tions as well as solution methods for the main logistics processes in container ports are given
in [1], [2] and [3]. These studies determine the so-called berth allocation problem (BAP) as one
of the key issues in a container port. We explicitly distinguish between i) the single-terminal
BAP, which is concerned with the allocation of a set of vessels to one terminal and ii) the
multi-terminal BAP, which is concerned with the allocation of a set of vessels to a cluster of
inter-related terminals.

In the last two decades intensive research has been conducted on the single-terminal BAP.
The single-terminal BAP consists of two interrelated assignment problems: assign i) a berthing
position at the terminal and ii) a time interval of berthing to each vessel. The problem can
be represented in a two-dimensional space, where each vessel is a small rectangle, whose
dimensions are the vessel’s length and handling time. These small rectangles have to be
placed within a large rectangle, with dimensions quay length and considered time horizon,
such that the small rectangles are not overlapping and satisfy some additional, case-related
constraints. A vessel’s handling time depends on both the amount of containers to be loaded
and unloaded and the number of quay cranes assigned to the vessel. The objective of the
single-terminal BAP is usually to minimize the total weighted handling time.

In general, either a static or dynamic, single-terminal BAP is considered. The static case
assumes all vessels are in the port before the berths become available. This turns the problem
into an assignment problem and makes it solvable in polynomial time with the Hungarian
method [4]. This method assigns jobs to machines by sequentially computing shortest paths
until each job is assigned to a machine.

In the dynamic case vessels arrive while work is in progress. In addition, a discrete and a con-
tinuous, single-terminal BAP is discussed. In the discrete case, the terminal is divided into
a finite set of segments. A vessel can only berth at one (or more) of these segments, which
means that the length of the vessels is not (or partly) taken into consideration. The problem
can then be modeled as a parallel machine scheduling problem [5], where each vessel is a job
and the berth is the machine. In the continuous case, vessels can berth anywhere along the
terminal. The discrete as well as the continuous case have been proven to be NP-hard [6].

[7] consider the static, single-terminal BAP and the quay crane assignment within one ter-
minal simultaneously by using a two-phase solution procedure. The first phase determines
the scheduling and allocation of the vessels as well as the number of quay cranes assigned to
each vessel. They assume a vessel’s handling time to be inversely proportional to the number
of quay cranes assigned to that vessel. In the second phase, a detailed schedule for each quay
crane is constructed.

[8] investigate the dynamic, single-terminal BAP in a container port and develop a heuristic
procedure dependent on the relaxation of the static, single-terminal BAP. They show that the
dynamic case is easy to solve as long as it is closely related to the static one, which means that
most of the vessels are already in the port before the berths become available. [9] propose
a heuristic for the dynamic, single-terminal BAP and compare results of the discrete and
continuous case.

[10] solve different variations of the discrete, single-terminal BAP with the First Fit Decreas-
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ing Heuristic. Their results show that the heuristic is effective in obtaining near-optimal
solutions. A nonlinear integer program and a genetic algorithm for a different perspective on
the single-terminal BAP are proposed in [11]. They consider berth segments where, depen-
dent on their lengths, at most two vessels can berth simultaneously. Furthermore, additional
constraints relative to the water depths at the different berths are included. [12] study the dis-
crete, single-terminal BAP, which subsumes as particular cases the single-terminal BAP with
priorities, the dynamic, single-terminal BAP and the static single-terminal BAP. In addition
both handling time as well as handling costs are dependent on the berth position. A variable
neighborhood search heuristic is presented and shown to outperform three other heuristics.

[13] transforms the continuous, single-terminal BAP into a two-dimensional packing prob-
lem and formulates it as a graph-theoretical problem. Furthermore, a heuristic is proposed
to solve the model efficiently. [14] use a simulated annealing method to solve the continuous,
single-terminal BAP and show that the results are similar to the optimal solution. A sequence
pair based simulated annealingmethod is used by [15] to efficiently solve the rectangle packing
problem, which is similar to the continuous, single-terminal BAP. [16] propose a stochastic
beam search for the berth allocation problem and show that it outperforms both the state-
of-the-art simulated annealing meta-heuristic of [17] and the traditional deterministic beam
search. In [18], mega-ports with indented berths are modeled and subsequently genetic al-
gorithms are applied to solve the model. Results show that while the indented berths serve
mega-vessels faster, the total lead time of all vessels at ports with indented berths is larger
than the one at conventional ports.

[19] present models and heuristics for both the discrete and continuous, single-terminal
BAP. In [14] and [7] each berthing point is penalized dependent on the deviation from a
pre-determined optimal berthing point. However, [19] assume that a vessel’s handling time
depends on the distance between the berth position of that vessel and the destined stack of
its containers.

To our knowledge and as stated in ([20]), hardly any research has been conducted towards the
multi-terminal BAP. So far, studies present models and algorithms, which only solve a version
of the single-terminal BAP. However, present ports often consist of a cluster of terminals (see
Figure 1), where inter-terminal container traffic is established by trucks. Since most ports
face a significant amount of transshipment traffic, the allocations of vessels to the different
terminals become interdependent and cannot be considered separately anymore.

Hence, in order to derive an optimal schedule, it is necessary to incorporate the complex
of interacting terminals in one model: this is called the multi-terminal BAP. This model
should then also take into account the amount of inbound and outbound containers and their
corresponding destinations. Inbound containers of an arriving vessel for instance could be
partly destined for the hinterland and partly for another vessel. Hence, allocation of the two
involved vessels to different terminals implies inter-terminal traffic and thus additional costs.
However, due to other objectives and constraints this may still be the best or only solution.

2 Contributions and Outline

In this paper we consider the multi-terminal BAP. Although we guarantee that terminal quay
lengths as well as quay crane capacities are never exceeded, the exact berth position and
the exact quay crane allocation within a terminal are still to be determined at a tactical or
operational level. This implies that we simultaneously consider a number of inter-dependent,
one-dimensional packing problems, which allow capacitated parallel processing. Applying
this cut (see Figure (2)), we are able to construct an accurate timetable for real-life instances

3 Contributions and Outline
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Figure 1: A cluster of inter-related terminals.

rather fast. Results show that, when real-life data is used, feasible position and quay crane
allocations exist.

Previous studies after the BAP consider a set of vessels within a certain time horizon. The
corresponding objective in these researches often reduces to fitting all vessels within a time
horizon and minimizing the total weighted handling time for all vessels. However, in practice
most vessels run a regular service on their ports, for instance once a week, which makes the
system cyclic. Vessels can arrive at the end of the considered time period (cycle) and leave at
the beginning of this time period (next cycle). Relating this to the packing problem implies
that rectangles (vessels) can be cut into two pieces, where one piece is placed at the end of
the time horizon and the other piece at the beginning, which has not yet been studied for the
BAP.

Terminal allocation
Time window allocation

# quay cranes to vessel

Quay crane allocationPosition allocation

vessel to terminal

Figure 2: Schematic illustration of the chosen cut.

The contributions of this paper are the following:

• We address the multi-terminal BAP and allocate vessels to a certain terminal for a
certain time interval.
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• The model in this paper takes the cyclic nature of the system into consideration.

• An alternative approach, introduced here, is much faster solvable than the straight-
forward approach. Using the alternative approach, we are able to construct accurate
allocations for real-life problems within a couple of hours.

This research is supported by the terminal operator PSA Hesse-Noord Natie, located in
Antwerp, Belgium, where they run a multi-terminal container operation.

The paper is structured as follows: in Section 3, the problem considered is formally phrased.
Then, we introduce a straightforward mixed integer linear program to solve this problem. In
addition, we propose an alternative mixed integer linear program. We compare the perfor-
mance and discuss feasibility aspects of both approaches in Section 4. Finally, in Section 5,
we draw conclusions and make recommendations for future research.

3 Mathematical Models

In this section, we first describe the problem considered in detail. Next, we propose and
discuss two mathematical formulations to solve the problem. The first approach is straight-
forward in the sense that the way of modeling the berthing of vessels is common. The second
model contains a different way of approaching the modeling problem. The way of modeling
the cyclic property of the system is similar for both approaches.

3.1 System Description

For all of this paper the following holds, unless stated differently: t ∈ {1, 2, . . . , T}, the cluster
of terminals, v ∈ {1, 2, . . . , V}, the set of vessels, z ∈ {0, 1, 2, . . . , V}, the set of container
destinations. Furthermore, we assume vessels to call cyclically, where each vessel in the
set arrives exactly once each cycle. In general, the cycle length is in the order of a week
for such a container operation. We consider discrete time k and unless stated differently,
k ∈ {1, 2, . . . , K}, is the set of discrete time slots within the cycle.

In the cluster of terminals, the set of container vessels has to be unloaded and loaded. Vessel v
imports a pre-determined number of inbound containers Ivz ∈ Nwith destination(s) z, where
v 6 = z. In this context, z = 0 means that containers are destined for the hinterland, whereas
z = 1, 2, . . . , V means that containers are destined for vessels v = 1, 2, . . . , V respectively.
Besides import containers brought in by vessels, a certain amount of containers Hv with
destination v is imported from the hinterland by trucks and trains during the cycle. These
containers are distributed among the different terminals dependent on their destinations.
Furthermore, each vessel v exports a number of outbound containers Ov ∈ N. Container
transport between the cluster of terminals is established by trucks.

Terminal t has a restricted quay length Lt ∈ R+ and a number of quay cranes Nt ∈ N.
Once berthing, vessel v requires a certain amount of quay meters lv. In addition, this length
lv determines the maximum number of quay cranes Sv ∈ N processing vessel v and the
efficiency ηv ∈ [0, 1] of the quay cranes on vessel v. In practice, quay cranes with different
processing rates are present in the terminals. We do not take the specific allocation of quay
cranes to vessels into account, but we use the average processing rate λ̄t ∈ N of all quay
cranes in terminal t. Then the handling time of vessel v in terminal t depends on i) the mean
processing rate λ̄t in terminal t, ii) the efficiency ηv of quay cranes operating vessel v, iii) the
number of quay cranes processing vessel v and iv) the number of inbound and outbound
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containers Ivz and Ov of vessel v. We assume the processing time of vessel v to be inversely
proportional to the first three of these items and proportional to the latter. Furthermore,
the number of quay cranes processing vessel v may change from one time slot to another.
After the unloading and before the loading, containers can temporarily be stored in the yard
of terminal t up to the yard’s capacity Wt. The time it takes to transport containers from
terminal p to terminal r is defined as ∆pr ∈ N. Furthermore, we assume that the total
number of time slots vessel v is actually berthing, is less then the number of time slots K in
the cycle. In addition, we assume that vessels arrive at the beginning of a time slot and depart
at the end of a time slot.

Our goal is to minimize the total costs of the system, which consist of three conflicting el-
ements: first of all, costs are associated with the number of quay cranes that have to be
installed in the terminals in order to satisfy the proposed schedule. We define ct to be the
average costs of a quay crane in terminal t. Second of all, a fixed amount of money cpr has
to be paid for each container that is transported from terminal p to terminal r. Finally, the
terminal operator has some contractual agreements with each of the vessel lines with respect
to the berthing interval of the corresponding vessels. We define Av ∈ N to be the preferred
arrival time of vessel v in the port and Dv ∈ N to be the preferred departure time of vessel v.
We have to remark that, in our definition, this means that vessel v prefers to depart at the end
of time slot 〈Dv − 2, Dv − 1]. If in the constructed strategic allocation, the actual berth time of
vessel v deviates from its preferred arrival time Av, fines have to be paid: we assign a factor of
penalty costs cav if vessel v berths later than the agreed arrival time Av. Moreover, we assign
factors of penalty costs ccv and cdv if in the constructed allocation vessel v departs earlier and
later than its preferred departure time Dv, respectively. If the constructed service window of a
certain vessel deviates from the preferred service window, negotiations between the terminal
operator and the corresponding vessel line have to lead to the eventual allocation.

Parameter Definition
T Number of terminals in the cluster
V Number of vessels in the set
K Number of discrete time slots within the cycle
Lt Quay length [m]
lv Quay length required for vessel [m]
Ivz # inbound containers to be unloaded from vessel v with destination z and v 6 = z
Ov # outbound containers to be loaded onto vessel v
Hv # containers with destination v arriving from the hinterland during the cycle
Av Preferred arrival time of vessel v
Dv Preferred departure time of vessel v
Ev Parameter to distinguish between the cases Av < Dv and Dv ≥ Av

Nt # quay cranes available in terminal t
Sv Maximum # quay cranes, which can process vessel v
λ̄t Mean processing rate of quay cranes in terminal t [containers/time slot]
ηv Vessel efficiency with respect to quay crane rate [-]
∆pr # time slots needed to transport containers from terminal p to r
Wt # containers that can be stored in terminal t
cav Factor of penalty costs for vessel v for arriving too late [ euro/containertime slot ]
ccv Factor of penalty costs for vessel v for departing too early [ euro/containertime slot ]
cdv Factor of penalty costs for vessel v for departing too late [ euro/containertime slot ]
cpr Factor of transportation costs from terminal p to r [euro/ container]
ct Factor of costs for required equipment in terminal t [euro/ quay crane]

Table 1: Model parameters
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With respect to the cyclic property of the considered system, we have two additional remarks.
First, we require conservation with respect to the arrival and departure of containers:

V∑
i=1

Iiv +Hv = Ov ∀v (1)

i
i

“avdv˙temp” — 2007/8/31 — 10:07 — page 1 — #1 i
i

i
i

i
i

Day 1

7

6

5 4

3

2

(a) Av = 2 and Dv = 5: Ev = 0.
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(b) Av = 7 and Dv = 4: Ev = 1.

Figure 3: Possible arrivals and departures of vessel v in terminal t in a cyclic system with
K = 7.

Second, we notice that both Av ≥ Dv and Av < Dv are possible, since we model cyclically arriv-
ing container vessels (see also Figure (3)). Therefore, we introduce an auxiliary parameter Ev,
which explicitly distinguishes between both cases:

Ev =

{
1 if Av ≥ Dv,
0 if Av < Dv. ∀v

In the next section it becomes clear why we need this parameter. The sets and parameters
discussed above are conveniently arranged in Table 1.

3.2 Straightforward MILP

Binary variables

atv(k) =

{
1 if in terminal t vessel v berths during time slot 〈k − 1, k],
0 otherwise.

dtv(k) =

{
1 if in terminal t vessel v departs during time slot 〈k − 2, k − 1],
0 otherwise.

7 Mathematical Models



Auxiliary binary variables

btv(k) =

{
1 if in terminal t vessel v is berthing during time slot 〈k − 1, k],
0 otherwise.

etv =

 1 if atv(ka) = 1 and dtv(kd) = 1 and ka > kd,
1 if in terminal t vessel v is continuously berthing,
0 otherwise.

eav =

{
1 if atv(ka) = 1 and ka < Av,
0 if atv(ka) = 1 and ka ≥ Av.

Continuous variables

mtv(k) = Amount of quay meters consumed in terminal t by vessel v during
time slot 〈k − 1, k] [m]

qtv(k) = Amount of quay processing vessel v in terminal t during time slot 〈k − 1, k]
htv(k) = Amount of containers from hinterland transported into terminal t

with destination v during time slot 〈k − 1, k] [containers/ time slot]
fprv(k) = Amount of containers transported from terminal p to terminal r with

destination v during time slot 〈k − 1, k] [containers/ time slot], p 6 = r
wtv(k) = WIP in terminal t with destination v at time k
nt = Number of quay cranes required in terminal t

Integer variables

∆a
v = Number of time slots vessel v berths too late

∆c
v = Number of time slots vessel v departs too early

∆d
v = Number of time slots vessel v departs too late

Constraints

Vessel v can only arrive once each cycle and only at one terminal:
T∑
t=1

K∑
k=1

atv(k) = 1 ∀v (2)

Furthermore, vessel v can only depart once each cycle from one terminal, where for vessel v
the departure terminal is equal to the arrival terminal:

K∑
k=1

atv(k) −
K∑
k=1

dtv(k) = 0 ∀t, v (3)

Iff vessel v arrives at and departs from terminal t, terminal t is occupied by vessel v only
between its arrival and departure time. We introduce the auxiliary binary variable etv to dis-
tinguish between the cases as given in the definition of etv, resulting from the cyclic nature of
the system. The principle used here is similar to the one for the auxiliary parameter Ev (see
also Figures 3a and 3b).

btv(k) − etv =
K∑

k′=k+1

(
dtv(k′) − atv(k′)

)
∀t, v, k (4)
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Furthermore, vessel v can only berth at one terminal:

T∑
t=1

btv(k) ≤ 1 ∀v, k (5)

The sum of lengths of all vessels berthing at terminal t during time slot 〈k − 1, k] should be
less than or equal to the total quay length in terminal t:

V∑
v=1

lv · btv(k) ≤ Lt ∀t, k (6)

Vessel v can be operated by up to Sv quay cranes in terminal t during time slot 〈k − 1, k], iff
this vessel is berthing in terminal t during time slot 〈k − 1, k]:

qtv(k) ≤ Sv · btv(k) ∀t, v, k (7)

Vessel v has to be fully processed during the cycle:

T∑
t=1

K∑
k=1

ηvλ̄t · qtv(k) =
Z∑
z=0

Ivz +Ov ∀v (8)

We want to minimize the maximum number of quay cranes in terminal t ever required dur-
ing the cycle. Therefore, we introduce an auxiliary variable nt, which is a soft upper bound on
the number of quay cranes in terminal t. This variable nt is present in the objective function:

V∑
v=1

qtv(k) ≤ nt ∀t, k (9)

The maximum number of quay cranes ever required in terminal t during the cycle cannot be
larger than the number of quay cranes actually available in terminal t:

nt ≤ Nt ∀t (10)

The sum over the cycle’s time slots of the number of containers with destination v, trans-
ported from the hinterland into the different terminals, should be equal to the total number
of containers with destination v arriving from the hinterland during the cycle.

K∑
k=1

T∑
t=1

htv(k) = Hv ∀v (11)

Since the system is cyclic, the storage level in the terminals and the inter-terminal transport
during time slot 〈k−1, k] should equal the storage level in the terminals and the inter-terminal
transport during time slot 〈k − 1 + αK, k + αK], where α ∈ N:

wtv(k) = wtv(k + αK) ∀t, v, k (12)

and
fprv(k) = fprv(k + αK) ∀p, r, v, k (13)

We assume that inbound containers with destination 0 ("hinterland") are transported into
the hinterland directly after they arrive in the terminal and are not counted as stack.

The amount of containers in terminal t with destination v during time slot 〈k − 1, k] is equal
to the amount of containers in terminal t with destination v during time slot 〈k−2, k− 1] plus
all incoming flows (inbound containers from vessels, containers from other terminals and
containers from the hinterland) minus all outgoing flows (outbound containers to vessels
and containers to other terminals). We assume that loading and unloading of containers
from vessel v with different destinations is divided proportionally among the time slots vessel
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v is actually berthing. To this, we first define the constants βvz = Ivz
Z∑
z=0

Ivz+Ov

and γv = Ov
Z∑
z=0

Ivz+Ov

,

and derive appropriate constraints:

wtv(k) = wtv(k − 1) +
V∑
i=1

βivηiλ̄t · qti(k) − γvηvλ̄t · qtv(k) + htv(k) + (14)

T∑
r=1

frtv(k − ∆pr) −
T∑
r=1

ftrv(k) ∀t, v, k

If we start with bringing containers into the yard during time slot 〈k − 1, k], the following
constraint has to be satisfied:

V∑
v=1

(
wtv(k − 1) +

V∑
i=1

βivηiλ̄t · qti(k) + htv(k) +
T∑
r=1

frtv(k − ∆pr)
)

≤ Wt ∀t, k (15)

If we start with taking away containers from the yard during time slot 〈k − 1, k], the following
constraint has to be satisfied:

wtv(k − 1) − γvηvλ̄t · qtv(k) −
T∑
r=1

ftrv(k) ≥ 0 ∀t, v, k (16)

Whatever order is applied during the cycle, (15) and (16) guarantee that never too much and
never too less (negative amount of) containers are in the yard.

We use the additional integer variables ∆a
v , ∆c

v and ∆d
v to model the number of time slots

vessel v berths too late, departs too early and departs too late, respectively. We assume vessel
v arrives in the port at time Av, which means that the actual berth time can only take place
exactly at or later than Av. We assume that the costs ∆a

v for late arrival of vessel v depend
linearly on the difference between the preferred arrival time Av and the actual arrival time.
Due to the cyclic nature of the system, both atv(ka) = 1, where ka < Av and ka ≥ Av are possible.
Hence, a jump in the cost function occurs at Av as depicted in Figure (4).

i
i
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Figure 4: Costs for berthing too late.

To model this jump, we introduce the auxiliary binary variable eav in an additional constraint:

∆a
v =

T∑
t=1

K∑
k=1

(
−

(
Av − k

)
· atv(k)

)
+ K · eav ∀v (17)

where

K · eav ≥
T∑
t=1

K∑
k=1

(
Av − k

)
· atv(k) ∀v (18)

With respect to departing too early or too late one can distinguish 4! = 24 permutations (of
av, Av, dv and Dv. It turns out that with help of the introduced auxiliary binary variables

10



eav and etv, and the auxiliary parameter Ev as defined in Section 3.1, we are able to construct
appropriate constraints for ∆c

v and ∆d
v to satisfy each of the 24 cases:

∆c
v ≥

T∑
t=1

K∑
k=1

((
Dv − k

)
· dtv(k)

)
− K · eav + K · Ev −

T∑
t=1

K · etv ∀v (19)

where
∆c
v ≥ 0 ∀v (20)

and

∆d
v ≥

T∑
t=1

K∑
k=1

−
((

Dv − k
)
· dtv(k)

)
+ K · eav − K · Ev +

T∑
t=1

K · etv ∀v (21)

where
∆d
v ≥ 0 ∀v (22)

Finally, some of the continuous variables have to be lower-bounded:

qtv(k) ≥ 0 (23)

htv(k) ≥ 0 (24)

fprz(k) ≥ 0 (25)

wtz(k) ≥ 0 (26)

Objective function

Linear penalty costs are assigned when vessel v berths later than its arrival time and/ or
when vessel v departs too early or too late (cav , c

c
v, c

d
v respectively). Furthermore, a linear unit

penalty cost is assigned when containers are transported from one terminal to another (cpr).
Finally, linear costs are assigned to the number of required quay cranes in terminal t (ct). The
decision variables are represented in a vector

~
u(k) = [atv(k), dtv(k), htv(k), qtv(k), fprv(k)]T and the

objective function is formulated:

min
~
u(1),...,

~
u(K)

V∑
v=1

(
cav∆a

v + ccv∆
c
v + cdv∆d

v

)
+

K∑
k=1

T∑
p=1

T∑
r=1

Z∑
z=1

cpr fprz(k) +
T∑
t=1

ctnt (27)

Remark: In the solution of this MILP it could be that an arbitrary amount of containers is
stored in a certain terminal during the entire cycle. This could be prevented by assigning a
small cost for each stored container.

3.3 Alternative MILP

In the previous section, we introduced a straightforward approach of modeling the problem.
The cyclic nature of the system is taken into account by (4), (12) and (13), and (17) through (22).
In this straightforward formulation, we used binary variables atv(k) and dtv(k), which indicate
whether or not a vessel berths at or departs from terminal t during time slot 〈k − 1, k]. In the
alternative approach we split these variables into the integer variables av and dv and the binary
variable xtv. Here, av and dv denote the time slots vessel v berths and departs, respectively.
In our definition dv means that the processing of vessel v ends at the end of time slot 〈k −
2, k − 1]. Additionally, xtv denotes the terminal in which vessel v berths. Consequently, some
of the constraints of the straightforward approach have to be adapted and even some new
constraints have to be introduced to describe the same problem. In the end, however, the
alternative way of modeling uses only a fraction T+K+2

3TK+T+1 of the number of binary variables in
the straightforward way of modeling.
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Continuous variables

av = Actual berth time slot of vessel v (start of processing vessel v)
dv = Actual departure time slot of vessel v (processing of vessel v ends at the end of

time slot 〈k − 2, k − 1]

The rest of the continuous variables are equivalent to the continuous variables as described
in Section 3.2.

Binary variables

xtv =

{
1 if in terminal t vessel v berths,
0 otherwise.

Auxiliary binary variables

bv(k) =

{
1 if vessel v is berthing during time slot 〈k − 1, k],
0 otherwise.

ev =


1 if av > dv,
0 if av < dv,
1 if av = dv and vessel v is continuously berthing,
0 if av = dv and vessel v does not berth at all.

eav =

{
1 if av < Av,
0 if av ≥ Av.

Constraints

Vessel v berths at only one terminal t:
T∑
t=1

xtv = 1 ∀v (28)

The arrival and departure times (av and dv respectively) of vessel v are within the cycle:

1 ≤ av ≤ K ∀v (29)

and
1 ≤ dv ≤ K ∀v (30)

Vessel v berths between its arrival and departure time, av and dv respectively. We need generic
constraints, which relate av and dv to bv(k) as well as bv(k) to av and dv for the cases where
av < dv, av = dv and av > dv. To incorporate the latter case, which follows from the cyclic
property of the system, we introduce an auxiliary binary variable ev:

K∑
k=1

(
bv(k) − ev

)
= dv − av ∀v (31)

and
1 − av ≤ k ·

(
bv(k) − ev

)
≤ dv − 1 ∀v, k (32)

and
dv − K ≤

(
K − k

)
·

(
bv(k) − ev

)
≤ K − av ∀v, k (33)
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Vessel v requires an amount of quay meters lv at a terminal t during time slot 〈k − 1, k], iff the
vessel is actually berthing during time slot 〈k − 1, k] at terminal t.

mtv(k) ≤ lv · xtv ∀t, v, k (34)

and
T∑
t=1

mtv(k) = lv · bv(k) ∀v, k (35)

Furthermore, the sum of lengths of all vessels berthing at terminal t during time slot 〈k−1, k]
should be less than or equal to the total quay length of terminal t:

V∑
v=1

mtv(k) ≤ Lt ∀t, k (36)

Vessel v can only be operated in terminal t iff vessel v is berthing in terminal t. Furthermore,
a maximum number of quay cranes Sv can be assigned to vessel v:

qtv(k) ≤ Sv · xtv ∀t, v, k (37)

and
qtv(k) ≤ Sv · bv(k) ∀t, v, k (38)

Next, constraints (8) through (16) from the straightforward MILP are also valid in this formu-
lation. Furthermore, we have to slightly adapt constraints (17) through (22):

∆a
v = −

(
Av − av

)
+ K · eav ∀v (39)

where
K · eav ≥ Av − av ∀v (40)

and
∆c
v ≥ (Dv − dv) − K · eav + K · Ev − K · ev ∀v (41)

where
∆c
v ≥ 0 ∀v (42)

and
∆d
v ≥ −

(
(Dv − dv) − K · eav + K · Ev − K · ev

)
∀v (43)

where
∆d
v ≥ 0 ∀v (44)

Objective function

The decision variables are represented in a vector
~
u(k) = [xtv, av, dv, htv(k), qtv(k), fprz(k)]T and

the objective function is equivalent to the one in (27).

4 Results

In the previous chapter, two approaches have been formulated, which model the described
system. As a next step, both approaches are coded inMatlab and solved using CPLEX. Results
for a large set of randomly generated instances suggest that the models encompass the same
solution, but significantly differ in CPU time. In this section, we statistically compare the
CPU times of both models dependent on the number of vessels V in the set. Results suggest
that the alternative approach convincingly outperforms the straight-forward approach. Next,
we investigate the CPU time of the alternative approach dependent on the number of time
slots K in the considered cycle. Finally, we suggest that from generated terminal and time
window allocations of realistic problems, we are able to construct feasible and satisfactory i)
two-dimensional packing solutions and ii) quay crane allocations.
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4.1 Performance Analysis

In this section, we first compare the CPU time of both approaches dependent on the number
of vessels in the set. We consider a problem with a cluster of three terminals T = 3 and a
one-week-cycle, where each time slot has a width of one day, hence K = 7. The rest of the
parameters, as described in Section 3.1, are randomly generated. The parameter set is used
as input data and, together with the model, fed into CPLEX. The mixed integer optimization
is terminated as soon as it has found a feasible integer solution proven to be within 5% of
optimal. For each value of V ∈ {6, 7, 8, ..., 40}, we randomly (within reasonable bounds
following from practice) generate 60 parameter sets and solve both approaches for these
instances. Furthermore, for each of these optimizations, we monitor the time CPLEX’s CPU
time. Figure 5a shows the corresponding geometric means and 95% confidence intervals of
the CPU time dependent on V for both approaches. Due to relatively large CPU times when
using the straightforward approach, V is varied between six and twenty only in this case.
The relative difference between the optimums of both approaches for each parameter set are
found to be within the 5% optimality gap, which suggests that indeed both models describe
the same problem.
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Figure 5: CPU time analysis.

From Figure 5a it is obvious that the alternative approach significantly outperforms the straight-
forward approach: First of all, the mean CPU time of the alternative approach is significantly
shorter than the mean runtime of the straightforward approach for each point in the consid-
ered interval. Moreover, the fraction between the CPU time of the straightforward approach
and the CPU time of the alternative approach increases exponentially with the number of ves-
sels in the set. Furthermore, the confidence interval of the straightforward approach starts
diverging at a smaller V value than the confidence interval of the alternative approach. We
now assume that the order of diverging remains the same for larger V values. A real-life
instance, where the number of vessels in the set is forty, then could CPLEX take weeks or
even months if the straightforward approach is applied and only a couple of minutes if the
alternative approach is applied. Therefore, in the remainder of this paper, only the alternative
approach is used.

The final goal is to consider a real-life case and to improve its current allocation by applying
the alternative approach. In order to generate a more and more detailed schedule, the width
of a time slot should be decreased, at the expense of larger CPU times. Nowadays, planners
of such container operations construct a schedule composed of time slots with 2 or 4 hours
width. Therefore, we are interested in the CPU time dependent on the number of time slots
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K in the cycle. Again, we consider a port with three terminals T = 3 and a one-week-cycle.
Additionally, for each value of V ∈ {6, 7, 8, ..., 20}, we generate 10 parameter sets and solve
the model for K ∈ {7, 14, 21, 42}, sequentially. The geometric means and the 95% confidence
intervals are shown in Figure 5b. As expected, the CPU time increases as K increases. Fur-
thermore, the four graphs for the geometric means exhibit approximately the same slope,
which suggests that, independent of K the CPU time grows with the same exponential rate
as V increases. Additional experiments show that a problem of real-life size can be solved
within about 6000 seconds for the case with 42 time slots (for the one-week-cycle, the width
of a time slot is then 4 hours). This suggests that with the alternative approach a rather
accurate allocation can be constructed for a real-life problem within a couple of hours.

4.2 Feasibility

Although the proposed method allocates a terminal, a number of quay cranes and a time
interval of berthing to a vessel, the actual position within that terminal as well as the actual
quay cranes processing that vessel are not specifically generated (see also Figure 2). The omis-
sion of these allocations allows to solve the model relatively fast, at the expense of possible
infeasibility of the found solution on an operational level. If the terminals would continu-
ously be utilized against their quay lengths capacities, this could lead to a situation where (6)
is fulfilled, however a feasible two-dimensional packing solution does not exist. In practice
however, ports require a significant utilization margin to compensate for disturbances (e.g.
late arrivals and departures) on an operational level. Results show, when representative data
from the port of Antwerp is used, that both a feasible position and quay crane allocation exist.
Since in this paper, we focus on an allocation at a strategic level, an arbitrary feasible solution
on an operational level is satisfactory at this point in time. A recently finished study considers
optimization of the position and quay crane allocation at a second level. In a future study one
could incorporate the position and quay crane allocation in the top-level optimization.

5 Conclusions, Recent Progress and Future Work

In this paper, we considered a cluster of inter-acting terminals, at which a set of container
vessels arrive cyclically. By abstracting from position and quay crane allocation, we were able
to strategically allocate a terminal and a time window to each of the vessels in the cycle.
Moreover, we showed that an alternative MILP formulation decreases the CPU time of a
straightforward MILP formulation several orders of magnitude for real-life instances. In fact,
real-life problems can be solved within a couple of hours when the alternative approach is
used. Results, using actual data from the port of Antwerp, showed that feasible position and
quay crane allocations exist.

We make the following remarks with respect to recent progress and future work:

• The alternative approach has been used to solve a case study in the port of Antwerp.
The cost reduction by adopting the resulting allocation looks promising to say the least.
Results will be discussed in a subsequent paper.

• Once the strategic allocation has been generated, we have to verify whether the solution
is feasible on an operational level. For problem sizes as faced by the port of Antwerp, we
were able to manually construct a two-dimensional position and quay crane allocation.
From a strategic point of view, being the abstraction level considered in this paper, an
arbitrary feasible schedule on an operational level suffices. A recently finished study
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addresses both the position and the quay crane allocation problems resulting for the
cut as proposed in this paper. Results will be discussed in a subsequent paper.

• To cope with stochastic arrivals of vessels in the port, a terminal operator provides a
so-called arrival window rather than a single arrival time: iff a vessel arrives within
its arrival window, the operator has to guarantee a maximal process time. If the vessel
arrives out of its window, the operator is not bound to a maximal process time. We have
developed a model, which takes these agreements into consideration and constructs an
allocation with minimally required crane capacity in the worst case arrival scenario.
Results will be discussed in a subsequent paper.

• In addition to the previous item, we have currently developed an online model predic-
tive control algorithm, that reallocates the strategic allocation under disturbances (e.g.
early/late vessels and crane breakdowns) to minimize the deviations from the reference
allocation. Results will be discussed in a subsequent paper.

• In this paper, we assumed all vessels to arrive exactly once during the cycle, implying
that all vessels have the same period. However, in practice it can happen that some
vessels have deviating cycle lengths. An expansion of the model, which incorporates
this phenomenon, is a recommendation for a future study.

• In today’s ports, inter-terminal transport is not only established by trucks, but also
by barges. In the current approach we model the resource utilization of the barges
by reducing the quay lengths by 200 meters and occupying one quay crane in each
terminal during the entire cycle. It is interesting to investigate the trade-off between
the amount of inter-terminal transport by trucks and barges and therefore worth-while
expanding the current model with the actual loading and unloading of barges.
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