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Abstract

We consider the optimal control problem of emptying a deterministic single server multiclass
queuing system without arrivals. We assume that the server is able to serve several queues
simultaneously, each at its own rate, independent of the number of queues being served.

We show that the optimal sequence of modes is ordered by rate of cost decrease. However,
queues are not necessarily emptied. We propose a dynamic programming approach for solv-
ing the problem, which reduces the multiparametric QP (mpQP) to a series of problems that
can be solved readily.



1 Introduction

Consider a model of N queues competing for a single server. The buffer capacity at each
queue is unlimited. The server is able to serve queue i at a rate µi. The cost of operation per
unit time is a linear function of the queue sizes. For this system it is well-known [1, 2, 4, 6]
that the optimal policy is a µc-rule: allocate service attention to the non-empty queue with the
largest rate of cost decrease.

The abovementioned papers assume that the server can serve only one queue simultaneously.
In this report we assume that the server is able to serve several queues simultaneously, each
queue at rate µi, independent of the number of queues being served. These kind of models
arise when studying multiclass queueing networks. In Figure 1 we depicted three illustrative
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Figure 1: Three examples of multiclass queueing networks which can be modeled as a single
server that can serve several queues simultaneously

examples, which all can be modeled similarly.

The first example is an intersection which needs to switch between flows from four different
directions. For this intersection the directions 1 and 2 can not be served simultaneously. The
same holds for directions 2 and 3, and also for the directions 3 and 4. However, the directions
1 and 3 can be served simultaneously. The same holds for directions 1 and 4, and also for the
directions 2 and 4.

The second example is a multiclass queueing tandem network consisting of three servers,
where each server serves two classes, but can serve only one class at the same time. There
are no buffers between the servers. Class 1 needs only service at the 1st server, class 2 needs
service at server 1, followed by service at server 2. Class 3 needs service at server 2, followed
by service at server 3, and class 4 needs only service at the 3rd server. This model can also be
used as an approximation for cases where buffers between servers are negligibly small.

The third example is a two-server polling system with physical constraints: the servers can
not serve to consecutive queues and can not overtake.

All three examples can be modeled as a single server with the modes

mode {1, 3}: serve class 1 and class 3 simultaneously,

mode {1, 4}: serve class 1 and class 4 simultaneously,

mode {2, 4}: serve class 2 and class 4 simultaneously,
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Table 1: An overview of the rate of cost decrease per mode for the example with service rate
µi = 1, c1 = 4, c2 = 3, c3 = 2, and c4 = 5

mode rate of cost decrease
mode {1, 4} 9
mode {2, 4} 8
mode {1, 3} 6
mode {4} 5
mode {1} 4
mode {2} 3
mode {3} 2
mode ∅ 0

and the additional modes

mode {1}: serve only class 1,

mode {2}: serve only class 2,

mode {3}: serve only class 3,

mode {4}: serve only class 4,

mode ∅: idle,

since it is also possible to serve a subset of classes.

In this report we consider the optimal control of this multiclass queueing system when the
cost of operation per unit time is a linear function of the queue sizes. Throughout, we con-
sider a fluid model with negligible setup times.

As an illustrative example, consider the above mentioned system and assume no arrivals.
Furthermore, assume that for each class the service rate µi = 1. Let xi(t) denote the queue
size of class i at time t, and assume that the cost of operation per unit time is given by
c1x1 + c2x2 + c3x3 + c4x4 with c1 = 4, c2 = 3, c3 = 2, and c4 = 5. So the problem we consider is to
minimize ∫ ∞

0
4x1(t) + 3x2(t) + 2x3(t) + 5x4(t) d t. (1)

Assume that the system initially starts at (x1, x2, x3, x4) = (6,6,6,6).

We canmake an overview of the rate of cost decrease permode, as shown in Table 1. According
to the µc-rule, a good policy seems to be to first use mode {1, 4} for a duration of 6 time units,
bringing the system in (x1, x2, x3, x4) = (0,6,6,0), followed by mode {2} for a duration of
6 time units, bringing the system in (x1, x2, x3, x4) = (0,0,6,0). Finally, use mode {3} for a
duration of 6 time units to empty the system, after which the system can idle. If we substitute
the resulting trajectories for the queue lengths in (1), the total costs for this policy become
4 · 18 + 3 · 54 + 2 · 90 + 5 · 18 = 504.

An alternative policy would be to first use mode {2, 4} for a duration of 6 time units, bringing
the system in (x1, x2, x3, x4) = (6,0,6,0). Next, serve in mode {1, 3} for 6 time units to empty
the system, and then idle. If we substitute the resulting trajectories for the queue lengths in
(1), the total costs for the alternative policy become 4 · 54 + 3 · 18 + 2 · 54 + 5 · 18 = 468, which
is less.
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Clearly the µc-rule does not hold for this system. Furthermore, the alternative policy is not
optimal either. As we show in the remainder of this report, the optimal policy in this case
yields a total costs of 456.

2 The problem

We consider N queues competing for a single server which can serve several queues simulta-
neously.

Assumption 2.1. We assume that no new jobs arrive to this system.

To model classes that can not be served simultaneously, let S = (N , C) be an undirected
graph, with vertices N = {1, 2, . . . , N} corresponding with the classes, and edges C ⊂ N ×N
corresponding to conflicting classes. That is, a pair (i, j) ∈ C (i < j) when classes i and j can
not be served simultaneously. For the example in the previous section we have

N = {1, 2, 3, 4} and C = {(1, 2), (2, 3), (3, 4)}, (2)

see also Figure 2.

1 2

3 4

Figure 2: The graph S = (N , C) with N and C as in (2)

Definition 2.2. We call a set m ⊂ N an allowed mode when m ×m ∩ C = ∅. That is, all of the
classes in m can be served simultaneously.

Corollary 2.3. When a set m ⊂ N is an allowed mode, any subset of m is also an allowed mode.

LetMS denote the set of all allowed modes for the multiclass single server system described
by the graph S. Furthermore, let x(t) = [x1(t), x2(t), . . . , xN(t)]T denote the queue lengths at
time t.

The system dynamics is given by the hybrid fluid model:

ẋ(t) = −Bmu(t) m ∈MS, (3)

where

Bm =


Im(1) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Im(N)

 Im(i) =

{
1 if i ∈ m
0 if i 6 ∈ m,

and u(t) = [u1(t), u2(t), . . . , uN(t)]T denotes the vector of used service rates at time t.
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The system dynamics is subject to the constraints

xi(t) ≥ 0 0 ≤ ui(t) ≤ µi ∀i ∈ N , ∀t ≥ 0. (4)

Let c = [c1, c2, . . . , cN ]T be a costs vector satisfying ci > 0.

Problem 2.4. Find a feedback u(x), m(x) for the system (3) which guarantees (4) and mini-
mizes

J(x0) =
∫ ∞

0
cTx(s; u,m, x0) d s, (5)

where x(t; u,m, x0) denotes the resulting queue lengths at time t when using feedback u(x)
and m(x) if the system starts in x(0) = x0 at time 0.

Lemma 2.5. For an optimal policy, the rate of service of class i ∈ N is given by ui(x) = µi.

Proof. We prove the result by contradiction. Suppose that an optimal policy is given for which
class i ∈ N is served from t0 to tf in consecutive modes m1, m2, . . . , mn with i ∈ mj for

j = 1, 2, . . . , n. But assume that during this interval ui(t) < µi. Let x0i and x
f
i denote the queue

length for class i at t0 and tf respectively. Consider an alternative policy which mimics this

optimal policy, but first serves class i at rate µi for a duration of (x0i − x
f
i )/µi, after which it

serves class i at rate 0 for the remaining duration of (tf − t0) − (x0i − x
f
i )/µi. Notice that the

alternative policy is feasible, since we have no arrivals. Clearly, the queue length of class i can
not decrease at a faster rate than in this alternative policy. Therefore, at each time instant the
queue length of class i is strictly less than for the optimal policy, whereas the queue length of
all other classes remains the same. In particular this implies that the alternative policy results
in strictly lower total costs, which contradicts the optimality of the given optimal policy.

Lemma 2.6. For an optimal policy the value of
∑

i∈mj
µici is non-increasing for two consecutive

modes mj.

Proof. We prove the result by contradiction. Suppose that an optimal policy is given with two
consecutive modes m1 and m2 for which

∑
i∈m1

µici <
∑

i∈m2
µici. Let τm1 and τm2 denote the

corresponding durations of these modes. Consider the alternative policy where this sequence
of modes is interchanged, while keeping the durations of the modes the same. That is, in
the alternative policy first modem2 is used for a duration of τm2 , after which modem1 is used
for a duration of τm1 . Notice that the alternative policy is feasible, since we have no arrivals.
Clearly, the costs initially decrease at a faster rate for the alternative policy, resulting in strictly
lower total costs, which contradicts the optimality of the given optimal policy.

Remark 2.7. Notice that Lemma 2.6 does not contradict our observation that the µc-rule does
not hold for the example in the previous section. Apparently the sequence of modes during
transient is in accordance with their µc-values, but the duration of modes is not determined
by buffers becoming empty.

Remark 2.8. Notice that we have not yet addressed the possibility of switching infinitely fast
between several modes. This is something we in principle could do, as setup times are as-
sumed to be zero. By assuming that at time twe are inmodem for a fraction of time αm(t) ≥ 0,
with

∑
m∈MS

αm(t) = 1, instead of the dynamics (3) we could consider the dynamics

ẋ(t) = −
∑

m∈MS

αm(t)Bmu(t) m ∈MS.

In a similar way as the proofs of lemmas 2.5 and 2.6 it can be shown be means of contradic-
tion that αm(t) ∈ {0, 1}.
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Suppose that an optimal policy is given which does not satisfy this property on the interval
[t1, t2]. For each mode m ∈ MS we define τm =

∫ t2
t1

αm(s) d s, and additionally for each class

i ∈ N we define τi
m = 1

µi

∫ t2
t1

αm(s)ui(s) d s. Consider an alternative policy which is successively
in each modem for a duration of τm, where the modes are in the order such that µmcm is non-
increasing for two consecutive modes. During mode m, class i is first served at rate µi for a
duration of τi

m, after which it is served at rate 0 for a duration of τm − τi
m. This alternative is

not only feasible, but also improves on the given optimal policy.

3 A worked out example

In the previous section we not only introduced the problem, but also derived two lemmas that
are helpful in determining the optimal feedback. Before solving the general problem we first
consider the example introduced in Section 1, i.e. the system depicted in Figure 1 which can
be parameterized by means of (2), µi = 1 for all i ∈ N , and c = [4, 3, 2, 5]T .

As a first step in solving the problem we first consider the open loop optimal control problem.
Let an initial condition x(0) = [x10, x20, x30, x40]T be given. From Lemma 2.6 we know that the
system subsequently visits the modes {1, 4}, {2, 4}, {1, 3}, {4}, {1}, {2}, and {3}, after which
the system stays in mode ∅ forever. Let τ14, τ24, τ13, τ4, τ1, τ2, and τ3 denote the durations of
the successive modes. From Lemma 2.5 we know that during each mode, each class is served
at maximal rate.

Using the results from lemmas 2.5 and 2.6 we can now determine the resulting costs as a
function of these durations:∫ ∞

0
x1(s) d s =

1
2
x210 + (x10 − τ14)τ24 + (x10 − τ14 − τ13)τ4∫ ∞

0
x2(s) d s =

1
2
x220 + x20τ14 + (x20 − τ24)(τ13 + τ4 + τ1)∫ ∞

0
x3(s) d s =

1
2
x230 + x30(τ14 + τ24) + (x30 − τ13)(τ4 + τ1 + τ2)∫ ∞

0
x4(s) d s =

1
2
x240 + (x40 − τ14 − τ24)τ13

where we also have

x10 = τ14 + τ13 + τ1

x20 = τ24 + τ2

x30 = τ13 + τ3

x40 = τ14 + τ24 + τ4

(6)

The problem of minimizing the costs (5) for a given initial condition x0 can be reduced to
solving the following quadratic program:

min
τ≥0

1
2

τTHτ − xT0Fτ +
1
2
xT0Yx0 (7a)

subject to

Gτ ≤ x0 (7b)
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where τ = [τ14, τ24, τ13]T and

F =

4 3 2
3 3 2
2 2 2
4 3 1

 G =

1 0 1
0 1 0
0 0 1
1 1 0

 (7c)

H =

8 6 3
6 6 3
3 3 4

 Y =

4 3 2 4
3 3 2 3
2 2 2 2
4 3 2 5

 . (7d)

For any given initial condition x0, (7) is a QP. The quadratic program (7) is a so-called multi
parametric quadratic program (mpQP) and can be solved for an arbitrary parameter x0 [3, 7].
An mpQP solver is included in the (free) Multi-Parametric Toolbox for Matlab [5].

The solution of the mpQP (7) is given by:

τ =




1
2 − 1

3 − 1
3

1
2

− 1
2

1
3

1
3

1
2

1
2

1
3

1
3 − 1

2

 x0 for


−3 2 2 −3
3 −2 −2 −3
−3 −2 −2 3
−3 −4 2 3
3 2 −4 −3

 x0 ≤ 0

0 0 0 0
0 0 0 1
1 0 0 0

 x0 for

0 −1 0 1
1 0 −1 0
3 −2 −2 3

 x0 ≤ 0

0 0 0 1
0 0 0 0
1 0 0 −1

 x0 for

[
1 0 −1 −1
−3 2 2 3

]
x0 ≤ 0

 1 0 0 0
−1 0 0 1
0 0 0 0

 x0 for

[
−1 −1 0 1
3 2 2 −3

]
x0 ≤ 0

0 −1 0 1
0 1 0 0
1 1 0 −1

 x0 for

0 1 0 −1
−1 −1 0 1
3 4 −2 −3

 x0 ≤ 0

 1 0 −1 0
−1 0 1 1
0 0 1 0

 x0 for

−1 0 1 0
1 0 −1 −1
−3 −2 4 3

 x0 ≤ 0

0 0 0 1
0 0 0 0
0 0 1 0

 x0 for
[
−1 0 1 1

]
x0 ≤ 0

1 0 0 0
0 1 0 0
0 0 0 0

 x0 for
[
1 1 0 −1

]
x0 ≤ 0.

(8)

So the parameter space for x0 is divided into 8 regions, and for each region the duration of
the first three modes is specified as a linear function of x0. The duration of the other four
modes follows from (6).

From this solution we can obtain the optimal controller for the example studied in Section 1,
i.e. starting from the initial condition x0 = [6,6,6,6]T . Notice that we are in the first region
of (8). This gives that we should first use mode {1, 4} for a duration of 2, bringing the system
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in x = (4,6,6, 4). Next, use mode {2, 4} for a duration of 4, bringing the system in x =
(4, 2,6,0). Subsequently, use mode {1, 3} for a duration of 4, bringing the system in x =
(0, 2, 2,0). Then, use mode {2} for a duration of 2, bringing the system in x = (0,0, 2,0).
Finally, use mode {3} for a duration of 2, bringing the system in x = (0,0,0,0), resulting in
the mentioned total costs of 456.

4 A dynamic programming approach

The approach introduced in the previous section solves the example problem for a given
cost vector c = [c1, c2, c3, c4]T . However, by means of a dynamic programming approach it
is possible to solve the problem for a given sequence of modes. Furthermore, a different
formulation of the controller is obtained, which is also easier to implement. To illustrate this,
we again consider the system depicted in Figure 1 which can be parameterized by means of
(2), but this time we consider arbitrary µi > 0 and ci > 0. We only assume that the sequence of
modes is as described in Table 1, i.e. we assume that 0 < µ3c3 ≤ µ2c2 < µ1c1 ≤ µ4c4 ≤ µ1c1+µ3c3.

In our dynamic programming approach we first solve the subproblem for the case where we
only have the final five modes {4}, {1}, {2}, {3}, and ∅ available. The solution to this problem
is given by the µc-rule. First serve class 4 exhaustively, then class 1, followed by class 2 and
finally class 3. The resulting cost-to-go is given by

1
2
xT


c1
µ1

c2
µ1

c3
µ1

c1
µ4

c2
µ1

c2
µ2

c3
µ2

c2
µ4

c3
µ1

c3
µ2

c3
µ3

c3
µ4

c1
µ4

c2
µ4

c3
µ4

c4
µ4

 x. (9)

For the next subproblem, we assume that we have the final six modes available. That is,
in addition to the five modes we assume to have available in the previous subproblem, we
assume to have mode {1, 3} available as well. From Lemma 2.6 we know that we start in this
mode, and from the previous subproblem we know how to proceed after leaving this mode.
The only thing that we need to determine is how long to stay in mode {1, 3}. Assume that we
stay in this mode for a duration of τ13. The costs made during mode {1, 3} are

c1τ13

(
x1 −

1
2

µ1τ13

)
+ c2τ13x2 + c3τ13

(
x3 −

1
2

µ3τ13

)
+ c4τ13x4. (10)

The remaining cost to go is given by

1
2

x1 − τ13µ1

x2
x3 − τ13µ3

x4


T


c1
µ1

c2
µ1

c3
µ1

c1
µ4

c2
µ1

c2
µ2

c3
µ2

c2
µ4

c3
µ1

c3
µ2

c3
µ3

c3
µ4

c1
µ4

c2
µ4

c3
µ4

c4
µ4


x1 − τ13µ1

x2
x3 − τ13µ3

x4

 . (11)

Adding (10) and (11) and subtracting (9) results in an additional cost to go of

µ3c3τ13

(
τ13 −

[
x1
µ1

+
x2
µ2

+
x3
µ3

+
µ1c1 + µ3c3 − µ4c4

µ3c3

x4
µ4

])
. (12)

which needs to be minimized over τ13 subject to the constraint 0 ≤ τ13 ≤ min(x1/µ1, x3/µ3).
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The minimum of (12) as a function of τ13 is achieved for

τ∗13 =
1
2

(
x1
µ1

+
x2
µ2

+
x3
µ3

+
(µ1c1 + µ3c3) − µ4c4

µ3c3

x4
µ4

)
≥

1
2

(
x1
µ1

+
x3
µ3

)
≥ min

(
x1
µ1

,
x3
µ3

)
.

Therefore, the end of mode {1, 3} is determined by either buffer 1 or buffer 3 becoming empty.

Similarly we can analyze the next subproblem, in which we assume that in addition to the
final six modes we have mode {2, 4} available too. Let τ24 denote the duration of this mode.
For the additional costs we get for x1

µ1
≥ x3

µ3

µ2c2τ24

(
τ24 −

[
x2
µ2

+
x4
µ4

+
µ2c2 + µ4c4 − µ1c1 − µ3c3

µ2c2

x3
µ3

+ (
x1
µ1

−
x3
µ3

)

])
,

whereas for x2
µ2

≤ x4
µ4

we obtain:

µ2c2τ24

(
τ24 −

[
x2
µ2

+
x4
µ4

+
µ2c2 + µ4c4 − µ1c1 − µ3c3

µ2c2

x1
µ1

+
µ3c3
µ2c2

(
x3
µ3

−
x1
µ1

)

])
.

For both expressions theminimum as a function of τ24 is achieved for τ∗24 ≥ min(x2/µ2, x4/µ4),
which implies that mode {2, 4} is finished by either x2 = 0 or x4 = 0.

The final step in our dynamic programming approach is to consider the full problem, i.e. as-
sume that all allowed modes are available. We need to determine the duration of mode {1, 4}:
τ14. When either x4

µ4
≥ x2

µ2
or x1

µ1
≥ x3

µ3
we obtain τ∗14 ≥ min(x1/µ1, x4/µ4). However, for x4

µ4
≤ x2

µ2

and x1
µ1

≤ x3
µ3

we obtain

τ∗14 =
1
2

(
x1
µ1

+
x4
µ4

)
−

µ3c3
2(µ1c1 − µ2c2 + µ3c3)

(
x2
µ2

+
x3
µ3

)
. (13)

This implies that mode {1, 4} is either terminated when x1 = 0 or x4 = 0, or when all of the
following three conditions are satisfied:

•
x4
µ4

≤
x2
µ2

,

•
x1
µ1

≤
x1
µ3

, and

• (µ1c1 − µ2c2 + µ3c3)

(
x1
µ1

+
x4
µ4

)
≤ µ3c3

(
x2
µ2

+
x3
µ3

)
.

To summarize, from the dynamic programming approach we obtain the following controller
for the system depicted in Figure 1, parameterized by means of (2), with 0 < µ3c3 ≤ µ2c2 <
µ1c1 ≤ µ4c4 ≤ µ1c1 + µ3c3:

Initialization: Start in mode {1, 4}.

mode {1, 4}: Stay in this mode until either x1 = 0, or x4 = 0, or x4 ≤ x2 ∧ x1 ≤ x3 ∧ (µ1c1 −

µ2c2 + µ3c3)
(

x1
µ1
+ x4

µ4

)
≤ µ3c3

(
x2
µ2

+ x3
µ3

)
then switch to mode {2, 4}.

mode {2, 4}: Stay in this mode until either x2 = 0 or x4 = 0, then switch to mode {1, 3}.

9 A dynamic programming approach



mode {1, 3}: Stay in this mode until either x1 = 0 or x3 = 0, then switch to mode {4}.

mode {4}: Stay in this mode until x4 = 0, then switch to mode {1}.

mode {1}: Stay in this mode until x1 = 0, then switch to mode {2}.

mode {2}: Stay in this mode until x2 = 0, then switch to mode {3}.

mode {3}: Stay in this mode until x3 = 0.

Given an arbitrary initial condition x0, the duration of each mode can be derived from the
above description. Doing so for the case where c1 = 4, c2 = 3, c3 = 2, c4 = 5, and µi = 1 results
in (8).

5 The dynamic programming approach for the gen-
eral problem

In the previous section we introduced a dynamic programming approach to solving the prob-
lem for a specific example. In this section we deal with the dynamic programming approach
for Problem 2.4 as introduced in Section 2.

Consider the set of allowed modes

MS = {m1, m2, . . . , mM}

and assume without loss of generality that∑
i∈mj

µici ≥
∑
i∈mk

µici ∀j < k.

From Lemmas 2.5 and 2.6, we know that classes are served at maximal rate, and subsequent
modes are ordered by the rate of cost decrease. That is, the system visits first mode m1, then
m2, etc. and finally the system visits mode mM = ∅.

Remark 5.1. Notice that not necessarily the modes in which a single class is served are the
modes mM−N , mM−N+1, . . . , mM−1. For example, in the system parameterized by (2), we might
have c4 > c1 + c3.

Our dynamic programming approach consists of solving a sequence of subproblems.

The ith subproblem Pi can be formulated as follows:

Problem 5.2 (subproblem Pi). Consider system dynamics described by the hybrid fluidmodel

ẋ(t) = −Bmµ m ∈ {mM−i+1, mM−i+2, . . . , mM} (14)

where

Bm =


Im(1) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Im(N)

 Im(i) =

{
1 if i ∈ m
0 if i 6 ∈ m,

and µ(t) = [µ1,µ2, . . . ,µN ]T denotes the vector of service rates.
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Find a feedback m(x) which guarantees

xi(t) ≥ 0 for all i ∈
M⋃

j=M−i+1

mj,∀t ≥ 0

xi(t) = 0 for all i ∈ N \
M⋃

j=M−i+1

mj,∀t ≥ 0

(15)

and minimizes

J(x0) =
∫ ∞

0
cTx(s; u,m, x0) d s, (16)

where x(t; u,m, x0) denotes the resulting queue lengths at time t when using feedback m(x)
if the system starts in x(0) = x0 at time 0, where x0 satisfies (15).

The solution of subproblem P1 is trivial.

Let the solution of subproblem Pi be given, consisting not only of the feedbackm(x), but also
of the cost to go J(x). From Lemma 2.6 we know that the solution to subproblem Pi+1 follows
from first staying in modemM−i for a duration τM−i, after which the solution of subproblem Pi

can be applied. Therefore, in order to solve subproblem Pi+1, only the duration τM−i ≥ 0 needs
to be determined. This duration follows from minimizing a second order polynomial in τM−i

subject to an upperbound on τM−i due to the fact that buffers are not allowed to become
negative during mode mM−i.

In this way, starting from the solution of subproblem P1, we can consecutively solve the sub-
problems P2, P3, . . . , PM−1, and finally also subproblem PM, which actually is equivalent to
Problem 2.4 which we need to solve.

6 Conclusions and future work

In this report we considered the optimal control problem of emptying a deterministic single
server multiclass queuing system without arrivals. We considered that case where the server
is able to serve several queues simultaneously, where queue i can be served at a rate µi. The
cost of operation per unit time is a linear function of the queue sizes.

We showed that the optimal sequence of modes is ordered by rate of cost decrease. However,
contrary to the µc-rule, queues are not necessarily emptied. Let M denote the number of
modes. We proposed a dynamic programming approach for solving the problem, which
reduces the M-dimensional multiparametric QP (mpQP) to a series of M problems that can
be solved readily.

So far, we considered a system without arrivals. We are currently working on extending our
solution to constant arrival rates. Lemmas 2.5 and 2.6 can be extended easily. The main dif-
ference is that the server can serve class i not only at rate 0 or µi, but also at rate λi (only when
buffer i is empty). When considering infinitely fast switching between modes, the problem
can also be formulated as a separated continuous linear problem for which a solution method
has recently been presented in [8].

The next step to pursue is an extension to the stochastic setting, cf. [1, 2, 4, 6]. Lemmas 2.5
and 2.6 can also be extended to the setting of stochastic inter arrival times and stochastic
service times. Subsequently, the dynamic programming approach can be extended.
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The above mentioned extensions are relatively straightforward. A more difficult extension
is to include non-zero setup times, since Lemma 2.6 does not hold anymore. This can be
illustrated by means of the system depicted in Figure 1, parameterized by means of (2). Let
the service rates µi = 1, the cost vector c = (0.34,0.33,0.32,0.35)T , and the initial state x0 =
(30, 20, 20, 40). In addition, assume that setup times are not negligible anymore, and that
they are all equal to 1.

Based on the foregoing, onemight assume it is optimal to first serve the system inmode {1, 4},
then in mode {2, 4}, next in mode {1, 3}, and finally in mode {3}, since that happens for
negligible setup times. Notice that during the setup from mode {1, 4} to mode {2, 4}, the
system can keep on serving class 4, so in between these two modes the system can operate
in mode {4}. During the setup from mode {2, 4} to mode {1, 3} no class can be served, i.e.
the system is in mode ∅. Finally, the setup from mode {1, 3} to mode {3} does not take any
time as the system has been set up for serving class 3 already. The total costs by applying this
policy are 1039.68.

Unfortunately, this turns out not to be the optimal policy. It is better to first serve the system
in mode {2, 4}, then in mode {1, 4}, next in mode {1, 3}, and finally in mode {3}. Even though
in mode {1, 4} the rate of cost decrease is larger than in mode {2, 4} (0.69 versus 0.68), it
is more beneficial to start with mode {2, 4}, followed by mode {1, 4}. The reason for that
is due to non-negligible setup times and the fact that during setups the system might still
partially serve certain classes. By interchanging the modes {2, 4} and {1, 4} one accomplishes
that during the setup to mode {1, 3} the system can still serve class 1 instead of idle. For the
given parameters it turns out that the cost reduction by being able to serve class 1 during the
setup to mode {1, 3} outweighs the additional costs by serving first in mode {2, 4} instead of
mode {1, 4}. For this alternative strategy the total costs are 1039.60, which is less. This makes
the problem with non negligible setup times challenging.
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[6] P. Nain, P. Tsoucas, and J. Walrand. Interchange arguments in stochastic scheduling.
Journal of Applied Probability, 27:815–826, 1989.

[7] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-parametric quadratic
programming and explicit MPC solutions. In Proceedings of the 40th IEEE Conference on
Decision and Control, pages 1199–1204, Orlando, Florida, USA, December 2001.

[8] G. Weiss. A simplex based algorithm to solve separated continuous linear programs.
Mathematical Programming, 115(1):151–198, September 2008.

13


