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Current literature on modeling and control of manufacturing systems can roughly be divided
into three groups: fluid models, queueing theory and discrete-event models. Most fluid mod-
els describe linear time-invariant controllable systems without any dynamics. These models
mainly focus on throughput and are not concerned with cycle time. Queueing theory deals
with relationships between throughput and cycle time, but is mainly concerned with steady-
state analysis. In addition, queueing models are not suitable for control theory. Discrete-event
models suffer from state explosion. Simple models of manufacturing systems can be stud-
ied and analyzed, but for larger problems the dimension of the state grows exponentially. In
addition, most control problems studied are supervisory control problems: the avoidance of
undesired states. An important class of interesting manufacturing control problems asks for
proper balancing of both throughput and cycle time for a large nonlinear dynamical system
that never is in steady state. None of the mentioned models is able to deal with these kinds of
control problems. In this paper, models are presented which are suitable for addressing this
important class of interesting manufacturing control problems.

5.1 Introduction

In this paper we are interested in the problem of how to ramp up a manufacturing line, or to
be more precise: we are interested in models that are suitable for obtaining a proper solution
to this problem. For that reason we propose acomputationally feasible, dynamicmodel that
incorporates boththroughputandcycle time.

The model we propose is a flow model, based on the theory of modeling traffic flow. The
idea is to consider the flow of products as a compressible fluid flow. The flow model we
propose is not to be confused with the flow model as initiated by Kimemia and Gershwin [21]
for modeling failure-prone manufacturing systems, nor with the fluid models or fluid queues
as proposed by queueing theorists [16, 33], nor with the stochastic fluid model as introduced
by Cassandras et al. [10].

All of the three mentioned fluid models from the literature are throughput-oriented. These
models do not explicitly contain information about cycle time. Also, the processing times of
machines are assumed to be deterministic. As a result, a property of these models is that any
feasible throughput can be achieved by means of zero inventory.

A class of models available in the literature are models based on relations from queueing
theory [22, 23], see e.g. [9, 32]. Although these results give valuable insight into steady-state
behavior of manufacturing lines, a disadvantage is that only the steady state is concerned.
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No dynamic relations are available. Therefore, these models cannot be used for studying the
problem of how to ramp up a manufacturing line.

A third class of models are discrete-event models like for instance the class of discrete-
event systems as studied by Ramadge and Wonham [28]. These models do include dynamics,
and both throughput and cycle time are incorporated. Unfortunately, as all states in which a
manufacturing system can be have to be considered, these models are almost unsuitable for
practical use. However, a promising modeling approach consists of the so-called max-plus-
linear discrete-event systems with variability expansion, as studied in [8].

To summarize: roughly three classes of models for manufacturing lines have been studied
in the literature so far: discrete-event models that suffer from state explosion, queueing theory
that contains only steady-state results and fluid models that do not incorporate cycle times. In
this paper we propose a new class of flow models, by considering the flow of products to be
a compressible fluid flow. However, first we recall the fluid models as currently available in
the literature and illustrate some of their shortcomings. We also prepare ways to (partially)
overcome these shortcomings.

5.2 Extensions to the Standard Fluid Model

As mentioned in the introduction, one of the advantages of fluid models is that these models
incorporate the dynamical behavior of manufacturing systems. Unfortunately, these models
do not take into account cycle times. In this section we present extensions to the fluid model
that (partially) overcome this disadvantage. However, before we can present this extension we
first have to present the fluid model as currently used in the literature.

5.2.1 A Common Fluid Model

The current standard way of deriving fluid models is most easily explained by means of an
example. Therefore, consider a simple manufacturing system consisting of two machines in
series, as displayed in Fig. 5.1. Letu0(t) denote the rate at which jobs arrive to the system at
time t, let ui(t) denote the rate at which machineMi produces lots at timet, let yi(t) denote
the number of lots in bufferBi at timet (i ∈ {1, 2}) and lety3(t) denote the number of lots
produced by the manufacturing system at timet. Assume that machinesM1 andM2 have
a maximum capacity of respectivelyµ1 andµ2 lots per time unit. This provides us with all
information for deriving a fluid model.

Clearly the rate of change of the buffer contents is given by the difference between the
rates at which lots enter and leave the buffer. Under the assumption that the number of lots

B1 M1 B2 M2 B3

u0 u1 u1 u2 u2

y1 y2 y3

Figure 5.1: A simple manufacturing system.
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can be considered continuous, this observation leads to the following fluid model:

ẏ1(t) = u0(t)− u1(t),
ẏ2(t) = u1(t)− u2(t),
ẏ3(t) = u2(t),

(5.1)

which can also be expressed as follows:

ẋ(t) =

0 0 0
0 0 0
0 0 0

x(t) +

1 −1 0
0 1 −1
0 0 1

u(t), (5.2a)

y(t) =

1 0 0
0 1 0
0 0 1

x(t) +

0 0 0
0 0 0
0 0 0

u(t), (5.2b)

whereu = [u0, u1, u2]> andy = [y1, y2, y3]>. We also have capacity constraints on the input,
as well as the constraint that the buffer contents should remain positive. These constraints can
be expressed by means of the following equations:

0 ≤ u1(t) ≤ µ1, 0 ≤ u2(t) ≤ µ2 and y1(t) ≥ 0, y2(t) ≥ 0, y3(t) ≥ 0. (5.3)

System (5.2) is a controllable linear system of the formẋ = Ax + Bu, y = Cx + Du as
extensively studied in control theory. Note that the description (5.2) is not the only possi-
ble input/output/state model which yields the input/output behavior (5.1). To illustrate this,
consider the change of coordinates

x(t) =

1 −1 0
0 1 −1
0 0 1

 x̄(t), (5.4)

which results in the following input/output/state model:

˙̄x(t) =

0 0 0
0 0 0
0 0 0

 x̄(t) +

1 0 0
0 1 0
0 0 1

u(t), (5.5a)

y(t) =

1 −1 0
0 1 −1
0 0 1

 x̄(t) +

0 0 0
0 0 0
0 0 0

u(t). (5.5b)

We would like to study the response of the output of the system (5.2), or equivalently
(5.5). Assume that initially we start with an empty production line (i.e.x(0) = 0), that both
machines have a capacity of 1 lot per unit time (i.e.µ1 = µ2 = 1) and that we feed the line at
a rate of1 lot per time unit (i.e.u0 = 1). Furthermore, assume that machines produce at full
capacity, but only in case something is in the buffer in front of it, i.e.

ui(t) =

{
µi if yi(t) > 0
0 otherwise

i ∈ {1, 2}. (5.6)
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Figure 5.2: Output of the manufacturing system using model (5.1).

Under these assumptions, the resulting contents of bufferB3 are as displayed in Fig. 5.2.
Notice that immediately lots start coming out of the system. Clearly this is not what happens
in practice. Since both machinesM1 andM2 need to process the first lot, it should take the
system at least1µ1

+ 1
µ2

time units before lots can come out. This illustrates our statement that
cycle times are not incorporated in fluid models as currently available in the literature. Now
we are ready for formulating an extension to the standard fluid model as presented.

5.2.2 An Extension

In the previous subsection we noticed that in the standard fluid model lots immediately come
out of the system, once we start producing. A way to overcome this problem is to explicitly
take into account the required delay. Whenever we decide to change the production rate of

B1 M1 B2 M2 B3

u0(t) u1(t)
u1

(

t− 1

µ1

)

u2(t)
u2

(

t− 1

µ2

)y1(t) y2(t) y3(t)

Figure 5.3: A simple manufacturing system revisited.

machineM1, buffer B2 notices this1/µ1 time units later. As a result the rate at which lots
arrive to bufferB2 at timet is equal to the rate at which machineM1 was processing at time
t− 1/µ1. This observation results in the following model (see also Fig. 5.3):

ẏ1(t) = u0(t)− u1(t),

ẏ2(t) = u1

(
t− 1

µ1

)
− u2(t),

ẏ3(t) = u2

(
t− 1

µ2

)
.

(5.7)

Clearly the constraints (5.3) also apply to the model (5.7).
We expect that this model shows a response which is closer to reality. Assume that for

the system (5.7) we also haveµ1 = µ2 = 1 lot per time unit, and that we perform the same
experiments as in the previous subsection, i.e. start fromx(0) = 0, applyu0 = 1 and Eq. (5.6).
The resulting response of bufferB3 is displayed in Fig. 5.4. If we compare the results from
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Figure 5.4: Output of the manufacturing system using model (5.7).

Fig. 5.4 to that of Fig. 5.2 we see that no products enter bufferB3 during the first2.0 time
units in case we use the extended fluid model. Clearly the extended fluid model produces
more realistic results than the standard fluid model.

5.2.3 An Approximation to the Extended Fluid Model

In the previous subsection we proposed an extended version of the standard fluid model. Al-
though the model (5.7) still is a linear model, standard linear control theory is not able to
deal with this model, due to the time delay. For controlling the model (5.7) we have to rely
on control theory of infinite-dimensional linear systems. For a good introduction to infinite-
dimensional linear systems, see e.g. [11].

Instead of using infinite-dimensional linear systems theory, another possibility would be
to approximate the time delays by means of a Padé approximation. When we use second-order
Pad́e approximations, the model (5.7) can be approximated as:

ẋ =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 4 6 −3 0 0
0 0 0 4 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 6 −3
0 0 0 0 0 4 0


x +



1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0


u, (5.8a)

y =

1 −1 0 0 0 0 0
0 1 −3 0 −1 0 0
0 0 0 0 1 −3 0

x +

0 0 0
0 0 0
0 0 0

u. (5.8b)

Notice the structure in (5.8). In bold face we can easily recognize the dynamics (5.5). The
additional dynamics is needed for approximating the time delays.

If we initiate the system (5.8) fromx(0) = 0 and feed it at a rateu0 = 1 while using
Eq. (5.6), we obtain the system response as depicted in Fig. 5.5. It is clear that we do not get
the same response as in Fig. 5.4, but the result is rather acceptable from a practical point of
view. At least it is closer to reality than the response as displayed in Fig. 5.2.
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Figure 5.5: Output of the manufacturing system using model (5.8).

5.2.4 A Hybrid Model

In the previous subsections, we provided some extensions to the standard fluid model by
taking into account the time delay lots encounter due to the processing of machines. We also
mentioned the constraints (5.3) that have to be obeyed. These are constraints that we have to
take into account when designing a controller for our manufacturing system. The way we dealt
with these constraints in the previous subsections was by requiring the machines to produce
only in case the buffer contents in front of that machine were positive, cf. Eq. (5.6).

A way to extend the standard fluid model (5.2) is to think of these constraints in a different
way. As illustrated in Subsect. 5.2.1, when we turn on both machines, immediately lots start
coming out of the system. This is an undesirable feature that we would like to avoid. In
practice, the second machine can only start producing when the first machine has finished a
lot. Keeping this in mind, why do we allow machineM2 to start producing as soon as the
buffer contents of the buffer in front of it are positive? Actually, machineM2 should only
start producing as soon as a whole product has been finished by the machineM1. In words:
machineM2 should only start producing as soon as the buffer contents of the buffer in front
of it becomes1. Therefore, we should not allow for a positiveu2 as soon asy2 > 0, but only
in casey2 ≥ 1.

When we consider the initially empty system (5.2), i.e.x(0) = 0, and assume

ui(t) =

{
µi if yi(t) ≥ 1
0 otherwise

i ∈ {1, 2}, (5.9)

the resulting system response to an input ofu0 = 1 is shown in Fig. 5.6. Notice that we obtain
exactly the same response as in Fig. 5.4.

Unfortunately, this is not all. The change in the constraints as proposed is not sufficient. It
is in case we ramp up our manufacturing systems, but in case we ramp down it is not. Suppose
that after a while we do not feed the manufacturing line any more, i.e. after a while we have
u0 = 0. In that case machineM1 builds off the contents of the bufferB1, until exactly one
product remains. As soon asy1 = 1, the machine is not allowed to produce any more due to
the constraint we imposed. This is not what we would like to have. Therefore, in caseu1 = 0,
machineM1 should be allowed to produce untily1 = 0.

Under these conditions, we could also think of our model operating in different modes.
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Figure 5.6: Output of the manufacturing system.

For the manufacturing system under consideration we can distinguish the following modes:

mode 1: 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, u0 = 0, u1 ≥ 0, u2 = 0.
mode 2: 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, u0 ≥ 0, u1 = 0, u2 ≥ 0.
mode 3: 1 ≤ y1, 0 ≤ y2 ≤ 1, u1 = 0, u2 ≥ 0.
mode 4: 1 ≤ y1, 0 ≤ y2 ≤ 1, u1 ≥ 0, u2 = 0.
mode 5: 0 ≤ y1 ≤ 1, 1 ≤ y2, u0 = 0, u1 ≥ 0.
mode 6: 0 ≤ y1 ≤ 1, 1 ≤ y2, u0 ≥ 0, u1 = 0.
mode 7: 1 ≤ y1, 1 ≤ y2.

In all of these modes, the system dynamics is described by Eq. (5.2).
In fact, what we just presented is a hybrid systems model of the manufacturing system

under consideration. The description as just presented is also known as that of piecewise
affine (PWA) systems [31]. Other well-known descriptions are linear complementarity (LC)
systems [17, 30] and mixed logical dynamical (MLD) systems [7]. In [5, 18] it was shown that
(under certain assumptions like well-posedness) these three descriptions are equivalent. This
knowledge is useful, as each modeling class has its own advantages (cf. [3]). Stability criteria
for PWA systems were proposed in [15, 20], and control and state-estimation techniques for
MLD hybrid models have been presented in [4, 6, 7]. These results can now be applied for
controlling the hybrid systems model of our manufacturing system.

5.3 A New Flow Model

In the previous section we proposed to replace the standard fluid model (5.1) with the model
(5.7) which contains a time delay. In that way we could overcome the shortcoming of the stan-
dard fluid model that once we start producing, immediately lots come out of the system. We
also presented a Padé approximation of this time-delayed model, as well as a hybrid systems
model that produced the desired delays.

Although the proposed models do not suffer from the problem that lots come out of the
system as soon as we start producing, cycle times are not truly present in these models. It
is not possible to determine the time it takes lots to leave once they have entered the system.
As mentioned in the introduction, we are interested in dynamic models that incorporate both
throughputandcycle time.
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Therefore, the models presented in the previous section are (still) not satisfactory. Further-
more, according to these models any feasible throughput can be achieved by means of zero
inventory. In this section we present a dynamic model that does incorporate both throughput
and cycle time. This dynamic model is inspired by the continuum theory of highway traffic.
Therefore, before presenting this dynamic model we first present some results from traffic
theory.

5.3.1 Introduction to Traffic Flow Theory: the LWR Model

In the mid 1950s Lighthill and Whitham [25] and Richards [29] proposed a first-order fluid
approximation of traffic flow dynamics. This model nowadays is known in traffic flow theory
as the LWR model.

Traffic behavior for a single one-way road can be described using three variables that vary
in time t and spacex: flow u(x, t), densityρ(x, t) and speedv(x, t). The first observation is
that flow is the product of speed and density:

u(x, t) = ρ(x, t)v(x, t) ∀x, t. (5.10)

Second, for a highway without entrances or exits, the number of cars between any two loca-
tionsx1 andx2 (x1 < x2) needs to be conserved at any timet, i.e. the change in the number
of cars betweenx1 andx2 is equal to the flow entering viax1 minus the flow leaving viax2:

∂

∂t

∫ x2

x1

ρ(x, t)dx = u(x1, t)− u(x2, t), (5.11a)

or in differential form:

∂ρ

∂t
(x, t) +

∂u

∂x
(x, t) = 0. (5.11b)

The two relations (5.10) and (5.11) are basic relations that any model must satisfy. As we
have three variables of interest, a third relation will be needed. For this third relation, several
choices can be made. The LWR model assumes in addition to the relations (5.10) and (5.11)
that the relation between flow and density observed under steady-state conditions also holds
when flow and density vary withx and/ort; i.e. for a homogeneous highway:

u(x, t) = S(ρ(x, t)). (5.12)

The model (5.10), (5.11), (5.12) can predict some things encountered in traffic rather well. In
order to overcome some of the deficiencies of the LWR model, in the early 1970s higher-order
theories have been proposed where the relation (5.12) has been replaced by another partial
differential equation, containing diffusion or viscosity terms. Unfortunately, these extended
models experience some undesirable properties, as made clear in [13]. The most annoying
of these properties is the fact that in these second-order models cars can travel backwards.
Second-order models that do not suffer from this deficiency have been presented in [19, 34].
However, for our modeling purposes the first-order LWR model (5.10), (5.11), (5.12) is suffi-
cient.
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5.3.2 A Traffic Flow Model for Manufacturing Flow

In the previous subsection we introduced the LWR model from traffic flow theory. This model
describes the dynamic behavior of cars along the highway at a macroscopic level and contains
information both about the number of cars passing a certain point and about the time it takes
cars to go from one point to the other. The observation we make in this paper is that we can not
only use this model for describing the flow of cars along the highway, but also for describing
the flow of products through a manufacturing line.

Consider, instead of a homogeneous highway, a homogeneous manufacturing line, i.e. a
manufacturing line that consists of a lot of identical machines. Lett denote the time and letx
the position in the manufacturing line. The behavior of lots flowing through the manufacturing
line can also be described by three variables that vary with time and position: flowu(x, t)
measured in unit lots per unit time, densityρ(x, t) measured in unit lots per unit machine and
speedv(x, t) measured in unit machines per unit time. Now we can relate these three variables
by means of Eqs. (5.10), (5.11) and (5.12), where in Eq. (5.12) the functionS describes the
relation between flow and density observed under steady-state conditions.

To make this last statement more explicit, consider a manufacturing line where all ma-
chines have exponentially distributed processing times and an average capacity ofµ lots per
unit time. Furthermore, consider a Poisson arrival process where lots arrive to the first ma-
chine with a rate ofλ lots per unit time (λ < µ), and assume that buffers have infinite capacity.
Then we know from queueing theory [22] that the average number of lots in each workstation
(consisting of a buffer and a machine) in steady state is given by

N =
λ
µ

1− λ
µ

=
λ

µ− λ
. (5.13)

In words: in steady state we have

ρ(x, t) =
u(x, t)

µ− u(x, t)
, (5.14)

from which we can conclude that in steady state:

u(x, t) =
µρ(x, t)

1 + ρ(x, t)
. (5.15)

For this example, this is the mentioned functionS(ρ).
With this information we can conclude that the dynamics of this manufacturing line might

be described by means of the partial differential equation

∂ρ

∂t
+ µ

∂

∂x

(
ρ

1 + ρ

)
= 0. (5.16a)

Together with the relations

u =
µρ

1 + ρ
andv =

u

ρ
or v =

µ

1 + ρ
(5.16b)
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this completes our model.

Notice that contrary to the fluid models presented in the previous sections, the dynamic
model (5.16) is able to incorporate the stochasticity as experienced in manufacturing lines. If
the manufacturing line would be in steady state, the throughput and cycle time as predicted
by the model (5.16) will be exactly the same as those predicted by queueing theory. However,
contrary to queueing theory, the model (5.16) is not a steady-state model, but also incorporates
dynamics. Therefore, the model (5.16) is a dynamic model that incorporates both throughput
and cycle time. Furthermore, given the experience in the field of fluid dynamics, the model is
computationally feasible as well.

5.4 The Manufacturing Flow Model Revisited

In Sect. 5.3 we noticed that for the standard fluid model (5.1) it is possible to achieve any
feasible throughput by means of zero inventory. Even when we are not interested in cycle
times, this is still a major shortcoming of the standard fluid models. Using insight from the
flow model as derived in the previous section, this shortcoming of standard fluid models can
be overcome.

Consider the fluid model (5.16). Discretization of this model (with respect tox only, see
also [12]) yields

ẋ1 = u0 −
µx1

1 + x1
,

ẋ2 =
µx1

1 + x1
− µx2

1 + x2
,

ẋ3 =
µx2

1 + x2
.

(5.17)

Notice that the discretized model (5.17) can also be seen as a system of the form (5.1) where
instead of (5.6) we use

ui(t) =
µiyi

1 + yi
, i ∈ {1, 2}. (5.18)

What we can learn from this observation is that in case we move from deterministic processing
times to stochastic processing times, apparently we should replace the inputs (5.6) with (5.18).
In that case, to each throughput rate corresponds a non-zero steady-state work in process level
which is equal to the one predicted by queueing theory. Furthermore, notice that whenever
we start from a feasible initial condition, i.e. the buffer contents initially are non-negative, the
conditions (5.3) are always met.

More can be said about the model (5.17). In Sect. 5.2 we mainly were considered with the
output of the manufacturing line, i.e. we were mainly concerned with the signaly3(t) = x3(t).
Even though the model (5.17) clearly is a nonlinear model, it has a nice structure: the model is
feedback-linearizable [26, 27]. To make this statement more explicit, consider the following
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change of coordinates:

z1 =
µ2(x1 − x2)

(1 + x1)(1 + x2)3
,

z2 =
µx2

1 + x2
,

z3 = x3,

(5.19a)

together with the input

u0 =
(1 + x1)2(1 + x2)2

µ2
v− 2µ(x1 − x2)

1 + x2
+

3µ(x1 − x2)(1 + x1)
(1 + x2)3

+
µx1

1 + x1
, (5.19b)

wherev can be an arbitrary signal. If we apply (5.19) to the system (5.17) we obtain the
system

ż(t) =

0 0 0
1 0 0
0 1 0

 z(t) +

1
0
0

 v(t), (5.20a)

y3(t) =
[
0 0 1

]
z(t) +

[
0
]
v(t), (5.20b)

which is alinear system. After applying the nonlinear change of coordinates and feed forward
(5.19) we can control the output of the manufacturing line by means of standard linear control
theory, as made clear by the system (5.20).

Another standard nonlinear control technique that can be used for controlling the system
(5.17) is backstepping, cf. [24, 26].

5.5 Concluding Remarks

In the literature roughly three classes of models for manufacturing lines have been studied
so far: fluid models that do not incorporate cycle times, queueing theory that contains only
steady-state results and discrete-event models that suffer from state explosion.

In this paper we presented a flow model for modeling manufacturing lines, based on the
theory of modeling traffic flow. The presented model is the first computationally feasible
dynamic model that incorporates both throughput and cycle time. This model is a suitable
model for addressing dynamic control questions like how to ramp up a given manufacturing
line.

We also illustrated that the presented flow model can give valuable insights on how to
modify the standard fluid models from the literature in case we would like to deal with non-
deterministic processing times of machines.

The idea to use traffic flow models for modeling the dynamics of manufacturing systems
emerged only recently. Related work can be found in [1, 2]. Also, the book [14] provides a
good introduction to the subject.

Issues like the relation between variability of manufacturing systems and turbulence, the
influence of scheduling policies on the relation (5.15), extensions to higher-order models (like



80 5 Nonlinear Models for Control of Manufacturing Systems

[19, 34], while keeping in mind the observations in [13]), correct discretization schemes
(cf. [12]), control of these flow models and last but not least the validity of these models
will be the subject of future study.
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