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Abstract
In this paper we consider the two server switching net-

work introduced by Kumar and Seidman. We consider
the problem of minimizing the weighted average wip
in the system, assuming non-increasing costs down-
stream. Assuming that both servers have the same pe-
riod, optimal network behavior has been derived. By
means of an illustrative example is shown that this op-
timal network behavior at first glance can be counter-
intuitive. In particular this implies that currently exist-
ing ways for controlling these kind of networks do not
achieve optimal network behavior.
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1 Introduction
Consider a network of servers through which different

types of jobs flow. One could think of a manufacturing
system, i.e. a network of machines through which dif-
ferent types of products flow. An other example would
be an urban road network of crossings with traffic lights
through which cars flow. A third example would be a
network of computers through which different streams
of data flow.
These networks might show some unexpected behav-

ior. In (Banks and Dai, 1997) was shown by simulation
that even when each server has enough capacity, these
networks can be unstable in the sense that the wip in
the network explodes as time evolves. Whether this
happens or not depends on the policy used to control
the flows through the network. In (Kumar and Seid-
man, 1990) was shown analytically that using a clear-
ing policy (serve the queue you are currently serving
until it is empty, then switch to another queue) certain
networks become unstable, even for deterministic sys-
tems with no setup times.

In (Perkins and Kumar, 1989) several clearing poli-
cies have been introduced, the so-called Clear a Frac-
tion (CAF) policies. It was shown that these policies
are stable for a single server in isolation in a determin-
istic environment. Furthermore, it was shown that a
CAF policy stabilizes a multi server system, provided
the network is acyclic. A network is called acyclic if
the servers can be ordered in such a way that wip can
only move from one server to a server higher in the
ordering. A network is called non-acyclic if such an
ordering is not possible. The example in (Kumar and
Seidman, 1990) shows that non-acyclic networks exist
that cannot be stabilized by a CAF policy.
The main reason why CAF policies can fail for a non-

acyclic network is because they spend too long on serv-
ing one type. This results in starvation of other servers
and therefore a waste of their capacity. Due to this
waste the effective capacity of these other servers is
not sufficient anymore, resulting in an unstable sys-
tem. This observation has led to the development of
so-called buffer regulators (Humes, 1994; Perkins et
al., 1994) or gated policies. The main idea is that each
buffer contains a gate, so the buffer is split into two
parts (before and after the gate). Instead of switch-
ing depending on the total buffer contents, switching
is now determined based on the buffer contents af-
ter the gate. As a result, a server might now leave
a buffer earlier, avoiding long periods of serving one
type. It has been shown in (Perkins et al., 1994) that
under certain conditions on these regulators the (pos-
sibly non-acyclic) network is stabilized. Since non-
acyclic networks are only unstable under certain con-
ditions, applying buffer regulators is not always neces-
sary. Needlessly applying buffer regulators results in a
larger mean wip in the network, which from a perfor-
mance point of view is undesired. Furthermore, it is not
known whether these policies result in optimal network
behavior.
In (Savkin, 1998) a different approach has been de-

veloped. First the minimal period is determined dur-
ing which the network is able to serve all wip that ar-
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Figure 1. The system introduced in (Kumar and Seidman, 1990).

rives during that period. This minimal period then de-
termines how much time to spend on each type, re-
sulting in a time table which determines when each
server should be serving which type. It was shown in
(Matveev and Savkin, 2000; Savkin, 1998) that if each
server follows this time schedule (possibly idling if no
wip of the scheduled type is available), the system be-
havior becomes regular. In particular this implies that
the system converges towards a periodic orbit. It was
not yet known if optimal network behavior could be
achieved. The example in Section 4 illustrates that this
is not always the case.
In (Eekelen et al., 2006) we considered the most sim-

ple network of switching servers: a single server which
serves only two types. Starting from the goal to min-
imize the time-averaged weighted wip in the system,
we derived optimal periodic network behavior. Fur-
thermore, a controller was presented which made the
system converge towards this optimal periodic behav-
ior. Determining optimal system behavior for more
than two types already is challenging problem, see also
(Takagi, 1986; Takagi, 1990; Takagi, 1997). In this pa-
per we extend the results from (Eekelen et al., 2006) to
the network of two servers as introduced by Kumar and
Seidman in (Kumar and Seidman, 1990).
This paper is organized as follows. In Section 2 the

Kumar-Seidman network as introduced in (Kumar and
Seidman, 1990) is presented, as well as a way of mod-
eling this network by means of a hybrid dynamical
control system with constraints. In Section 3 optimal
periodic network behavior is derived. For a particu-
lar choice of parameters in Section 4 the results from
Section 3 are applied. This example illustrates that cur-
rently existing policies for controlling these kinds of
networks do not achieve optimal network behavior. Fi-
nally, Section 5 concludes this paper.

2 The Kumar-Seidman network
Consider the manufacturing system shown in Fig-

ure 1. A single type is considered which first visits
server 1, then server 2, then server 2 again, and finally
server 1 again. The successive buffers visited will be
denoted by 1, 2, 3, and 4, respectively. A constant in-
put rate λ > 0 into buffer 1 is assumed, while the max-
imal processing rates at the buffers are µ1 > 0, µ2 > 0,
µ3 > 0, and µ4 > 0, respectively. For ease of exposition
we also introduce ρi = λ/µi (i ∈ {1,2,3,4}). Lastly,
the times for setting-up buffers 1 and 4 at server 1 are
σ41 > 0 and σ14 > 0, the times for setting-up to buffers
2 and 3 at server 2 are σ32 > 0 and σ23 > 0. Even

when for this system each server has enough capac-
ity, i.e. both ρ1 + ρ4 < 1 and ρ2 + ρ3 < 1, it has been
shown in (Kumar and Seidman, 1990) that whenever
ρ2 + ρ4 > 1, using a clearing policy for both servers
yields an unstable system.

Assumption 1. Throughout the remainder of this pa-
per we restrict ourselves to this situation, i.e. we as-
sume that

µ2µ4
µ2 + µ4

< λ < min
(

µ1µ4
µ1 + µ4

,
µ2µ3

µ2 + µ3

)

. (1)

We model the network by means of a hybrid fluid
model. The state of this system is not only given
by the buffer contents xi ∈ R (i ∈ {1,2,3,4}), but
also by the remaining setup time at server j, x j

0 ∈ R

( j ∈ {1,2}), and the current mode m = (m1,m2) ∈
{(1,2),(1,3),(4,2),(4,3)}. We say that the system is
in mode (1,2) when server 1 is (being) set-up for step 1
and server 2 is (being) set-up for step 2. Similarly for
the other modes.
The input of this system is given by rates u1 ≤ µ1,

u2 ≤ µ2, u3 ≤ µ3, and u4 ≤ µ4, at which respectively
buffers 1, 2, 3, and 4 are being served (a server not
necessarily has to serve at full rate), as well as the cur-
rent activity for server 1, u1

0 ∈ {➊,➀,➍,➃}, and for
server 2, u2

0 ∈ {➋,➁,➌,➂}. The activity ➊ denotes
a setup for serving step 1, whereas ➀ denotes serving
step 1. Similarly the activities for step 2, 3, and 4 can
be distinguished.
As mentioned above, the dynamics of this system is

hybrid. On the one hand we have the discrete event
dynamics

x1
0 := σ14; m1 := 4 if u1

0 = ➍ and m1 = 1
x1

0 := σ41; m1 := 1 if u1
0 = ➊ and m1 = 4

x2
0 := σ23; m2 := 3 if u2

0 = ➌ and m2 = 2
x2

0 := σ32; m2 := 2 if u2
0 = ➋ and m2 = 3.

In words: if the system is currently in a mode, and ac-
cording to the input the current activity becomes “set-
up to a different mode”, both the remaining setup time
and current mode change.
On the other hand we have the continuous dynamics

ẋ1
0(t)=

{

−1 if u1
0∈{➊,➍}

0 if u1
0∈{➀,➃}

ẋ2
0(t)=

{

−1 if u2
0∈{➋,➌}

0 if u2
0∈{➁,➂}

ẋ1(t)= λ −u1(t) ẋ2(t)= u1(t)−u2(t)

ẋ4(t)= u3(t)−u4(t) ẋ3(t)= u2(t)−u3(t).

Furthermore, at each time instant the input is subject



to the constraints u1 ≥ 0, u2 ≥ 0, u3 ≥ 0, u4 ≥ 0, and

u1
0∈{➊,➍} u1 =0 u4 =0 for x1

0 >0
u1

0∈{➀,➍} u1≤µ1 u4 =0 for x1
0 =0,x1 >0,m1= 1

u1
0∈{➀,➍} u1≤λ u4 =0 for x1

0 =0,x1 =0,m1= 1
u1

0∈{➊,➃} u1 =0 u4≤µ1 for x1
0 =0,x4 >0,m1= 4

u1
0∈{➊,➃} u1 =0 u4≤u3 for x1

0 =0,x4 =0,m1= 4
u2

0∈{➋,➌} u2 =0 u3 =0 for x2
0 >0

u2
0∈{➁,➌} u2≤µ1 u3 =0 for x2

0 =0,x2 >0,m2= 2
u2

0∈{➁,➌} u2≤u1 u3 =0 for x2
0 =0,x2 =0,m2= 2

u2
0∈{➋,➂} u2 =0 u3≤µ3 for x2

0 =0,x3 >0,m2= 3
u2

0∈{➋,➂} u2 =0 u3≤u2 for x2
0 =0,x3 =0,m2= 3.

In words, these constraints say that in case the server
is setting-up, no wip can be served. Furthermore, in
case a setup has been completed, only the step can be
processed for which the server has been set-up. This
processing takes place at a rate which is at most µi if
wip of step i is available in the buffer and at most atthe
arrival rate if no wip of step i are available in the buffer
(i ∈ {1,2,3,4}). Also, it is possible to either stay in
the current mode, or to switch to the other mode. In
particular it is possible during setup to leave that setup
and start a setup to the other step again. The latter setup
is assumed to take the entire setup time.

3 Optimal network behavior
Having defined the state, input, dynamics and con-

straints for the system, we can consider the problem
of deriving optimal behavior for this system. To that
end, we consider the goal of minimizing

J = limsup
t→∞

1
t

∫ t

0
c1x1(τ)+c2x2(τ)+c3x3(τ)+c4x4(τ)dτ

(2)
with c1 ≥ c2 ≥ c3 ≥ c4 > 0. That is, we consider
the problem of minimizing the time-averaged weighted
wip in the system with the restriction that downstream
wip is not weighted more heavily than upstream wip.
Under this assumption we can derive the following

lemmas.

Lemma 2. Without loss of generality it can be assumed
that servers always serve at the highest possible rate,
after which they might idle, i.e. process wip at rate zero.
This highest possible rate equals µi when the buffer
contains wip (xi > 0), or the arrival rate to that server
(which might be zero, but not necessarily) otherwise.

Proof. Suppose that a policy is given for which after
having completed the setup to step i, buffer i contains
a wip of x0

i and at the end of serving step i, buffer i

contains a wip of x f
i . Then one can consider the alter-

native policy which serves step i equally long and first
serves at the highest possible rate, i.e. at the maximal

processing rate as long as the buffer contains wip or at
the arrival rate in case the buffer is empty. In the end,
this alternative policy idles to make sure that at the end
of serving step i the buffer contains a wip of x f

i . Clearly,
while serving step i at rate µi the wip in the buffer can-
not decrease faster (or increase slower in case the server
feeding into step i currently serves at a higher rate than
µi) and in the end cannot increase faster than in this al-
ternative strategy. Therefore, for the alternative policy
at each time instant the wip for step i is minimal. In
particular, if the given policy is different, the wip for
step i is less at certain time instants. Since the time
evolution of the other steps remains the same for both
policies and serving wip does not increase costs, costs
cannot be higher using the alternative strategy.

Lemma 3. Without loss of generality it can be assumed
that servers never idle at the end of serving step i.

Proof. Suppose that a server would idle at the end of
serving step i. After serving step i it switches to serving
step 5− i. Furthermore, assume that this server stops
serving step 5− i at time t f . Consider an alternative
policy which does not idle at the end of serving step i,
but switches immediately to serving step 5− i and stays
in this mode until time t f , serving an equal amount
of wip as the supposed optimal strategy. For this al-
ternative strategy the evolution of xi does not change.
Also x5−i(t f ) is equal. However, (some of) the wip of
step 5− i might be served sooner. Therefore costs can-
not be higher for the alternative strategy.

Corollary 4. Without loss of generality it can be as-
sumed that servers only idle when the buffer of the cur-
rently served step is empty and no wip of that step is
arriving.

Assumption 5. Throughout the remainder of this pa-
per we restrict ourselves to periodic behavior where
each server serves its both steps exactly once. In par-
ticular this implies that minimizing (2) reduces to min-
imizing

J =
1
T

∫ T

0
c1x1(τ)+c2x2(τ)+c3x3(τ)+c4x4(τ)dτ (3)

where c1 ≥ c2 ≥ c3 ≥ c4 > 0 and T denotes the period
of this periodic behavior, satisfying

T ≥ max
(

σ14 +σ41
1−ρ1 −ρ4

,
σ23 +σ32

1−ρ2 −ρ3

)

to guarantee existence of periodic behavior.

Lemma 6. Without loss of generality it can be assumed
that server 1 successively goes through the following
actions

• ➀ at rate µ1, for a duration of τµ
1 = ρ1

1−ρ1
[ρ4T +

σ14 +σ41],



• ➀ at rate λ for a duration of τλ
1 = 1

1−ρ1
[(1−ρ1 −

ρ4)T − (σ14 +σ41)],
• ➍ for a duration of σ14,
• ➃ at rate µ4 for a duration of τ4 = ρ4T ,
• ➊ for a duration of σ41.

Proof. From (1) it follows that µ4 < µ3 as the func-
tion x 7→ µ2x/(µ2 + x) is strictly increasing for x > 0.
From lemmas 2 and 3 and it then follows that server 1
can serve step 1 only first at rate µ1 and then at rate λ ,
whereas step 4 can only be served first at rate 0 (only
when x4 = 0) and then at rate µ4.
Instead of serving step 4 at rate 0 as long as x4 = 0,

server 1 might as well continue serving step 1 longer
for this amount of time, moving wip from server 1 to
server 2 which does not increase costs.
The durations of the actions can be determined from

the requirements that each step needs to serve the wip
that arrives during the period, and total service and se-
tups cover the entire period:

λT = µ1τµ
1 +λτλ

1 (4a)
λT = µ4τ4 (4b)

T = τµ
1 + τλ

1 +σ14 + τ4 +σ41. (4c)

Lemma 7. Without loss of generality it can be assumed
that server 2 successively goes through the following
actions

• ➁ at rate 0, for a duration of τ0
2 = (1−ρ2−ρ3)T −

(σ23 +σ32),
• ➁ at rate µ2 for a duration of τµ

2 = ρ2T ,
• ➌ for a duration of σ23,
• ➂ at rate µ3 for a duration of τ3 = ρ3T ,
• ➋ for a duration of σ32.

Proof. From (1) it follows that µ2 < µ1 as the function
x 7→ µ4x/(µ4 +x) is strictly increasing for x > 0. From
lemmas 2 and 3 and it then follows that server 2 can
serve step 2 at rate 0, at rate µ2 and at rate λ , whereas
step 3 can only be served first at rate µ3.
Let the successive total durations of service be de-

noted by τ0
2 , τµ

2 , τλ
2 and τ3. From the requirements

that each step needs to serve the wip that arrives during
the period, and total service and setups cover the entire
period, we obtain:

τµ
2 =

ρ2
1−ρ2

[ρ3T + τ0
2 +σ23 +σ32] (5a)

τλ
2 =

1
1−ρ2

[(1−ρ2−ρ3)T−τ0
2−(σ23+σ32)] (5b)

τ3 = ρ3T. (5c)

Assume that τλ
2 > 0. The only way that server 2 can

produce at rate λ , is when also server 1 produces at
rate λ . Before server 2 can serve at rate λ it first needs

to clear buffer x2. This observation results in the re-
quirement that

λ (τµ
1 + τλ

1 − µ1
µ2

τµ
1 − τλ

2 ) = µ2(τ
µ
2 − µ1

µ2
τµ

1 ).

Substituting (4) and (5) results in

[µ2 −µ1][µ4(σ14 +σ41)+λT ]λ 2

µ2µ4(µ1 −λ )
= 0,

which has no feasible solutions. Therefore, τλ
2 = 0.

The durations of the actions readily follow from the
requirements that each step needs to serve the wip that
arrives during the period, and total service, idling, and
setups cover the entire period.

Lemma 8. For optimal periodic behavior given a pe-
riod T > σ23+σ32

1−ρ2−ρ3
we have:

∫ T

0
x1(τ)dτ =

λ
2(1−ρ1)

(ρ4T +σ14 +σ41)
2 (6a)

∫ T

0
x2(τ)dτ =

1
2λ (ρ2−ρ1)T

2−1
2λ (1−ρ1)τλ

1
2 (6b)

∫ T

0
x3(τ)dτ =

1
2 (ρ2 +ρ3)λT +σ23λT (6c)

∫ T

0
x4(τ)dτ = (µ4 −λ )τ43T +

1
2λ (ρ4 −ρ3)T

2, (6d)

where τλ
1 is as given in Lemma 6 and

τ43 = (ρ2 +ρ4 −1)T +σ23 +σ41

denotes the amount of time that service of step 4 is
started earlier than service of step 3.

Proof. When server 1 completes serving step 1, x1 = 0.
For a duration of ρ4T + σ14 + σ41 step 1 is not being
served, resulting in an increase to λ (ρ4T +σ14 +σ41),
which then decreases to 0 again during τ µ

1 . This results
in (6a).
By assumption τ0

2 > 0, i.e. server 2 idles. From
Lemma 3 we know that this can only be when x2 = 0
and server 2 waits for server 1 to start serving step 1.
Furthermore, since ρ2 +ρ4 > 1, we have that τµ

1 +τλ
1 +

σ14 < ρ2T , i.e. server 1 already starts serving step 4
before server 2 completes serving step 2. In particular
this implies that x2 increases from 0 to (µ1 −µ2)τ

µ
1 for

a duration of τµ
1 . Next, it decreases from (µ1 − µ2)τ

µ
1

to (µ1 − µ2)τ
µ
1 +(λ − µ2)τλ

1 for a duration of τλ
1 . Fi-

nally, it decreases from (µ1 −µ2)τ
µ
1 +(λ −µ2)τλ

1 to 0
again for a duration of ρ2T − τµ

1 − τλ
1 . This results in

(6b).
When server 2 completes serving step 3, x3 = 0. For

a duration of σ32 + τ0
2 nothing happens. Next, during



ρ2T the buffer contents x3 increase to a value of λT .
For a duration of σ23 we have x3 = λT , after which dur-
ing ρ3T the buffer contents decrease to 0 again. This
results in (6c).
Since service of step 4 is started earlier than service

of step 3, the initial buffer contents of buffer 4 should
be such that x4 = 0 at the moment service of step 3
starts, since x4 starts to increase from that moment on
as µ3 > µ4. Now two cases can be considered. Either
σ32 + τ0

2 ≤ σ41 or σ32 + τ0
2 ≥ σ41.

First, consider the case σ32 + τ0
2 ≤ σ41. Then we have

that x4 decreases from µ4τ43 to 0 for a duration of τ43.
Next, it increases from 0 to (µ3−µ4)[(1−ρ2)T −σ23−
σ41] for a duration of (1−ρ2)T −σ23 −σ41, followed
by a further increase from (µ3−µ4)[(1−ρ2)T −σ23−
σ41] to µ4τ43 for a duration of σ23 + σ41 − (1− ρ2 −
ρ3)T . Finally, x4 = µ4τ43 for a duration of (2−ρ2 −
ρ3 −ρ4)T −σ41 −σ23.
Second, consider the case σ32 + τ0

2 ≥ σ41. Then
we also have that x4 decreases from µ4τ43 to 0 for
a duration of τ43. But next, it increases from 0 to
(µ3 −µ4)ρ3T for a duration of ρ3T , followed by a de-
crease from (µ3 − µ4)ρ3T to µ4τ43 for a duration of
(1−ρ2 −ρ3)T −σ23 −σ41. Finally, x4 = µ4τ43 for a
duration of (1−ρ4)T .
Both alternatives result in (6d).

For period T = σ23+σ32
1−ρ2−ρ3

we have τ0
2 = 0. Therefore,

not necessarily server 2 starts serving step 2 at exactly
the time at which server 1 starts serving step 1. Let t
denote the amount of time that server 1 starts serving
step 1 later than server 2 starts serving step 2.

Lemma 9. For optimal periodic behavior given a pe-
riod T = σ23+σ32

1−ρ2−ρ3
and 0≤ t ≤ T we have (6a), (6c) and:

x̄2=

{

x0
2+(µ2−λ )Tt if 0 ≤ t ≤ ρ2T

x0
2+λT (T−t) if ρ2T ≤ t ≤ T

(7a)

x̄4=











x0
4−(µ4−λ )Tt if 0 ≤ t ≤ τ43

x0
4−µ4T (τ43−ρ4t) if τ43≤ t ≤ τ43+(1−ρ4)T

x0
4+(µ4−λ )T (T−t) if τ43+(1−ρ4)T ≤ t ≤ T ,

(7b)

where x̄i is an abbreviation for
∫ T

0 xi(τ)dτ (i ∈ {2,3})
and

x̄2 =
1
2λ (ρ2 −ρ1)T

2 − 1
2λ (1−ρ1)τλ

1
2

x̄4 = (µ4 −λ )τ43T +
1
2λ (ρ4 −ρ3)T

2

i.e. the expressions (6b) and (6d).

Proof. Similar to the proof of the previous lemma.

Now we have all ingredients for determining optimal
periodic behavior for the system as described in Sec-
tion 2. We more or less can start from the results from

lemmas 8 and 9 and optimize over all possible values
for T (and t).
First we restrict ourselves to the case

σ14 +σ41
1−ρ1 −ρ4

>
σ23 +σ32

1−ρ2 −ρ3
.

Then we have T > σ23+σ32
1−ρ2−ρ3

, so we can restrict our-
selves to the results from Lemma 8. From this lemma
we know that

1
T

∫ T

0
x1(τ)dτ = α1,2T +α1,1 +α1,0

1
T

(8a)

1
T

∫ T

0
x2(τ)dτ = α2,2T +α2,1 −α2,0

1
T

(8b)

1
T

∫ T

0
x3(τ)dτ = α3,2T +α3,1 (8c)

1
T

∫ T

0
x4(τ)dτ = α4,2T +α4,1, (8d)

where

α1,2 =
λρ2

4
2(1−ρ1)

α2,2 =
1
2λ (ρ2 −ρ1)

α1,1 =
λρ4(σ14+σ41)

(1−ρ1)
α2,1 =

λ(1−ρ1−ρ4)(σ41+σ14)

(1−ρ1)

α1,0 =
λ (σ14+σ41)

2

2(1−ρ1)
α2,0 =

λ (σ14 +σ41)
2

2(1−ρ1)

α3,2 =
1
2λ (ρ2 +ρ3) α4,2 = (µ4 −λ )(σ41 +σ23)

α3,1 = λσ23 α4,1 = (µ4−λ )(ρ2+ρ4−1)+

+
1
2λ (ρ4 −ρ3)

Notice that all αi, j > 0, and that α1,0 = α2,0. This
implies that (8b), (8c) and (8d) are strictly increasing
functions of T . In particular we have that if c1 = c2, (3)
is minimized for T = σ14+σ41

1−ρ1−ρ4
. In case c1 > c2 we need

to determine a local minimum for the function α2T +
α1 +α0/T where

α2 = c1α1,2 + c2α2,2 + c3α3,2 + c4α4,2

α1 = c1α1,1 + c2α2,1 + c3α3,1 + c4α4,1

α0 = (c1 − c2)α1,0

This minimum is achieved for T =
√

α0/α2.
The above derivations can be summarized in the fol-

lowing

Proposition 10. Consider the system as described in
Section 2, satisfying assumptions 1 and 5. Further-
more, assume that σ14+σ41

1−ρ1−ρ4
> σ23+σ32

1−ρ2−ρ3
. Then the period

T of the periodic orbit minimizing (3) is equal to

• σ14+σ41
1−ρ1−ρ4

when either c1 = c2 or
√

α0/α2 ≤
σ14+σ41
1−ρ1−ρ4



•
√

α0/α2 when both c1 > c2 and
√

α0/α2 >
σ14+σ41
1−ρ1−ρ4

.

where α0 and α2 are given by the above equations.
Furthermore, the periodic orbit starts serving step 1

and step 2 at full rate simultaneously, and the durations
of the consecutive modes are as described in lemmas 6
and 7.

Next, we consider the case

σ14 +σ41
1−ρ1 −ρ4

≤ σ23 +σ32
1−ρ2 −ρ3

.

Similar to the derivation of Proposition 10 we have that
the period T of the periodic orbit minimizing (3) is
equal to σ23+σ32

1−ρ2−ρ3
when either c1 = c2 or

√

α0/α2 ≤
σ23+σ32
1−ρ2−ρ3

. However, when both c1 > c2 and
√

α0/α2 >
σ23+σ32
1−ρ2−ρ3

the period T of the periodic orbit minimiz-
ing (3) is not necessarily equal to

√

α0/α2 > σ23+σ32
1−ρ2−ρ3

.
It is when µ4 ≤ µ2 + c2−c4

c4
(µ2 − λ ), however in case

µ4 > µ2 + c2−c4
c4

(µ2 − λ ) an other possibility exists.
From (7) it can be seen that in the latter case c2x̄2 +c4x̄4
is a decreasing function of t for 0 ≤ t ≤ τ43. Using a
period of T =

√

α0/α2 results in

J = 2
√

α0α2 +α1. (9)

On the other hand, using a period of T = σ23+σ32
1−ρ2−ρ3

with
t = τ43 results in

J = α2T+α1+
α0
T

+[c2(µ2−λ)−c4(µ4−λ)]T τ43. (10)

Depending on whether (9) or (10) results in the smallest
value, the optimal period can be determined.

Proposition 11. Consider the system as described in
Section 2, satisfying assumptions 1 and 5. Further-
more, assume that σ14+σ41

1−ρ1−ρ4
≤ σ23+σ32

1−ρ2−ρ3
. Then the period

T of the periodic orbit minimizing (3) is equal to

• σ23+σ32
1−ρ2−ρ3

when either c1 = c2 or
√

α0/α2 ≤
σ23+σ32
1−ρ2−ρ3

•
√

α0/α2 when both c1 > c2,
√

α0/α2 > σ32+σ23
1−ρ2−ρ3

,

and µ4 ≤ µ2 + c2−c4
c4

(µ2 −λ )

•
√

α0/α2 when both c1 > c2,
√

α0/α2 > σ32+σ23
1−ρ2−ρ3

,

µ4 > µ2 + c2−c4
c4

(µ2 − λ ) and (9) is greater than
(10)

• σ23+σ32
1−ρ2−ρ3

when both c1 > c2,
√

α0/α2 > σ32+σ23
1−ρ2−ρ3

,

µ4 > µ2 + c2−c4
c4

(µ2 −λ ) and (9) is less than (10)

where α0 and α2 are given by the above equations and
τ43 as defined in Lemma 8.
Furthermore, in the first three cases the periodic or-

bit starts serving step 1 and step 2 at full rate simulta-
neously, whereas in the fourth case the periodic orbit
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Figure 2. Optimal periodic behavior for λ = 2.8, ρ1 = 0.1,
ρ2 = 0.7, ρ3 = 0.1, ρ4 = 0.4, σ14 = σ41 = 100, σ23 = 10,
σ32 = 50, c1 = 10000, c2 = 3, c3 = 2, c4 = 1.

starts serving step 4 and step 3 at full rate simultane-
ously. The durations of the consecutive modes are as
described in lemmas 6 and 7.

4 Example
In the previous section we derived optimal network

behavior for the case presented in Section 2. In this
section we make a possible choice for the parameters
and show the corresponding optimal network behavior
(under assumptions 1 and 5).
Consider the case where λ = 2.8, ρ1 = 0.1, ρ2 = 0.7,

ρ3 = 0.1, ρ4 = 0.4, σ14 = σ41 = 100, σ23 = 10, σ32 =
50. For the cost function we assume that c1 = 10000,
c2 = 3, c3 = 2, c4 = 1. The resulting optimal periodic
behavior is given in Figure 2. In this figure we see that
from 0 till 42 both step 1 and step 2 are served at maxi-
mal rate (µ1 and µ2 respectively). Since server 1 serves
at a higher rate than server 2 we see not only a decrease
of x1 and an increase of x3, but also an increase of x2.
At t = 42 buffer 1 becomes empty and server 1 con-
tinues serving step 1, but now at the arrival rate. As a
result, x2 starts to decrease. At t = 75, server 1 stops
serving step 1 and starts a setup to step 4. As a re-
sult, x2 decreases even faster. At t = 175, server 1 has
completed its setup and starts serving step 4, causing
x4 to decrease. At t = 321, buffer 2 becomes empty
and server 2 switches to serving step 3. Service of
step 3 starts at t = 331, exactly at the time that buffer 4
runs empty. Since step 3 is served at a higher rate than
step 4, buffer 4 increases even though server 1 is still
serving step 4. At t = 358, server 1 stops serving step 4
and start its setup to step 1. As server 2 is still serving
step 3, the buffer contents of x4 start to increase at an
even higher rate. At t = 377, buffer 3 becomes empty
and server 2 starts a setup to step 2 which is completed
at t = 427. From t = 427 until t = 458, server 2 idles.
Machine 1 completes its setups at t = 458, after which



the whole cycle starts all over again.

One of the important observations to make is that both
servers seem to be wasting capacity. Machine 1 is serv-
ing step 1 at the arrival rate from t = 42 till t = 75. Ma-
chine 2 idles from t = 427 till t = 458. At first glance
this seems rather strange for optimal periodic behavior.
How can it be optimal to waste capacity at both servers?
A first observation is that the minimal process cycle of
server 1 would be 400 times units, whereas the mini-
mal process cycle of server 2 would be 300 time units.
Therefore it is not surprising that at server 2 capacity is
wasted. But why is capacity wasted at server 1? Ac-
tually two ways exist of wasting capacity that need to
be considered. One way of wasting capacity is by serv-
ing at a less than maximal rate. But an other way of
wasting capacity is by having a short period. In the lat-
ter case on the average more time is wasted on setups.
Given a total setup time per cycle of 200 per period, for
a period of 400 time units server 1 spends 50% of its
time on setups. Whereas for a period of 800 time units,
only 25% of the time is spend on setups. So on the one
hand one can waste capacity by serving at a lower rate,
on the other hand capacity can be wasted by setting-up
most of the time. Apparently a trade-off exists, which
in this case results in a period of T = 458.

5 Conclusions

In this paper we considered optimal network behavior
for the hybrid system introduced in (Kumar and Seid-
man, 1990). After introducing the system and describ-
ing its dynamics, we considered the problem of mini-
mizing the weighted average wip in the system, assum-
ing non-increasing costs downstream. Assuming that
both servers have the same period, optimal network be-
havior has been derived. By means of an illustrative
example it was shown that this optimal network behav-
ior at first glance can be counterintuitive. In particular
this implies that currently existing ways for controlling
these kind of networks do not achieve optimal network
behavior. An next step will be to derive controllers
that make the network converge towards this optimal
network behavior. A possible approach to this prob-
lem has been introduced in (Lefeber and Rooda, 2006),
and worked out for the system under consideration in
this paper only for a specific choice of parameters in
(Lefeber and Rooda, 2008). This approach generally
leads to non-distributed network controllers. That is,
knowledge of the global network state is required to
control all servers simultaneously. It is a challenge
to derive distributed controllers that make the network
converge to a priori specified behavior. For the spe-
cific choice of parameters considered in (Lefeber and
Rooda, 2008) such a distributed controller can be deter-
mined. Extending this to a more general setting would
be the subject of further research.

Acknowledgements
This work was supported by the Netherlands Or-

ganization for Scientific Research (NWO-VIDI grant
639.072.072).

References
Banks, J. and J.G. Dai (1997). Simulation studies

of multiclass queueing networks. IIE Transactions
29, 213–219.

Eekelen, J.A.W.M. van, E. Lefeber and J.E. Rooda
(2006). Feedback control of 2-product server with
setups and bounded buffers. In: Proceedings of the
American Control Conference. Minneapolis, Min-
nesota, USA.

Humes, Jr, C. (1994). A regulator stabilization tech-
nique: Kumar Seidman revisited. IEEE Transactions
on Automatic Control 39(1), 191–196.

Kumar, P.R. and T.I. Seidman (1990). Dynamic in-
stabilities and stabilization methods in distributed
real-time scheduling of manufacturing systems. IEEE
Transactions on Automatic Control 35(3), 289–298.

Lefeber, E. and J.E. Rooda (2006). Controller design of
switched linear systems with setups. Physica A.

Lefeber, E. and J.E. Rooda (2008). Controller design
for flow networks of switched servers with setup
times: The Kumar-Seidman case as an illustrative ex-
ample. Asian Journal of Control.

Matveev, A.S. and A.V. Savkin (2000). Qualitative the-
ory of hybrid dynamical systems. Control Engineer-
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