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CHAPTER 4

MODELLING MANUFACTURING SYSTEMS FOR
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This contribution deals with the modelling of manufacturing systems for
control. First the concept of effective process times is introduced as a
means to arrive at relatively simple discrete event models of manufactur-
ing systems based on measured data. Secondly, a control framework is
presented. Thirdly, a validation study is presented which shows that the
currently available PDE-models for describing manufacturing systems
need further improvement. Finally some criteria are specified which a
PDE-model should at least meet in order to be considered valid.

4.1. Introduction

The dynamics of manufacturing systems has been a subject of study for

several decades9,12. Over the last years, manufacturing systems have be-

come more and more complex. A good understanding of the dynamics of

manufacturing systems has therefore become even more important.

A living cell can also be considered as a tiny manufacturing system

which produces certain parts via a system of “protein machines” (enzyme

molecules). Parts produced by one “machine” then move to other “ma-

chines” to be processed. For a better understanding of this cell-dynamics,

experiences from studying the dynamics of manufacturing systems might

be helpful, and vice versa.

The goal of this contribution is to introduce the “outsider” to recent

developments in the modelling and control of manufacturing systems and to

provide some references that can be used as starting points for the interested
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reader. Since no familiarity with manufacturing systems is assumed, in Sec-

tion 4.2 first some terminology and basic properties of manufacturing sys-

tems are introduced.

A commonly accepted approach for modelling the dynamics of man-

ufacturing systems is by means of discrete event models, in which each

product and each individual production step is modelled in great detail. In

Section 4.3, the concept of effective process times is introduced as a means

to arrive at relatively simple discrete event models of manufacturing sys-

tems. When building a discrete event model, one usually tries to include all

possible disturbances due to machine failures, availability of operators and

tools, maintenance, breaks, etc. Instead of using this white-box approach, a

workstation is considered to be a black-box, whose input-output behaviour

can be determined from real manufacturing data.

Using effective process times as a means to arrive at a relatively simple

discrete event model of a manufacturing system is only the first step in our

framework to control a manufacturing system. This framework is presented

in Section 4.4. A second important ingredient of this control framework

is the accurate approximation of the discrete event model’s dynamics by

a continuous model. Recently, a new class of continuous models has been

proposed to capture the dynamics of manufacturing systems. This new class

of models (PDE-models) is introduced in Section 4.5.

In Section 4.6 a summary is given of PDE-models that have been pro-

posed in literature so far. The dynamic behaviour resulting from these mod-

els is compared with the dynamic behaviour that results from discrete event

simulation. Unfortunately, none of the presented models describes the dy-

namics satisfactorily. Since this validation study calls for improved models,

Section 4.7 concludes this chapter with a list of elementary properties that

valid models should satisfy.

4.2. Preliminaries

We first need to introduce a few basic quantities and the main principles

for manufacturing system analysis. The items produced by a manufacturing

system are called lots. Also the words product and job are commonly used.

The total number of lots in a manufacturing system is called wip (work-in-

process) w. To characterise the behaviour of a manufacturing system two

important measures are being used. The first measure is the throughput δ,

i.e., the number of lots per time-unit that leaves the manufacturing system.

The second measure is the flow time ϕ, i.e., the time from release of a lot
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in the system until the finished lot leaves the system. Instead of flow time

the words cycle time and throughput time are also commonly used.

Ideally, a manufacturing system should both have a high throughput

and a low flow time or low wip. Unfortunately, these goals can not both be

met simultaneously. These two goals are conflicting, as can be seen from

Fig. 4.1.
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Fig. 4.1. Basic relations between basic quantities for manufacturing systems.

On the one hand, if we want to have a high throughput, we need to make

sure that machines are always busy. Since from time to time disturbances

like machine failures happen, we should make sure that we have buffers

between two consecutive machines to make sure that the second machine

can still continue if the first machine fails (or vice versa). As a result, for a

high throughput we need to have many lots in the manufacturing system,

i.e., we have a high wip. Therefore, if a new lot starts in the system it has

a large flow time, since all lots that are currently in the system need to be

completed first.

On the other hand, the least possible flow time can be achieved if a

lot arrives at a completely empty system and never has to wait before

processing at any machine takes place. As a result, for that system we have

a small wip level, but also most of the time machines are not processing,

yielding a small throughput.

When trying to control manufacturing systems, we need to make a trade-

off between throughput and flow time, so the nonlinear (steady state) rela-

tions depicted in Fig. 4.1 need to be incorporated in any reasonable model

of manufacturing systems.
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Typical models of manufacturing systems are so-called discrete event mod-

els. In Fig. 4.2 we can see a characteristic graph of the wip at a workstation
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Fig. 4.2. A characteristic time-behaviour of wip at a workstation.

as a function of time. Wip always takes integer values with arbitrary (non-

negative real) duration. One could consider a manufacturing system to be

a system that takes values from a finite set of states and jumps from one

state to the other as time evolves. This jump from one state to the other is

called event. As we have a countable (discrete) number of states, the name

of this class of models is explained.

The way we usually model a manufacturing system, is as a network of

concurrent processes. For example, a buffer is modelled as a process that as

long as it can store something is willing to receive new products, and as long

as it has something stored is willing to send products. A basic machine is

modelled as a process that wants to receive a product, delays for the period

of processing and tries to send the product and keeps on doing these three

consecutive things. The delay used is often a sample from some distribution.

In particular in the design phase discrete event models are used. These

discrete event models usually contain a detailed description of everything

that happens in the manufacturing system under consideration, resulting

into large models. Since in practice manufacturing systems are changing

continuously, it is very hard to keep these discrete event models up-to-date.

In the remainder of this chapter we introduce the concept of effective

process times for arriving at simpler discrete event models than generally

used. Next, we explain the control framework used for controlling manufac-

turing systems. In this framework, a crucial role is played by continuous



July 1, 2005 10:54 Master File for Review Volume (Trim Size: 9in x 6in) driver9x6

Modelling Manufacturing Systems for Control: A Validation Study 105

approximation models of discrete event models. As these continuous ap-

proximation models should be valid, some validation studies are presented.

4.3. Effective Process Times (EPT’s)

For the processing of a lot at a machine, many steps may be required. For

example, it could be that an operator needs to get the lot from a storage

device, setup a specific tool that is required for processing the lot, put

the lot on an available machine, start a specific program for processing

the lot, wait until this processing has finished (meanwhile doing something

else), inspect the lot to determine if all went well, possibly perform some

additional processing (e.g., rework), remove the lot from the machine and

put it on another storage device and transport it to the next machine.

At all of these steps something might go wrong: the operator might not

be available, after setting up the machine the operator finds out that the

required recipe can not be run on this machine, the machine might fail

during processing, no storage device is available anymore so the machine

can not be unloaded and is blocked, etc.

It is impossible to measure all sources of variability that might occur

in a manufacturing system. One could incorporate some of these sources

in a discrete event model. The number of operators and tools can be mod-

elled explicitly and it is common practice to collect data on mean times to

failure and mean times to repair of machines. Also schedules for (preven-

tive) maintenance can be incorporated explicitly in a discrete event model.

Nevertheless, still not all sources of variability are included. This is clearly

illustrated in Fig. 4.3, obtained from13. The left graph contains actual real-

isations of flow times of lots leaving a real manufacturing system, whereas

the right graph contains the results of a detailed deterministic simulation

model and the graph in the middle contains the results of a similar model

including stochasticity. It turns out that in reality flow times are much

higher and much more irregular than simulation predicts. So, even if one

tries hard to capture all variability present in a manufacturing system, still

the outcome predicted by the model is far from reality.

Hopp and Spearman12 use the term effective process time (EPT) as the

time seen by lots from a logistical point of view. In order to determine this

effective process time, Hopp and Spearman assume that the contribution

of the individual sources of variability is known.

A similar description is given by Sattler18 who defines the effective pro-

cess time as all flow time except waiting for another lot. It includes waiting
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Fig. 4.3. A comparison.

for machine down time and operator availability and a variety of other

activities. Sattler18 noticed that her definition of effective process time is

difficult to measure.

Instead of taking the bottom-up view of Hopp and Spearman, a top-

down approach can also be taken, as shown by Jacobs et al.13, where algo-

rithms have been introduced that enable determination of effective process

time realisations from a list of events. For these algorithms, the basic idea

of the effective process time to include time losses was used as a starting

point.

Consider the Gantt chart of Fig. 4.4. At t = 0 the first lot arrives at
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Fig. 4.4. Gantt chart of 5 lots at a workstation.

the workstation. After a setup, the processing of the lot starts at t = 2 and

is completed at t = 6. At t = 4 the second lot arrives at the workstation.
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At t = 6 this lot could have been started, but apparently there was no

operator available, so only at t = 7 the setup for this lot starts. Eventually,

at t = 8 the processing of the lot starts and is completed at t = 12. The

fifth lot arrives at the workstation at t = 22, processing starts at t = 24,

but at t = 26 the machine breaks down. It takes until t = 28 before the

machine has been repaired and the processing of the fifth lot continues. The

processing of the fifth lot is completed at t = 30.

If we take the point of view of a lot, what does a lot see from a logistical

point of view? The first lot arrives at an empty system at t = 0 and departs

from this system at t = 6. From the point of view of this lot, its processing

took 6 time-units. The second lot arrives at a non-empty system at t = 4.

Clearly, this lot needs to wait. However, at t = 6, if we would forget about

the second lot, the system becomes empty again. So from t = 6 on there

is no need for the second lot to wait. At t = 12 the second lot leaves

the system, so from the point of view of this lot, its processing took from

t = 6 till t = 12; the lot does not know whether waiting for an operator

and a setup is part of its processing. Similarly, the third lot sees no need

for waiting after t = 12 and leaves the system at t = 17, so it assumes

to have been processed from t = 12 till t = 17. Following this reasoning,

the resulting effective process times for lots are as depicted in Fig. 4.5.
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Fig. 4.5. EPT realisations of 5 lots at a workstation.

Notice that only arrival and departure events of lots to a workstation are

needed for determining the effective process times. Furthermore, none of

the contributing disturbances needs to be measured.

In highly automated manufacturing systems, arrival and departure

events of lots are being registered, so for these manufacturing systems, effec-

tive process time realisations can be determined rather easily. Next, these
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EPT realisations can be used in a relatively simple discrete event model

of the manufacturing system. This discrete event model only contains the

architecture of the manufacturing system, buffers and machines. The pro-

cess times of these machines are samples from their EPT-distribution as

measured from real manufacturing data. There is no need for incorporat-

ing machine failures, operators, etc., as this is all included in the EPT-

distributions. Furthermore, the algorithms as provided in13 are utilisation

independent. That is, data collected at a certain throughput rate is also

valid for different throughput rates. Also, machines with the same EPT-

distribution can be added to a workstation. This makes it possible to study

how the manufacturing systems responds in case a new machine is added,

or all kinds of other what-if-scenario’s. Finally, since EPT-realisations char-

acterise operational time variability, they can be used for performance mea-

suring. For more on this issue, the interested reader is referred to4,13. What

is most important in the current setting, is that EPT’s can be determined

from real manufacturing data and yield relatively simple discrete event

models of the manufacturing system under consideration. These relatively

simple discrete event models serve as a starting point for controlling man-

ufacturing systems.

4.4. Control Framework

In the previous section, the concept of effective process times has been

introduced as a means to arrive at relatively simple discrete event models of

a manufacturing system, using measurements from the real manufacturing

system under consideration. This would be the first step in the control

framework. The idea is to develop a controller for the derived discrete event

model. Once this controller yields good performance for the discrete event

model, the controller can be applied to the real manufacturing system.

Even though control theory exists for controlling discrete event systems,

unfortunately none of it is appropriate for controlling real-life discrete event

models of manufacturing systems. This is mainly due to the large number

of states a manufacturing system can be in. Therefore, a different approach

is needed.

If we concentrate on mass production, the distinction between lots is not

really necessary and lots can be viewed in a more continuous way. Instead of

the discrete event model we might consider an approximation model. This

would be the second step in the control framework. Next, we can use stan-

dard control theory for deriving a controller for the approximation model.
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These first three steps in the control framework are illustrated in Fig. 4.6.

Manufacturing System
�

Discrete Event Model
�

Approximation Model

Controller

�

Fig. 4.6. Control framework (first three steps).

To make the second and third step more clear, a possible approximation

model is presented in the next subsection, followed by a possible controller

design based on this model. The final steps of the control framework con-

clude this section.

4.4.1. Approximation Model

Consider the manufacturing line in Fig. 4.7 which consists of two machines

in series. Let u0(k) denote the number of lots that arrive at the system dur-
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Fig. 4.7. A manufacturing line.

ing shift k, let ui(k) denote the number of lots which machine Mi produces

during shift k, let xi(k) = yi(k) denote the number of lots in buffer Bi at

the beginning of shift k (i ∈ {1, 2}), and let x3(k) = y3(k) denote the num-

ber of lots produced by the manufacturing system during shift k. Assume

that machines M1 and M2 have a maximum capacity of respectively µ1 and
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µ2 lots per shift. Then we obtain the following approximation model:

x(k + 1) =




1 0 0

0 1 0

0 0 1


x(k) +




1 −1 0

0 1 −1

0 0 1


u(k), (1a)

y(k) =




1 0 0

0 1 0

0 0 1


x(k) +




0 0 0

0 0 0

0 0 0


u(k), (1b)

where u = [u0, u1, u2]> and y = [y1, y2, y3]>. System (1) is a controllable

linear system of the form

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) +Du(k)

as extensively studied in control theory (which explains the introduction

of both x and y when deriving (1)). Therefore, many standard techniques

from control theory can be used for deriving a controller for system (1).

4.4.2. Model Predictive Control (MPC)

For the continuous approximation model as derived in the previous section,

we also have constraints. To be more precise, we have capacity constraints

on the input u, as well as constraints on the state x and output y (the

buffer contents should remain positive). These constraints can be expressed

by means of the following equations:

0 ≤ u1(k) ≤ µ1, x1(k) ≥ 0, y1(k) ≥ 0,

0 ≤ u2(k) ≤ µ2, x2(k) ≥ 0, y2(k) ≥ 0,

x3(k) ≥ 0, y3(k) ≥ 0.

(2)

A standard control approach for controlling system (1) when having to deal

with the constraints is Model Predictive Control (MPC). When using MPC,

it is common practice to define a reference output yr(k) that the system

(1) should track.

Assume that the buffer contents at the end of shift k− 1 have just been

measured,i.e., y(k). Since y(k) = x(k), the current state of the system is

known. So using this measurement, for each possible plan of future inputs

u(k), u(k+ 1), . . . , u(k+ p− 1), by means of model (1) the resulting future

outputs y(k+ 1), y(k+ 2), . . . , y(k+ p) can be determined, usually denoted

as y(k + 1|k), . . . , y(k + p|k) to illustrate that these are predictions, while

currently being at time-instant k. Next, costs can be associated with each
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possible plan of future inputs. Usually, these costs consist of both a penalty

for not being exactly at the desired reference output, and a penalty for the

control effort used. In this way almost naturally an optimisation problem

arises, as the expected costs should be minimised over all possible plans for

future inputs. A typical optimisation problem using this approach would

be:

min
u(k),...,u(k+p−1)

p∑

i=1

[y(k + i|k)− yr(k + i)]>Q[y(k + i|k)− yr(k + i)]

+ u(k + i− 1)>Ru(k + i− 1)

(3a)

subject to

0 ≤ uj(k+ i− 1) ≤ µj , j ∈ {1, 2}, y(k+ i|k) ≥ 0 (i = 1, . . . , p). (3b)

As all y(k+ i|k) are affine functions of u(k+ i− 1), this optimisation prob-

lem is a quadratic program which can be solved easily. From the resulting

optimal solution u∗(k), . . . , u∗(k + p − 1), only u∗(k) is used as the pro-

duction targets for the next period. Since disturbances might occur, this

optimisation procedure is repeated each shift, resulting in a receding hori-

zon scheme.

The mentioned scheme is one of the simplest versions of MPC. The

interested reader is referred to literature, e.g., 5,7,17 for more information

about this control strategy.

Having illustrated the second and third step of the control framework,

the final steps of the framework can be introduced.

4.4.3. Control Framework (revisited)

At the beginning of this section the first steps of the control framework have

been explained, cf. Fig. 4.6. Using effective process times a relatively simple

discrete event model of a manufacturing system can be derived based on

measurements from the real manufacturing system. Next, an approximation

model of the discrete event model can be derived. Subsequently, by means

of standard control theory a controller for this approximation model can

be derived.

When the derived controller behaves as desired, as a fourth step this

controller could be connected to the discrete event model. This can not be

done straightforwardly, since the derived controller is not a discrete event

controller. The control actions still need to be transformed into events. It

might very well be that the optimal control action would be to produce
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2.75 lots during the next shift. One still needs to decide how many jobs to

really start (2 or 3), and also when to start them. This is the left conversion

block in Fig. 4.8. From this figure, it can also be seen that a conversion is

Manufacturing System
�

Discrete Event Model
�

Approximation Model

�

�Controller

�

�

Conversion Conversion

Fig. 4.8. Control framework (fourth step).

needed from discrete event model to controller. In the example treated in

this section, it was decided to sample the discrete event model once every

shift. Other strategies might be followed. For example, if at the beginning

of a shift a machine breaks down it might not be such a good idea to wait

until the end of the shift before setting new production targets. Designing

proper conversion blocks would be the fourth step in the control framework.

After the fourth step, i.e., properly designing the two conversion blocks,

a suitable discrete event controller for the discrete event model is obtained,

as illustrated in Fig. 4.8 (dashed).

Eventually, as a fifth and final step, the designed controller can be dis-

connected from the discrete event model, and attached to the manufacturing

system.

In the presented control framework two crucial steps can be distinguished.

First, the discrete event model should be a good enough approximation

of the real manufacturing system. For that reason, once a discrete event

model of a manufacturing system has been made, the model needs to be

validated. If results as shown in Fig. 4.3 are obtained the model needs

further improvement. Second, the approximation model should be a good

enough approximation of the discrete event model, or actually: of the dis-

crete event model and the conversion blocks, since that is the system that

needs to be controlled by the continuous controller. For that reason, ap-
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proximation models of (discrete event models of) manufacturing systems

also need to be validated. In the remainder of this chapter, some validation

studies of approximation models are presented.

4.5. Modelling Manufacturing Systems

In the previous section, a control framework for controlling a manufacturing

system has been presented. Similar ideas can be applied to the problem of

controlling a network of interacting manufacturing systems. An illustrative

example of a semiconductor manufacturing supply chain is given in Fig. 4.9.

 "!

 $#
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& #
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Starts Fab/Test1 Ass./Test2 Finish/Pack Demand

Fig. 4.9. A small semiconductor manufacturing supply chain.

In this figure, F1, F2, and F3 denote wafer fabs, in which wafers are

being produced, containing hundreds to thousands of integrated circuits

(ICs) on its surface. Due to, among others, the large number of process

steps, the re-entrant nature of the process flow, and the advanced process

technologies, the fabrication of wafers is a complex manufacturing process.

A typical flow time for a wafer fab is in the order of two months. That

is, once a bare silicon wafer enters the manufacturing system, it typically

takes about two months for the wafer to be completed.

Finished wafers are moved to an Assembly/Test facility, where indi-

vidual chips are cut out of the wafer and each separated IC is assembled.

Typical flow times for the manufacturing systems A1 and A2 are in the

order of ten days. Finally, the chips are packaged in FP1, FP2, FP3, and

can be shipped to customers. This takes in the order of five days.

The control of this supply chain is one of the problems the semiconductor

industry currently faces. The fact that flow times are large and nonlinearly

dependent on the load (cf. Fig. 4.1) is one of the most difficult aspects in
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this problem. Notice that, even though the flow time of a wafer fab is in

the order of two months, the raw process time of a wafer is less than two

weeks. That is, if a wafer enters an empty wafer fab it would take less than

two weeks for the wafer to be completed. This illustrates that the nonlinear

relations between wip, throughput and flow time should be present in any

approximation model.

Consider the manufacturing line depicted in Fig. 4.7 and assume that

we start with an initially empty system and then turn on the machines,

i.e., assume that x(0) = 0 and u(k) = [λ, λ, λ]>, (0 < λ ≤ min(µ1, µ2),

k = 1, 2, 3, . . . ), model (1) predicts that products immediately start leaving

the manufacturing system. Furthermore, according to model (1) for each

feasible throughput any wip-level can be used. In particular also a wip-level

of 0. As this example illustrates, these fluid models do not take into account

the nonlinear relations between wip, throughput and flow time. As a result,

these models can not be used as a valid approximation model.

Models like (1) have been used a lot in literature. Examples of these

models are the flow model as initiated by Kimemia and Gershwin14 for

modelling failure-prone manufacturing systems, the fluid models or fluid

queues as proposed by queueing theorists10, or the stochastic fluid model

as introduced by Cassandras et al.8

Recently, a new class of models for manufacturing systems has been

introduced2,3,16. In these models, the flow of products through a manufac-

turing system is modelled in a similar way as the flow of cars on a highway.

Not only is the number of lots assumed to be continuous, also the position

of a lot in the manufacturing system is assumed to vary continuously.

Let t ∈ R+ denote the time and let x ∈ [0, 1] denote the position of a lot

in the manufacturing line (the degree of completion). The behaviour of lots

flowing through the manufacturing line can be described by three variables

that vary with time and position: flow u(x, t), measured in unit lots per

unit time, density ρ(x, t), measured in unit lots per degree of completion,

and speed v(x, t), measured in degree of completion per unit time. First, we

observe that flow is the product of density and speed:

u(x, t) = ρ(x, t)v(x, t). (4)

Second, assuming no scrap, the number of products between any two “lo-

cations” x1 and x2 (x1 < x2) needs to be conserved at any time t, i.e., the

change in the number of products between x1 and x2 is equal to the flow
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entering at x1 minus the flow leaving at x2:

∂

∂t

∫ x2

x1

ρ(x, t) dx = u(x1, t)− u(x2, t),

or in differential form:

∂ρ

∂t
(x, t) +

∂u

∂x
(x, t) = 0. (5)

Relations (4) and (5) are basic relations that any model must satisfy. As we

have three variables of interest, (at least) a third relation is needed. Several

choices can be made for this third (or more) relation(s), as the next section

and1 make clear.

As far as we know, the PDE-models as just described are the only ones

that are solvable in limited time, describe the dynamics of a manufacturing

system and incorporate both throughput and flow time. Flow or fluid mod-

els, like the one presented in (1), do not incorporate the nonlinear relation

between throughput and flow time. Discrete event models do incorporate

the nonlinear relation between throughput and flow time, but simulating

these models takes a lot of time, making their on-line use computationally

infeasible. A third class of models are queueing models like in6,19. They

provide many insights in steady state behaviour of manufacturing lines,

but the dynamics of manufacturing lines is rarely addressed.

Even though discrete event simulation is computationally intensive and

queueing theory is mainly concerned with steady state, results from these

models can be used for validating PDE-models. A minimal requirement

for a valid PDE-model would be that that its steady state behaviour is in

accordance with results from queueing theory. Also the dynamics of a PDE-

model should be in accordance with the dynamics obtained from discrete

event simulation. These checks are discussed in the next section, where

queueing theory and discrete event simulation are used to validate PDE-

models.

4.6. Validation of PDE-Models

In the previous section we introduced PDE-models as a way to model man-

ufacturing systems. We only mentioned the basic ingredients (4), (5), and

the need for a third relation. Also, we mentioned that results from queue-

ing theory and from discrete event simulation can be used for validating

PDE-models.
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In this section we present validation studies for five PDE-models for

manufacturing systems, using queueing theory for deriving the proper

steady state and discrete event simulation for validating the dynamics.

4.6.1. Manufacturing Systems

When we consider the supply chain in Fig. 4.9, two typical manufacturing

systems can be considered. On the one hand we have the factories F1, F2,

and F3, which have a re-entrant nature, on the other hand we have the

factories A1, A2, FP1, FP2, and FP3, which have the nature of a line of

workstations. Therefore, we define two manufacturing systems:

Manufacturing System 1 A line consisting of 15 identical workstations

(see Fig. 4.10). Lots visit the workstations according to the fol-

*,+ *.- *0/ *1+32 *,+34

Fig. 4.10. An ordinary manufacturing line.

lowing recipe: 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15. This is an “or-

dinary” manufacturing line, cf. A1, A2, FP1, FP2, and FP3.

Manufacturing System 2 A line consisting of five identical worksta-

tions. Lots visit the workstations according to the following recipe:

5,6 5.7 5.8 509 50:

Fig. 4.11. A re-entrant manufacturing line.

1-2-3-4-5-1-2-3-4-5-1-2-3-4-5 (see Fig. 4.11). Since each lot re-enters

the system twice, this is a re-entrant manufacturing line, cf. F1, F2,

and F3.
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We assume that each workstation consists of an infinite buffer, which oper-

ates under a FIFO policy (First In First Out), and a single machine whose

effective process times are drawn from an exponential distribution with

mean 1. If we furthermore assume that lots arrive at the manufacturing

system according to a Poisson process with an arrival rate λ, we can derive

the following steady state properties by means of queueing theory:

• For Manufacturing System 1 (Fig. 4.10), the mean number of lots

equals λ
1−λ in each workstation, resulting in a mean number of

15λ
1−λ lots in the system. Furthermore, the mean flow time of lots for

Manufacturing System 1 is 15
1−λ .

• For Manufacturing System 2 (Fig. 4.11), the mean number of lots

equals 3λ
1−3λ in each workstation, resulting in a mean number of

15λ
1−3λ lots in the system. Furthermore, the mean flow time of lots

for Manufacturing System 2 is 15
1−3λ .

4.6.2. PDE-Models

In the validation studies we consider the following five models that have

been proposed in literature.

Model 1: Single queue I2 Relations (4), (5) together with

v(x, t) =
µ

1 +
∫ 1

0
ρ(s, t) ds

, (6)

where µ > 0 is a constant representing the processing rate of the

workstation.

Model 2: Single queue II2 Relations (4), (5) together with

∂ρv

∂t
(x, t) +

∂ρv2

∂x
(x, t) = 0, (7)

and the additional boundary condition

ρv2(0, t) =
µ · ρv(0, t)

1 +
∫ 1

0
ρ(s, t) ds

, (8)

where µ > 0 again denotes the processing rate of the workstation.

Model 3: Re-entrant I3 Relations (4), (5) together with

v(x, t) = v0

(
1− 1

Lmax

∫ 1

0

ρ(s, t) ds

)
, (9)

where v0 > 0 is a constant representing the maximal speed that can

be achieved (i.e., 1/v0 denotes the theoretical minimal flow time),
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and Lmax > 0 is a constant representing the maximal number of

lots that is allowed in the manufacturing system.

Model 4: Re-entrant II3 Relations (4), (5) together with (7), and the

additional boundary condition

ρv2(0, t) = v0

(
1− 1

Lmax

∫ 1

0

ρ(s, t) ds

)
ρv(0, t), (10)

where v0 and Lmax are the same as in (9).

Model 5: m identical machines16 Relations (4), (5) together with

v(x, t) =
µ

m+ ρ(x, t)
, (11)

where m > 0 denotes the number of machines, and µ > 0 denotes

the processing rate of each workstation.

All five models have the boundary condition

ρv(0, t) = λ(t),

where λ(t) denotes the inflow to the manufacturing system in unit lots per

unit time.

Recently, other PDE-models than models 1–5 have been proposed, cf. 1

(an other chapter in this book). These models have not been incorporated

in these validation studies.

4.6.3. Validation Study

In the previous subsections we introduced Manufacturing Systems 1 and 2,

as well as the PDE-models used in the validation studies.

Manufacturing System 1 is an ordinary manufacturing line and does not

have a re-entrant nature. As PDE-models 3 and 4 have been specifically

designed for re-entrant manufacturing systems, they have not been used in

the validation studies for Manufacturing System 1.

As mentioned, according to queueing theory the mean number of lots

in Manufacturing System 1 is 15λ
1−λ in case we have a mean arrival rate of

λ. Translated into PDE-terms we have in equilibrium

ρ(x, t) =
15λ

1− λ , v(x, t) =
1− λ

15
. (12)

From (12) we obtain, by eliminating λ, that in steady state

v(x, t) =
1

15 + ρ(x, t)
=

1

15 +
∫ 1

0
ρ(s, t) ds

. (13)
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From (13) we obtain that the models 1, 2, and 5 are valid in steady state,

provided that in (6) and (8) we replace the denominator 1+
∫ 1

0 ρ(s, t) ds with

15+
∫ 1

0 ρ(s, t) ds, which is consistent with the results in2. In2 a single queue

is assumed. If, instead, we assume a line of 15 workstations the mentioned

modification of (6) and (8) results.

For Manufacturing System 2, the mean number of lots in the system

equals 15λ
1−3λ with a mean flow time of 15

1−3λ . Translated into PDE-terms we

have in equilibrium

ρ(x, t) =
15λ

1− 3λ
, v(x, t) =

1− 3λ

15
. (14)

From (14) we obtain, by eliminating λ, that in steady state

v(x, t) =
1

15 + 3ρ(x, t)
=

1

15

(
1−

∫ 1

0
ρ(s, t) ds

5
1−3λ

)
. (15)

When we compare (15) with (9) and (10), we notice that in order for models

3 and 4 to be valid in steady state, we need Lmax = 5
1−3λ , where λ denotes

the steady state arrival rate. Since Lmax depends on λ, the re-entrant models

3 and 4 are not likely to be “globally” valid for re-entrant manufacturing

systems, i.e., valid for an arbitrary arrival rate λ. In the best case they are

valid “locally” around a certain λ. On the other hand, any manufacturing

system can contain only a finite number of lots, arguing the validity of a

queueing model with infinite buffers.

From (15) we obtain that the models 1, 2, and 5 are valid in steady state,

provided that in (6) and (8) we replace the denominator 1 +
∫ 1

0 ρ(s, t) ds

with 15 + 3
∫ 1

0
ρ(s, t) ds, and in (11) we replace the denominator with 15 +

3ρ(x, t). The former can be argued to be a suitable model for a re-entrant

manufacturing line (a homogeneous velocity over the line is used), whereas

the latter is not a proper model for a re-entrant manufacturing line. It would

have been better to replace it with 15+ρ(x, t)+ρ(〈x+ 1
3 〉1, t)+ρ(〈x+ 2

3 〉1, t).
where 〈α〉1 denotes α modulo 1, i.e., all digits behind the decimal separator.

Next, we can use discrete event models of System 1 and System 2 to study

the dynamics of the proposed PDE-models. For this we used the spec-

ification language χ11. Starting with an initially empty system, we per-

formed experiments where lots arrive according to a Poisson process with

a mean arrival rate λ. During an experiment we collected at the times

t = 1, 2, 3, . . . the number of lots in each workstation as well as the num-

ber of lots that has been completed by the system. In order to guarantee
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a 99% confidence interval with a relative width of less than 0.01 for each

measurement, experiments have been repeated 1.000.000 times. We aver-

aged all data, resulting in the average number of lots in each workstation,

as well as the number of lots that has been completed by the system, at

each time-instant. This we did for both Manufacturing System 1 and Man-

ufacturing System 2, where we chose the arrival rate such that the steady

state utilisation of the workstations was respectively 25%, 50%, 75%, 90%,

and 95% (so λ = 0.25, 0.5, 0.75, 0.90, 0.95 for Manufacturing System 1 and

λ = 0.08333, 0.16667, 0.25, 0.3, 0.31667 for Manufacturing System 2). These

experiments provide more data than can be presented in this chapter. The

interested reader is referred to15 for more results. Here we present some

general findings.

The first results we present are for Manufacturing System 1 with an

arrival rate of λ = 0.25. Fig. 4.12 presents the evolution of the total num-

ber of lots in the system as a function of time. The solid line describes
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0
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6

time

w
ip

des
mod1
mod2
mod5

Fig. 4.12. Number of lots in Manufacturing System 1 for utilisation of 25%.

the (averaged) result of the discrete event simulations. The dotted line,

the dash-dotted line, and the dashed line describe the result according to

Model 1, Model 2, and Model 5 respectively. In Fig. 4.12 we see that ini-

tially the total number of lots in the line linearly increases. This is due to

the fact that lots are only entering the system and it takes a while before

lots start coming out. Also, we see that all models predict that in steady

state five lots are in the system. This is as expected. When we closely look

at Fig. 4.12 we see that around t = 10 the graph of the discrete event sim-

ulation bends off from the PDE-graphs, from which we can conclude that

the moment at which the first lot leaves the system is overestimated by

the PDE-models. That is, according to the discrete event simulation this

should happen earlier. Also, we see that after t = 40 all three PDE-models
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underestimate the number of products in the system. Therefore, all PDE-

models predict that the system is later in steady state than according to

the discrete event simulation.

The differences in behaviour become more clear when we consider the

development of the density over time. This can be made most clear by

means of a movie, for which the reader is referred to15. In Fig. 4.13 the

most important parts of the behaviour are captured. The figure presents

respectively ρ(0, t), ρ(0.5, t) and ρ(1, t), again for the discrete event model,

Model 1, Model 2, and Model 5. For the discrete event system we assume

the density to be piecewise constant at intervals of width 1
15 . When looking
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Fig. 4.13. Densities at x = 0, x = 0.5 and x = 1 for utilisation of 25%.

at the first graph, we see that the behaviour of Model 1 and Model 2 almost

coincide. All three models predict a quicker raise of the density than the

discrete event model predicts. If we look at the graph of ρ(0.5, t) we see that

initially the PDE-models underestimate the growth of the density, around
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t = 7 the PDE-models show a strong increase in the density, resulting in

an over-estimation of the density. Similar behaviour can be observed for

ρ(1, t).

The second results we present are for Manufacturing System 2 with an

arrival rate of λ = 0.08333. Fig. 4.14 presents the evolution of the total

number of lots in the system as a function of time. In addition to the
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Fig. 4.14. Number of lots in Manufacturing System 2 for utilisation of 25%.

lines from the previous two figures, the light grey and dark grey solid line

represent the output of Model 3 and Model 4 respectively.

For the case of Manufacturing System 2 we can make similar remarks

as for Manufacturing System 1. Furthermore, a close resemblance between

Model 1 and Model 3 can be noticed, as well as a close resemblance between

Model 2 and Model 4.

4.7. Concluding Remarks

For controlling a complex network of interacting machines, models are

needed that not only describe the dynamics of the network well, but are

also suitable for applying control theory to.

In this chapter we illustrated that when building discrete event mod-

els of manufacturing systems, a workstation together with all its possible

disturbances might be considered as a black box. Instead of using white

box modelling and trying to capture all possible disturbances well (as is

often done), one can also focus on accurately capturing the input-output

behaviour. For this, the concept of effective process times (EPT’s) can be

used. Using this approach it is possible to arrive at valid discrete event

models of manufacturing systems, using real manufacturing data.

Though EPT’s can be used to arrive at valid discrete event models of

manufacturing systems, these discrete event models can not be used for
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deriving suitable controllers. Therefore, a control framework has been pre-

sented which makes use of an approximation model of the discrete event

model. PDE-models have been mentioned as possible approximation models

that are solvable in limited time, describe the dynamics of a manufactur-

ing system and incorporate both throughput and flow time. However, the

question remains: are these PDE-models valid models of manufacturing

systems?

The presented validation studies showed that more accurate PDE-

models are needed. Recently, new models have been proposed (cf. 1) which

might do a better job. Nevertheless, most of the recently developed PDE-

models fail at least at one of the following elementary tests:

• Given a fixed set of model parameters, the correct steady state wip

is achieved for arbitrary constant influx λ. Models 3 and 4 fail this

test.

• For a manufacturing line, as depicted in Fig. 4.10, lots at the end

of the line are not influenced by lots in the beginning of the line.

In particular, assume the system is in a certain steady state and

suddenly the influx decreases. This is not immediately noticed in

the outflux. Models 1 and 2 fail this test.

• For a manufacturing system the steady state wip distribution is

not only determined by the influx (arrival rate of lots), but also by

its variance.

In the validation studies as presented, Poisson arrivals have been

assumed, yielding a homogeneous wip distribution over the line

(cf. (12) and (14)). However, if we would have used constant inter

arrival times the wip distribution would not be homogeneous, but

as depicted in Fig. 4.15. In case the inter arrival times would have
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Fig. 4.15. Manufacturing System 1 with deterministic arrivals.
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had a higher variance, the wip distribution as depicted in Fig. 4.16

might arise. For the same influx different steady state wip levels

0 5 10 15
0

0.5

1

1.5

2

workstation

m
ea

n 
w

ip

Fig. 4.16. Manufacturing System 1 with highly irregular arrivals.

results, depending on the variance of the influx. The higher the

variance, the higher the steady state wip level.

Since the variance of the influx is not a system property, for a given

set of model parameters, different steady state wip profiles should

be achievable for different variances of the influx.

Models 1, 3, and 5 fail this test. With the current boundary con-

ditions Models 2 and 4 fail this test too.

• In a manufacturing system, lots do not flow back wards. Assume

that the first and the last machine of a manufacturing system fail.

In that case both the influx and the outflux are zero. Further-

more, assume that initially the beginning of the line is empty (say

ρ(x, 0) = 0 for 0 ≤ x ≤ 1
2 ), but that the end of the line contains

some lots. Assume that both the influx and the outflux remain zero.

This should also hold for a valid PDE-model.

Models 1–5 pass this test. Nevertheless, this is a test that models

which do pass the previous test should also pass.

A final remark deals with the effects of correlation between influx and

outflux. Assume that a to be developed PDE-model passes all of the above

mentioned tests. If the presented control framework is used to derive a con-

trol strategy for the manufacturing system(s) under consideration, typically

a feedback results. That is, the current state of the system determines what

new influxes will be. This introduces correlations between the influx and

the outflux.

To illustrate this, consider a manufacturing system consisting of only one
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workstation with an infinite buffer. Assume that process times are drawn

from an exponential distribution with mean 1 and assume arrivals according

to a Poisson process with a mean arrival rate of λ = 0.5. Using queueing

theory the mean number of lots in this manufacturing system equals 1

and the mean flow time equals 2. Furthermore, the outflux is also a Poisson

process with a mean departure rate of λ = 0.5. We also know from queueing

theory that a Poisson arrival process with a mean arrival rate of λ = 1

results in an unstable system.

Now we apply feedback to this system. The policy we use is to keep

the total number of products in this system equal to 1. For the resulting

closed-loop system, the mean wip number of lots in the system also equals 1.

However, the mean flow time becomes 1 and a mean throughput of 1 results.

So the arrival and departure processes both are Poisson processes with a

mean rate of 1, something which was unfeasible for the system without

feedback.

The system itself has not changed. The only thing that changed was

that in the former case the influx and outflux were uncorrelated, whereas

in the latter case they were correlated. This example illustrates that ap-

parently the possibility of correlation between influx and outflux should be

incorporated in the models too.

The goal of this contribution was to introduce the “outsider” to recent de-

velopments in the modelling and control of manufacturing systems and to

provide some references that can be used as starting points for the reader

who has become more interested. Firstly, we presented the concept of effec-

tive processing times. Instead of trying to model what is going on exactly,

we try to capture only the input-output behaviour as good as possible using

real manufacturing data. Secondly, we presented a framework for control-

ling manufacturing systems. Thirdly, we showed that the currently available

PDE-models that try to capture the dynamics of manufacturing systems at

a macroscopic level need further improvement.
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