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Preface

How to start a preface to a thesis that should give an overview of what I have been doing for
almost four years? That is not an easy question to answer. Paradoxically, by writing down
this question I also found an answer to it.

If one comes to think about it, this preface is full of paradoxes. It is funny to realize that
this probably is the first page that people read (except from the title, and for Dutch readers
also the poem, I presume), whereas it is one of the last pages I wrote. I could elaborate more
on these paradoxes, but that would make this first page so philosophical and paradoxical that
even this first page will not be read: : :

At a time like this, as a period of my life is about to finish, I can not avoid looking back at it,
and looking forward too. While typing this sentence, my thoughts went out to several people.
These include Henk, Guido, Anders, Kristin, To˜no & Lena, my committee, colleagues, par-
ents and not least of all Wieke (thinking about periods of my life: : : ). They all are people
who, amongst others, deserve credit for their contributions (in one way or the other) to this
thesis.

First of all I would like to thank my supervisor and promotor Henk Nijmeijer. During the last
five years we have come to know each other quite well. I am grateful for the opportunity of
working with him, for the possibilities of visiting several colleagues, and for making me put
things in the right perspective. I am really looking forward to our collaboration in Eindhoven
in the near future.

I would like to thank Guido Blankenstein for being more than just a colleague. I have ben-
efited from our (lively) discussions and his willingness to listen to me when I tried to settle
my thoughts. Furthermore, I enjoyed the moments we spent together outside of office and his
special sense of humor.

I would like to express my gratitude to Anders Robertsson, not only for our working together
and his hospitality during my visit to Lund, but especially for all the playing on words in
English during our conversations, e-mails and phone calls. In addition I am indebted to
Kristin Pettersen, Antonio Lor´ıa, Elena Panteley, Romeo Ortega, Zhong-Ping Jiang, Janusz
Jakubiak and Rafael Kelly, as they all contributed to this thesis.

I am grateful to the members of my promotion committee for thorough reading my manu-
script: Prof. Huibert Kwakernaak, Prof. Henk Nijmeijer, Prof. Claude Samson of Sophia An-
tipolis (France), Prof. Koos Rooda of Eindhoven, and Prof. Ben Jonker, Prof. Arun Bagchi,
and Prof. Arjan van der Schaft of Twente. I would also like to thank Prof. Guy Campion of
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Louvain-la-Neuve (Belgium) for his feedback during the meetings of my advisory committee.

I would like to take the opportunity to thank all my (former) colleagues at the Faculty of
Mathematical Sciences in Twente, and especially those of the Systems, Signals and Control
group for having provided me with such a creative and friendly atmosphere to work in. Spe-
cial thanks also go to the Systems Engineering group in Eindhoven (my current colleagues)
for giving me the opportunity to finish my thesis quietly and showing me a glimpse of the
challenges I will face in the near future.

A special word of thanks goes to Henk Ernst Blok, Paul Huijnen, Kristin Pettersen, and Phil
Chimento who sacrificed themselves for going through (parts of) a draft version of this thesis.
They all contributed to this thesis with their valuable comments.

I would finally like to thank all my friends, my beloved family, and all the people whose name
I did not mention explicitly. A special word of thanks goes to my fianc´ee Wieke Fikse for all
her support and help.

Erjen Lefeber
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Chapter 1

Introduction

Nowadays, control systems are inevitable. They appear almost everywhere: in our homes (in
e.g., radio, television, video, CD-player), in several types of vehicles (in e.g., automobiles,
airplanes, spacecrafts, ships), in industry (e.g., robots, process control), in telecommunica-
tions, in biomedical engineering, and in numerous other places and situations.

Besides the growing usage of control systems, the requirements for a control system increase
considerably, resulting in more, and more complex control systems. In order to be able to
design more complex control systems for a larger variety of systems, a good understanding
of control systems is crucial. In mathematical control theory the basic principles underlying
the analysis and design of control systems are studied.

Nonlinear control is an important area in control, as virtually all physical systems are nonlin-
ear in nature. In case a system does not deviate too much from the nominal set of operating
conditions, often linear models can be used for describing the system and designing con-
trollers. However, when the required operation range is large, a linear(ized) model usually is
inadequate or inaccurate. Then nonlinear control comes into play. Nonlinear controllers are
capable of handling the nonlinearities directly in large operating ranges. And even when the
operation range is small enough, linearization does not always work, as controllable systems
exist, like a car, whose linearization around any equilibrium point is uncontrollable. As a
result nonlinear control theory has to be used for these systems.

In nonlinear control theory a large variety of approaches and mathematical tools for analysis
exists. The main reason for this variety is that no tool or methodology is universally appli-
cable in nonlinear systems analysis. As a result, systematic approaches and mathematical
tools are only available for certain classes of nonlinear systems. This thesis is also concerned
with the control of special classes of nonlinear systems.

The thesis consists of two parts. In the first part a new design approach, the cascaded ap-
proach, is presented. The main advantages of this new approach are that the expressions for
the resulting control laws are not complex and that transforming the system is not necessary:
all analysis can be done in the original co-ordinates. The cascaded design approach aims at
arriving at a specific structure for the closed-loop system. It turns out that this may simplify
the controller design, as part of the nonlinear dynamics can be forgotten. The tracking prob-
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6 Chapter 1. Introduction

lem is first studied for mobile robots, then for the class of so called chained-form systems
(including cars towing multiple trailers and a rigid spacecraft with two torque actuators) and
finally for an under-actuated ship. The applicability of the method is illustrated by means of
simulations. In case of the under-actuated ship, experiments on a scale model of an offshore
supply vessel have been performed.

In the second part of this thesis three specific problems are considered. First, the regulation
problem for a rigid robot manipulator under a constant disturbance is considered. It is shown
that the common practice of using a PID-controller is guaranteed to work globally in case the
integral action is turned on only after some time. Secondly the visual servoing problem for
a rigid robot manipulator is considered. That is, a robot manipulator is considered operating
in the plane, viewed on top with a camera. An image of the robot manipulator is displayed at
a screen. The goal is to regulate the tip of the robot manipulator to a specified point at this
screen using only position measurements. Extra difficulties are that both the camera position
and orientation are assumed to be unknown, as well as certain intrinsic camera parameters
(like scale factors, focal length and center offset). The problem is solved by using an adaptive
controller. Thirdly the tracking control problem for nonlinear systems is considered in the
presence of unknown parameters, i.e., the adaptive tracking control problem is considered. It
turns out that finding a suitable problem formulation is a problem in itself, as not knowing
certain parameters and specifying a reference trajectory are in conflict with each other. This
conflict is illustrated by means of an example, for which an adaptive tracking control problem
is not only formulated, but also solved.

1.1 Formulation of the tracking control problem

In this thesis the tracking control problem for nonlinear systems is considered. An accurate
mathematical model is assumed to be given for the system under consideration, like a mobile
robot, a car towing multiple trailers, a rigid spacecraft, a ship, or a rigid robot manipulator;
which is of the form:

_x = f(t; x; u) (1.1a)

y = h(t; x; u): (1.1b)

Herex 2 R
n denotes the state of the system,u 2 R

m denotes the input by means of which
the system can be controlled, andy 2 Rk denotes the output of the system which represents
the measurements.

Furthermore, a feasible reference state trajectoryxr(t) is assumed to be given for the system
to track. Feasible means that once being on the reference trajectory it is possible to stay on
that trajectory. This means that also a reference inputur(t) is assumed to exist, which is such
that

_xr = f(t; xr; ur): (1.2)

The problem of generating such a feasible reference trajectory for a system is a challenging
problem, known as the motion planning problem. Although motion planning (including ob-
stacle avoidance) is an interesting problem, this thesis is not concerned with it and a reference
statexr(t) as well as a reference inputur(t) which satisfy (1.2) are assumed to be given.



1.1. Formulation of the tracking control problem 7

Once a reference state trajectoryxr(t) and a reference inputur(t) are given, also the resulting
reference outputyr(t) can be defined by means of

yr = h(t; xr; ur):

An often studied problem is the problem of output tracking, that is the problem of finding a
control law for the inputu such that ast tends to infinityy(t) converges toyr(t). This is not
the problem this thesis deals with. For systems like a mobile robot or a ship, the measured
output typically is the position. Tracking of the position might seem an interesting problem,
but it is not all what is really of interest. In general, more is desired. When the only focus
is on controlling the position, it might happen that the mobile robot or ship turns around and
follows the reference trajectory backwards.

This is one of the reasons for insisting on state-tracking, that is, finding a control law for
the inputu which is such that ast tends to infinityx(t) converges toxr(t). Two major
state trajectory tracking problems can be distinguished, namely the state-feedback problem
as well as the output-feedback problem. In case of the first problem the entire state can be
used for feedback, whereas for the latter only the output can be used. To be more precise, the
following two problems can be distinguished:

Problem 1.1.1 (State-feedback state-tracking problem).Consider the system (1.1). As-
sume that a feasible reference trajectory(xr ; ur) is given (i.e., a trajectory satisfying (1.2)).
Find an appropriate control law

u = u(t; xr; ur; x) (1.3)

such that for the resulting closed-loop system (1.1, 1.3)

lim
t!1

kx(t) � xr(t)k = 0:

Problem 1.1.2 (Output-feedback state-tracking problem).Consider the system (1.1). As-
sume that a feasible reference trajectory(xr ; ur) is given (i.e., a trajectory satisfying (1.2)).
Find an appropriate dynamic control law

u = u(t; xr; ur; y; z) (1.4a)

_z = g(t; xr; ur; y; z) (1.4b)

such that for the resulting closed-loop system (1.1, 1.4)

lim
t!1

kx(t) � xr(t)k = 0:

Remark 1.1.3.Notice that the assumption of tracking a feasible trajectory is the same as
requiring the zero tracking error to be an equilibrium. Therefore, the tracking problem can
also (actually: better) be formulated as finding an appropriate control law that renders the
zero tracking error equilibrium asymptotically stable.

In the problem formulations as presented, no constraint on the size of the input is given,
whereas in practice the input that can be supplied to the system is limited, i.e., also the
constraint

ku(t)k � umax 8t � 0 (1.5)
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has to be met, whereumax is a given constant. In that case the state-tracking problem under
input constraints can be formulated in a similar way, i.e., like the state-tracking control prob-
lem, with the additional constraint (1.5). Clearly, for obtaining a solvable problem it has to
be assumed that the reference satisfies the input constraints, which results in the additional
assumption that

umax> sup
t�0

kur(t)k :

These are the control problems studied for several types of systems in this thesis.

1.2 Non-holonomic systems

Except for the rigid robot manipulator, all systems studied in this thesis have so-callednon-
holonomic constraints. What does this mean? To make this more clear, consider the simple
model

_x1 = ux2

_x2 = �ux1
(1.6)

where(x1; x2) is the state andu is the input.

Notice that model (1.6) contains a constraint on the velocities:

x1 _x1 + x2 _x2 = 0: (1.7)

This constraint is a so-called holonomic constraint, since it can be integrated to obtain

1

2
x21 +

1

2
x22 = constant:

This teaches us that model (1.6) can be reduced. The change of co-ordinates

r = x21 + x22

� = arctan

�
x1

x2

�

leads to the “new model”

_� = u r = r(0):

As x21 +x22 is a conserved quantity, the model (1.6) which seems to be a second order model,
turns out to be only a first order model.

Things become different when considering the model

_x1 = u1

_x2 = u2

_x3 = x1u2 � x2u1

(1.8)
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where(x1; x2; x3) is the state and(u1; u2) is the input. Model (1.8) also contains a constraint
on the velocities, namely

x1 _x2 � x2 _x1 � _x3 = 0: (1.9)

However, contrary to (1.7) the constraint (1.9) can not be integrated, i.e., the constraint (1.9)
can not be written as time derivative of some function of the state. The constraint (1.9) is
called a non-holonomic constraint.

It turns out that it is really necessary to use three variables for modeling this system, which
means that the constraint (1.9) is inherently part of the dynamics. As a result the system
(1.8) fails to meet the conditions of Brockett (1983, Theorem 1) that are necessary conditions
for the existence of a continuous static state-feedback law, i.e., a control law of the form
u = u(x), that asymptotically stabilizes the system (1.8).

Since in this thesis the tracking problem for non-holonomic systems is dealt with and stabi-
lization is a specific case of tracking, in one way or the other this difficulty should be taken
into account. As it turns out, conditions on the reference inputur have to be imposed in order
to circumvent this problem.

1.3 Outline of the thesis

This thesis consists of two parts, preceded by a chapter with preliminaries.

Chapter 2 provides an overview of notions and results that are used throughout the thesis.
This chapter is included for making the thesis more or less self-contained. Section 2.4 is fun-
damental for Part I. The main contributions of Chapter 2 are Theorem 2.3.7, Theorem 2.3.8
and Lemma 2.4.5.

Part I

In the first part a cascaded design approach to the tracking problem for nonlinear systems
is presented. This approach is illustrated by means of several examples: mobile robots in
Chapter 4, general chained-form systems in Chapter 5 and an under-actuated ship in Chap-
ter 6. The applicability of the method is illustrated by means of simulations. In case of the
under-actuated ship also experiments have been performed. This first part is a composition
of the papers

� J. Jakubiak, E. Lefeber, K. Tch´on, and H. Nijmeijer, “Observer based tracking con-
trollers for a mobile car,” 2000, Submitted to the 39th Conference on Decision and
Control, Sydney, Australia;

� Z.-P. Jiang, E. Lefeber, and H. Nijmeijer, “Stabilization and tracking of a nonholonomic
mobile robot with saturating actuators,” inProceedings of CONTROLO’98, Third Por-
tuguese Conference on Automatic Control, vol. 1, Coimbra, Portugal, 1998, pp. 315–
320;
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� Z.-P. Jiang, E. Lefeber, and H. Nijmeijer, “Saturated stabilization and tracking of a
nonholonomic mobile robot,” 1999, Submitted toSystems and Control Letters;

� E. Lefeber, K. Y. Pettersen, and H. Nijmeijer, “Tracking control of an under-actuated
ship,” 2000a, in preparation;

� E. Lefeber, A. Robertsson, and H. Nijmeijer, “Linear controllers for tracking chained-
form systems,” inStability and Stabilization of Nonlinear Systems, D. Aeyels, F. Lam-
nabhi-Lagarrigue, and A. J. van der Schaft, Eds., no. 246 in Lecture Notes in Control
and Information Sciences, pp. 183–199, London, United Kingdom: Springer-Verlag,
1999a;

� E. Lefeber, A. Robertsson, and H. Nijmeijer, “Output feedback tracking of nonholo-
nomic systems in chained form,” inProceedings of the 5th European Control Confer-
ence, Karlsruhe, Germany, 1999b, paper 772;

� E. Lefeber, A. Robertsson, and H. Nijmeijer, “Linear controllers for exponential track-
ing of systems in chained form,”International Journal on Robust and Nonlinear Con-
trol, vol. 10, no. 4, pp. 243–264, 2000b;

� E. Panteley, E. Lefeber, A. Lor´ıa, and H. Nijmeijer, “Exponential tracking control of
a mobile car using a cascaded approach,” inProceedings of the IFAC Workshop on
Motion Control, Grenoble, France, 1998, pp. 221–226,

and some additional unpublished material.

The main contribution of this part is the introduction of the cascaded design approach. New
and simple time-varying state-feedback controllers are presented that achieve global and uni-
form tracking results for tracking mobile robots, chained-form systems and under-actuated
ships. The state- and output-feedback control problems are considered, also under (partial)
input saturation. No transformations are needed; all analysis is done in the original error
co-ordinates.

Part II

In the second part solutions to three specific problems are presented. This part consists of
three papers, respectively

� A. Lorı́a, E. Lefeber, and H. Nijmeijer, “Global asymptotic stability of robot manipu-
lators with linear PID and PI2D control,” 1999a, Submitted toStability and Control:
Theory and Applications;

� E. Lefeber, R. Kelly, R. Ortega, and H. Nijmeijer, “Adaptive and filtered visual servoing
of planar robots,” inProceedings of the Fourth IFAC Symposium on Nonlinear Control
Systems Design (NOLCOS’98), vol. 2, Enschede, The Netherlands, 1998, pp. 563–568;

� E. Lefeber and H. Nijmeijer, “Adaptive tracking control of nonholonomic systems:
an example,” inProceedings of the 38th IEEE Conference on Decision and Control,
Phoenix, Arizona, USA, 1999, pp. 2094–2099.
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The contributions of this part consist of

� Globalasymptotic stability of linear PID controllers is shown by delaying the integral
action;

� Classes of controllers are introduced that solve the visual servoing of planar robots
under a fixed camera position for both the state- and output-feedback problem. These
classes also contain saturated controllers. In case of unknown camera orientation a
class of adaptive controllers is presented;

� Difficulties in formulating the adaptive state-tracking problem for nonlinear systems
with unknown parameters are illustrated by means of an example. For this example
a suitable problem formulation of the adaptive state-tracking problem is given and a
solution is presented.

Chapter 11 contains the conclusions of this thesis and some recommendations for further
research.

Appendix A contains the proofs of some theorems presented in this thesis.

Appendix B contains a backstepping control law for tracking an under-actuated ship. This
expression which was too long to be incorporated in the text of Chapter 6.
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Chapter 2

Preliminaries

In this chapter we recall a few notions and results that we use throughout this thesis. First, we
consider some fundamental mathematical definitions. Next the concept of Lyapunov stability
and some lemmas useful for showing stability are given. We review some basic notions
for linear time-varying systems, introduce some crucial theorems, present results on (time-
varying) cascaded systems, and briefly illustrate the method of backstepping.

2.1 Mathematical preliminaries

Definition 2.1.1. A norm kxk of ann-dimensional vectorx = (x1; : : : ; xn)
T 2 Rn is a real

valued function with the properties

� kxk � 0 for all x 2 Rn , with kxk = 0 if and only if x = 0;

� kx+ yk � kxk+ kyk, for all x; y 2 Rn ;

� k�xk = j�j kxk, for all � 2 R andx 2 Rn .

Some commonly used norms are

kxkp , (jx1jp + � � �+ jxnjp)
1
p 1 � p <1

and

kxk1 , max
i=1;:::;n

jxij :

Definition 2.1.2. We denote a sphere of radiusr byBr, i.e.,

Br , fx 2 Rn j kxk < rg :

13
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Definition 2.1.3. For functions of timex : R+ ! R
n , we define theLp norm

kxkp ,
�Z 1

0

kx(�)kp d�

� 1
p

for p 2 [1;1) and say thatx 2 Lp whenkxkp exists (i.e., whenkxkp is finite). TheL1
norm is defined as

kxk1 , sup
t�0

kx(t)k

and we say thatx 2 L1 whenkxk1 exists.

Definition 2.1.4. A functionf : Rn ! R
m is said to becontinuous at a pointx if given an

� > 0 a constantÆ > 0 exists such that

kx� yk < Æ ) kf(x)� f(y)k < � x; y 2 Rn : (2.1)

Definition 2.1.5. A function f : Rn ! R
m is said to becontinuous on a setS if it is

continuous at every point inS.

Definition 2.1.6. A functionf : Rn ! R
m is said to bepiecewise continuous on a setS if

it is continuous onS, except for a finite number of points.

Definition 2.1.7. A functionf : Rn ! R
m is said to beuniformly continuous on a setS

if given an� > 0 a constantÆ > 0 exists (depending only on�) such that (2.1) holds for all
x; y 2 S.

Notice that uniform continuity is defined on a set. Furthermore, for uniform continuity the
sameÆ “works” for all points of the set. As a result, uniform continuity implies continuity,
but not necessarily vice versa. Notice that the functionf(x) = ex is continuous onR, but
not uniformly continuous onR. However, the functionf(x) = ex is uniformly continuous
on any compact setS � R.

Often uniform continuity of a functionf : R ! R can be verified by means of the following
lemma.

Lemma 2.1.8. Consider a differentiable functionf : R ! R. If a constantM 2 R exists
such that

sup
x2R

����dfdx (x)
���� �M;

thenf is uniformly continuous onR.

Definition 2.1.9. We denote the class ofn times continuously differentiable functions byCn.

Remark 2.1.10.From the fact that

sinx = x� 1

6
x3 +O(x4) and cosx = 1� 1

2
x2 +O(x4)
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we can conclude that

lim
x!0

sinx

x
= 1 and lim

x!0

1� cosx

x
= 0:

As a result the functions

f1(x) =

Z 1

0

cos(xs)ds =

(
sinx
x

for x 6= 0

1 for x = 0
(2.2)

and

f2(x) =

Z 1

0

sin(xs)ds =

(
1�cosx

x
for x 6= 0

0 for x = 0
(2.3)

are continuous.

For simplicity of notation we use the expressionssinx
x

and 1�cosx
x

throughout this thesis,
whereas it would be more precise to use (2.2) and (2.3) respectively.

The same holds true for similar expressions that at first glance seem not to be defined for
x = 0.

Definition 2.1.11. A continuous function� : [0; a) ! [0;1) is said to belong toclassK
(� 2 K) if it is strictly increasing and�(0) = 0.

Definition 2.1.12. A continuous function� : [0; a) � [0;1) ! [0;1) is said to belong to
classKL (� 2 KL) if for each fixeds the mapping�(r; s) belongs to classK with respect to
r and if for each fixedr the mapping�(r; s) is decreasing with respect tos and�(r; s) ! 0
ass!1.

Definition 2.1.13. A saturation function with saturation level � is aC1 function�� : R !
[��; �] that satisfies

x��(x) > 0 8x 6= 0

and

d��
dx

(0) > 0:

2.2 Lyapunov stability

Consider a non-autonomous system described by

_x = f(t; x) (2.4)

wheref : R+ �D ! R
n is piecewise continuous onR+ �D and locally Lipschitz inx on

R+ �D, andD � R
n is a domain that contains the originx = 0. We assume that the origin

is an equilibrium point for (2.4) which is expressed by

f(t; 0) = 0; 8t � 0:

For studying the stability of the origin we introduce the following notions (see e.g., (Khalil
1996)).
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Definition 2.2.1. The equilibrium pointx = 0 of (2.4) is said to be(locally) stable (in the
sense of Lyapunov)if a positive constantr > 0 exists such that for all(t0; x(t0)) 2 R+�Br

a function� 2 K exists such that

kx(t)k � �(kx(t0)k) 8t � t0 � 0;8x(t0) 2 Br: (2.5)

If the bound (2.5) holds for all(t0; x(t0)) 2 R+ � R
n , then the origin isglobally stable.

Definition 2.2.2. The equilibrium pointx = 0 of (2.4) is said to be

� (locally) asymptotically stable if a constantr > 0 exists such that for all pairs
(t0; x(t0)) 2 R+ �Br a function� 2 KL exists such that

kx(t)k � �(kx(t0)k ; t� t0) 8t � t0 � 0;8x(t0) 2 Br; (2.6)

� semi-globally asymptotically stableif for each constantr > 0 and for all pairs
(t0; x(t0)) 2 R+ �Br a function� 2 KL exists such that (2.6) holds;

� globally asymptotically stable (GAS)if a function� 2 KL exists such that for all
pairs(t0; x(t0)) 2 R+ � R

n (2.6) holds.

Definition 2.2.3. The equilibrium pointx = 0 of (2.4) is said to be(locally) exponentially
stable if it is (locally) asymptotically stable and (2.6) is satisfied with

�(r; s) = kre�
s k > 0; 
 > 0:

In a similar way we can define the equilibrium pointx = 0 of (2.4) to besemi-globally
exponentially stableor globally exponentially stable (GES).

For linear time-invariant systems_x = Ax it is well-known that asymptotic stability is equiva-
lent to GES and robustness with respect to perturbations is guaranteed, i.e., under a uniformly
bounded additional perturbationÆ(x; t) solutions of the system_x = Ax+ Æ remain bounded.
Unfortunately this is in general not true for non-autonomous systems.

Example 2.2.4 (see (Panteley, Lorı́a and Teel 1999)).Consider the system (2.4) with

f(t; x) =

(
� 1

1+t
sgn(x) if jxj � 1

1+t

�x if jxj � 1
1+t

where

sgn(x) =

8><
>:
�1 if x < 0

0 if x = 0

1 if x > 0

:

Then for eachr > 0 andt0 � 0 there exist constantsk > 0 and
 > 0 such that for allt � t0
andjx(t0)j � r

jx(t)j � k jx(t0)j e�
(t�t0) 8t � t0 � 0: (2.7)

However, always a bounded (arbitrarily small) additive perturbationÆ(t; x) and a constant
t0 � 0 exist such that the trajectories of the perturbed system_x = f(t; x) + Æ(t; x) are
unbounded.
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More details concerning the proof of the claims made in this example can be found in
(Panteley et al. 1999). One of the reasons for this negative result is that in (2.7) the con-
stantsk and
 are allowed to depend ont0, i.e., for each value oft0 different constantsk and

 may be chosen. Therefore, we introduce the notion of uniform stability.

Definition 2.2.5. The equilibrium pointx = 0 of (2.4) is said to beuniformly stable if a
positive constantr > 0 and an� 2 K exist, both independent oft0, such that

kx(t)k � �(kx(t0)k) 8t � t0 � 0;8x(t0) 2 Br: (2.8)

If the bound (2.8) holds for all(t0; x(t0)) 2 R+ � R
n , then the origin isglobally uniformly

stable.

Definition 2.2.6. The equilibrium pointx = 0 of (2.4) is said to be

� (locally) uniformly asymptotically stable if a constantr > 0 and a function� 2 KL
exist, both independent oft0, such that

kx(t)k � �(kx(t0)k ; t� t0) 8t � t0 � 0;8x(t0) 2 Br; (2.9)

� semi-globally uniformly asymptotically stable if for each constantr > 0 and for all
(t0; x(t0)) 2 R+ �Br a function� 2 KL exists such that (2.9) holds;

� globally uniformly asymptotically stable (GUAS) if a function� 2 KL exists such
that for all(t0; x(t0)) 2 R+ � R

n (2.9) holds.

Definition 2.2.7. The equilibrium pointx = 0 of (2.4) is said to be(locally) uniformly ex-
ponentially stable/semi-globally uniformly exponentially stable/globally uniformly ex-
ponentially stable (GUES) if it is (locally) uniformly asymptotically stable/semi-globally
uniformly asymptotically stable/globally uniformly asymptotically stable respectively and
(2.9) is satisfied with

�(r; s) = kre�
s k > 0; 
 > 0:

Having these definitions of uniform stability we are now able to formulate the following
robustness result for uniformly asymptotically stable systems:

Lemma 2.2.8 ((Khalil 1996, Lemma 5.3)).Letx = 0 be a uniformly asymptotically stable
equilibrium point of the nominal system_x = f(t; x) wheref : R+ � Br ! R

n is continu-
ously differentiable, and the Jacobian

�
@f
@x

�
is bounded onBr, uniformly int. Then one can

determine constants� > 0 andR > 0 such that for all perturbationsÆ(t; x) that satisfy the
uniform boundkÆ(t; x)k � Æ < � and all initial conditionskx(t0)k � R, the solutionx(t)
of the perturbed system_x = f(t; x) + Æ(t; x) satisfies

kx(t)k � �(kx(t0)k ; t� t0) 8t0 � t � t1

and

kx(t)k � �(Æ) 8t � t1

for some� 2 KL and some finite timet1, where�(Æ) is a classK function ofÆ.

Furthermore, ifx = 0 is a globally uniformly exponentially stable equilibrium point, we can
allow for arbitrarily large Æ by choosingR > 0 large enough.
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This implies that uniform asymptotic stability gives rise to some robustness that is not guar-
anteed by asymptotic stability. This explains why in this thesis we do not aim for asymptotic
stability, but for uniform asymptotic stability instead.

Notice that for autonomous systems_x = f(x) we may drop the word “uniform” as the
solution depends only ont� t0.

From Lemma 2.2.8 it is also clear why exponential stability is a most favorable property.
Unfortunately, global uniform exponential stability can not always be achieved, which could
be an explanation for all the different notions of exponential stability that are available in
literature. However, Example 2.2.4 clearly shows that exponential convergence in itself does
not guarantee robustness; one needs uniformity. A notion that is equivalent to having both
global uniform asymptotic stability and local uniform exponential stability (GUAS+LUES)
is the following.

Definition 2.2.9 ((Sørdalen and Egeland 1995, Definition 2)).The equilibrium pointx =
0 of (2.4) is said to beglobally K-exponentially stableif a function� 2 K and a constant

 > 0 exist such that for all(t0; x(t0)) 2 R+ � R

n we have

kx(t)k � �(kx(t0)k)e�
(t�t0) 8t � t0 � 0:

A useful tool for showing asymptotic stability of a certain signal is:

Lemma 2.2.10 (see (Barb̆alat 1959)). Let� : R+ ! R be a uniformly continuous function.
Suppose thatlimt!1

R t
0
�(�)d� exists and is finite. Then

lim
t!1

�(t) = 0:

Corollary 2.2.11. If f 2 L1, _f 2 L1, andf 2 Lp for somep 2 [1;1), then

lim
t!1

f(t) = 0:

An extension of Barb˘alat’s Lemma to functions� that are not uniformly continuous (but can
be written as the sum of a uniformly continuous function and a piecewise continuous function
that decays to zero) was presented in (Micaelli and Samson 1993):

Lemma 2.2.12 ((Micaelli and Samson 1993, Lemma 1)).Let f : R+ ! R be any differ-
entiable function. Iff(t) converges to zero ast!1 and its derivative satisfies

_f(t) = f0(t) + �(t) t � 0

wheref0 is a uniformly continuous function and�(t) tends to zero ast! 1, then _f(t) and
f0(t) tend to zero ast!1.

2.3 Linear time-varying systems

Consider the linear time-varying (LTV) system

_x = A(t)x +B(t)u

y = C(t)x
(2.10)
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wherex 2 R
n , u 2 R

m , y 2 R
k , andA(t), B(t), C(t) are matrices of appropriate di-

mensions whose elements are piecewise continuous functions. Let�(t; t0) denote the state-
transition matrix for the system_x = A(t)x. We recall two definitions from linear control
theory (see e.g., (Kailath 1980, Rugh 1996)).

Definition 2.3.1. The pair(A(t); B(t)) is uniformly completely controllable (UCC) if con-
stantsÆ; �1; �2 > 0 exist such that for allt > 0:

�1In �
Z t+Æ

t

�(t; �)B(�)BT (�)�T (t; �)d� � �2In:

Definition 2.3.2. The pair(A(t); C(t)) is uniformly completely observable (UCO)if con-
stantsÆ; �1; �2 > 0 exist such that for allt > 0:

�1In �
Z t

t�Æ

�T (�; t� Æ)CT (�)C(�)�(�; t � Æ)d� � �2In:

A very helpful theorem for showing UCC or UCO is

Theorem 2.3.3 ((Kern 1982, Theorem 2)).Consider the linear time-varying system(2.10).
Suppose thatA(t) andB(t) are bounded and thatA(t) is Lipschitz, i.e., constantsK andL
exist such that

kA(t)k � K for all t � 0

kB(t)k � K for all t � 0

kA(t)�A(t0)k � Ljt� t0j for all t; t0 � 0:

Then the system(2.10) is uniformly completely controllable if a constantÆc > 0 and ans
with t� Æc � s � t exist such that the matrix functionW (t� Æc; t) defined by

W (t0; t1) =

Z t1

t0

eA(s)(t1��)B(�)BT (�)eA
T (s)(t1��)d�

satisfies

0 < �1In �W (t� Æc; t) for all t � 0

where�1(Æc) is a constant.

Corollary 2.3.4. Consider the system

_x = A(�(t))x +Bu

y = Cx
(2.11)

whereA(�) is continuous,A(0) = 0, � : R ! R continuous. Assume that for alls 6= 0
the pair(A(s); B) is controllable (respectively the pair(A(s); C) is observable). If�(t) is
bounded, Lipschitz and constantsÆc > 0 and� > 0 exist such that

8t � 0; 9s : t� Æc � s � t such thatj�(s)j � �;

then the system(2.11)is uniformly completely controllable (respectively observable).
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The condition imposed on�(t) in Corollary 2.3.4 plays an important role, not only in this
thesis, but also in identification and adaptive control systems. It is known as the “persistence
of excitation condition”.

Definition 2.3.5. A continuous function� : R+ ! R is said to bepersistently exciting
(PE) if all of the following conditions hold:

� a constantK > 0 exists such thatj�(t)j � K for all t � 0,

� a constantL > 0 exists such thatj�(t)� �(t0)j � L jt� t0j for all t; t0 � 0, and

� constantsÆc > 0 and� > 0 exist such that

8t � 0; 9s : t� Æc � s � t such thatj�(s)j � �:

Remark 2.3.6.Notice that in the common definition of persistence of excitation usually the
first two assumptions on�(t) are made implicitly. The third condition is in general formulated
for � : R ! R

n , assuming the existence of positive constants�1, �2, andÆ such that for all
t � 0

�1In �
Z t+Æ

t

�(�)�T (�)d� � �2In:

Furthermore, notice that the third condition on�(t) as in Definition 2.3.5 can be interpreted
as follows: assume that we plot the graph ofj�(t)j and look at this plot through a window of
width Æc > 0. Then, no matter where we put this window on the graph, always a time instant
s exists wherej�(s)j is at least� > 0.

The following are some useful results.

Theorem 2.3.7.The system

_x =

2
6666664

�k1 �k2�(t) �k3 �k4�(t) : : :

�(t) 0 : : : : : : 0

0
...

...
...

...
...

...
...

...
0 : : : 0 �(t) 0

3
7777775
x (2.12)

is globally uniformly exponentially stable (GUES) if�(t) is persistently exciting and theki
(i = 1; : : : ; n) are such that the polynomial

�n + k1�
n�1 + � � �+ kn�1�+ kn

is Hurwitz (i.e., all its roots have negative real parts).

Proof. See Appendix A.
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Theorem 2.3.8.The system

_x =

2
666666666666666666664

�k1 �k2�(t) �k3 �k4�(t) : : : k1 k2�(t) k3 k4�(t) : : :

�(t) 0 : : : : : : 0 0 : : : : : : : : : 0

0
...

...
...

...
...

...
...

...
...

...
...

...
0 : : : 0 �(t) 0 0 : : : : : : : : : 0

0 : : : : : : : : : 0 0 : : : : : : 0
...

...
...

... �(t)
...

... �l4�(t)
...

...
... 0

...
...

... �l3
...

...
...

...
...

... 0 �l2�(t)
0 : : : : : : : : : 0 0 : : : 0 �(t) �l1

3
777777777777777777775

x

(2.13)

is globally uniformly exponentially stable (GUES) if�(t) is persistently exciting and theki; li
(i = 1; : : : ; n) are such that the polynomials

�n + k1�
n�1 + � � �+ kn�1�+ kn (2.14a)

and

�n + l1�
n�1 + � � �+ ln�1�+ ln (2.14b)

are Hurwitz.

Proof. See Appendix A.

Theorem 2.3.9 ((Ioannou and Sun 1996, Theorem 3.4.6 v)).The linear time-varying sys-
tem (2.10) is globally uniformly exponentially stable (GUES) if and only if it is globally
uniformly asymptotically stable (GUAS).

Proposition 2.3.10.Consider the system

_x1 = ���(x1) + �(t)x2

_x2 = ��(t)x1
(2.15)

where�� is a saturation function with saturation level� as defined in Definition 2.1.13. If
�(t) is persistently exciting (PE), then the system(2.15)is globallyK-exponentially stable.

2.4 Cascaded systems

Consider a system_z = f(t; z) that can be written as

_z1 = f1(t; z1) + g(t; z1; z2)z2 (2.16a)

_z2 = f2(t; z2) (2.16b)
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wherez1 2 R
n , z2 2 R

m , f1(t; z1) is continuously differentiable in(t; z1) andf2(t; z2),
g(t; z1; z2) are continuous in their arguments, and locally Lipschitz inz2 and (z1; z2) re-
spectively.

Notice that ifz2 = 0 (2.16a) reduces to

_z1 = f1(t; z1):

Therefore, we can view (2.16a) as the system

�1 : _z1 = f1(t; z1) (2.17)

that is perturbed by the output of the system

�2 : _z2 = f2(t; z2): (2.18)

Assume that the systems�1 and�2 are asymptotically stable, i.e., for (2.17) we know
limt!1 z1(t) = 0 and for (2.18) we havelimt!1 z2(t) = 0. It is obvious that in that
case also for (2.16b)z2(t) tends to zero. In that case the dynamics (2.16a) reduces to the
dynamics (2.17). It seems plausible that therefore also (2.16a) and as a result the cascaded
system (2.16) become asymptotically stable.

Unfortunately, this is not true in general as can be seen from the following example.

Example 2.4.1.Consider the system

_z1 = �z1 + z21z2 (2.19a)

_z2 = �
z2 
 > 0 (2.19b)

which can be seen as the system

_z1 = �z1 (2.20a)

that is perturbed by the output of the system

_z2 = �
z2 
 > 0: (2.20b)

Both (2.20a) and (2.20b) are globally exponentially stable (GES). One would expect the
system (2.19) to be asymptotically stable. However, solving the differential equations (2.19)
yields

z1(t) =
2z1(0)

z1(0)z2(0)e�
t + [2� z1(0)z2(0)]e
t
(2.21a)

z2(t) = z2(0)e
�
t: (2.21b)

Notice that ifz1(0)z2(0) > 2 the denominator of (2.21a) becomes zero at

tesc=
1

2

ln

�
z1(0)z2(0)

z1(0)z2(0)� 2

�
;

so the solution ofz1(t) goes to infinity in finite time. One could consider increasing the gain

 to makez2(t) converge to zero faster and have the dynamics (2.19a) converge to (2.20a)
faster. Unfortunately, as a result the solution ofz1(t) goes to infinity even quicker!
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However, under certain conditions it is possible to conclude asymptotic stability of (2.16)
when both�1 and�2 are asymptotically stable:

Lemma 2.4.2 ((Panteley and Lorı́a 1999, Lemma 1)).If the systems(2.17)and (2.18)are
globally uniformly asymptotically stable (GUAS) and solutions of the cascaded system(2.16)
are globally uniformly bounded, then the system(2.16)is globally uniformly asymptotically
stable (GUAS).

The question that remains is when solutions of (2.16) are globally uniformly bounded. To
answer that question, we can use the following:

Theorem 2.4.3 ((Panteley and Lorı́a 1999, Theorems 1, 2, 4)).Consider the following as-
sumptions

A1. The systems(2.17) and (2.18) are both globally uniformly asymptotically stable
(GUAS) and we know explicitly aC1 Lyapunov function candidateV (t; z1), �1; �2 2
K1, �4 2 K and a positivesemi-definite functionW (z1) such that

�1(kz1k) � V (t; z1) � �2(kz1k) (2.22a)

@V

@t
+
@V

@z1
f1(t; z1) � �W (z1) (2.22b)



 @V@z1




 � �4(kz1k): (2.22c)

A2. For each fixedz2 a continuous function� : R+ ! R+ exists withlims!1 �(s) = 0
and such that 



 @V@z1 g(t; z1; z2)





 � �(kz1k)W (z1)

with V andW as in Assumption A1.

A3. Continuous functions�1 : R+ ! R+ and�5 : R+ ! R+ exist such that

kg(t; z1; z2)k � �1(kz2k)�5(kz1k) (2.23)

and a continuous non-decreasing function�6 : R+ ! R+ and a constanta � 0 exist
such that

�6(s) � �4
�
��11 (s)

�
�5
�
��11 (s)

�
and Z 1

a

ds
�6(s)

=1 (2.24)

with �1, �4 as in Assumption A1.

A4. For eachr > 0, constants� > 0 and� > 0 exist such that for allt � 0 and all
kz2k < r 



 @V@z1 g(t; z1; z2)





 � �W (z1) 8 kz1k � �:
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A5. A function� 2 K exists such that the solutionz2(t) of (2.18)satisfiesZ 1

t0

kz2(t)k dt � �(kz2(t0)k):

Then we can conclude

� If Assumptions A1 and A2 hold, then the cascaded system(2.16)is globally uniformly
asymptotically stable (GUAS).

� If Assumptions A1, A3 and A4 hold, then the cascaded system(2.16) is globally uni-
formly asymptotically stable (GUAS).

� If Assumptions A1, A3 and A5 hold, then the cascaded system(2.16) is globally uni-
formly asymptotically stable (GUAS).

Corollary 2.4.4 (see (Panteley and Lorı́a 1998)).If Assumption A1 is satisfied with

�1(kz1k) = c1 kz1k2
�4(kz1k) = c4 kz1k ;

continuous functionsk1 : R+ ! R andk2 : R+ ! R exist such that

kg(t; z1; z2)k � k1(kz2k) + k2(kz2k) kz1k ; (2.25)

and Assumption A5 is satisfied, then the cascaded system(2.16)is globally uniformly asymp-
totically stable (GUAS).

Proof. We have that (2.23) is satisfied with

�1(kz2k) = max(k1(kz2k); k2(kz2k))
�5(kz1k) = 1 + kz1k :

Then we have

�4
�
��11 (s)

�
�5
�
��11 (s)

�
=

c4p
c1

p
s

�
1 +

1p
c1

p
s

�
;

so that we can take

�6(s) =
c4p
c1

p
s+

c4

c1
s:

If we takea > c1 in (2.24) we have that Assumption A3 is satisfied.

Lemma 2.4.5 (see (Panteley, Lefeber, Lor´ıa and Nijmeijer 1998)). Assume that both sub-
systems(2.17)and (2.18)are globallyK-exponentially stable, we know explicitly aC1 Lya-
punov function candidateV (t; z1) that satisfies(2.22)with �1(kz1k) = c1 kz1k2, �2 2 K1,
�4(kz1k) = c4 kz1k and positive semi-definiteW and thatg(t; z1; z2) satisfies(2.25). Then
the cascaded system(2.16)is globallyK-exponentially stable.
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Corollary 2.4.6. Assume that(2.17)is globally uniformly exponentially stable (GUES), that
(2.18) is globallyK-exponentially stable and thatg(t; z1; z2) satisfies(2.25). Then the cas-
caded system(2.16)is globallyK-exponentially stable.

Proof. This follows immediately from Lemma 2.4.5, since the existence of a suitable Lya-
punov function candidate is guaranteed from converse Lyapunov theory (see (Khalil 1996,
Theorem 3.12)).

2.5 Backstepping

A commonly used method of nonlinear controller design is backstepping. We illustrate this
method by means of a simple example considering the special case of integrator backstepping.
For a more detailed explanation the reader is referred to (Marino and Tomei 1995, Krsti´c,
Kanellakopoulos and Kokotovi´c 1995).

Example 2.5.1.Consider the second order system

_x = cosx� x3 + � (2.26a)

_� = u (2.26b)

where[x; �]T 2 R
2 is the state andu 2 R is the input. We want to design a state-feedback

controller to render the equilibrium point[x; �]T = [0;�1]T globally asymptotically stable
(GAS).

If � were the input, then (2.26a) can easily be stabilized by means of� = �c1x � cosx. A
Lyapunov function would beV (x) = 1

2
x2.

Unfortunately� is not the control but a state variable. Nevertheless, we could prescribe its
desired value

�des= �c1x� cosx , �(x):

Next, we definez to be the difference between� and its desired value:

z = � � �des= � � �(x) = � + c1x+ cosx:

We can now write the system (2.26) in the new co-ordinates(x; z):

_x = �c1x� x3 + z

_z = u+ (c1 � sinx)(�c1x� x3 + z):
(2.27)

To obtain a Lyapunov function candidate we simply augment the Lyapunov function with a
quadratic term inz:

Va(x; �) = V (x) +
1

2
z2 =

1

2
x2 +

1

2
(� + c1x+ cosx)2:

The derivative ofVa along the solutions of (2.27) becomes

_Va(x; z; u) = �c1x2 � x4 + z
�
x+ u+ (c1 � sinx)(�c1x� x3 + z)

�
:
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The simplest way to arrive at a negative definite_Va is to choose

u = �c2z � x� (c1 � sinx)(�c1x� x3 + z)

which in the original co-ordinates[x; �]T becomes

u = �(c1 + c2)� � (1 + c1c2)x� (c1 + c2) cosx+ c1x
3� x3sinx+ � sinx+ sinx cosx:

(2.28)

Usually� is called avirtual control, �(x) astabilizing functionandz the correspondingerror
variable.

From this example it is not difficult to see that the more general class of “triangular” nonlinear
systems

_x = f(x) + g(x)�1

_�1 = f1(x; �1) + g1(x; �1)�2

_�2 = f2(x; �1; �2) + g2(x; �1; �2)�3

...

_�n�1 = fn�1(x; �1; : : : ; �n�1) + gn�1(x; �1; : : : ; �n�1)�n

_�n = fn(x; �1; : : : ; �n) + gn(x; �1; : : : ; �n)u

can be stabilized in a similar way. First consider�1 as a virtual input to stabilize the first
subsystem, define the error variablez1, consider�2 as a virtual input to stabilize the[x; z1]T

subsystem, etc. Proceeding step by step along these lines one finally arrives at a control law
for u.

One of the advantages of backstepping is that it provides a constructive systematic method
to arrive at globally stabilizing control laws. Unfortunately, one usually obtains complex
expressions (in the original co-ordinates) for the control law, as already can be seen from
(2.28).



Part I

A cascaded approach to tracking
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Chapter 3

Introduction to Part I

3.1 Cascaded design

In recent years recursive design methods for global stabilization of nonlinear systems have
been developed. For applying these methods the nonlinear system has to have (or should
be transformed into) a certain triangular form. Two major design techniques can be distin-
guished: backstepping for lower triangular systems (Koditschek 1987, Byrnes and Isidori
1989, Tsinias 1989, Marino and Tomei 1995, Krstić et al. 1995) and forwarding for upper
triangular systems (Mazenc and Praly 1994, Janković, Sepulchre and Kokotovi´c 1996).

One of the advantages of these methods is that they provide a systematic way of recursively
designing feedback laws. Furthermore, associated Lyapunov functions for showing global
stabilization are derived. However, a disadvantage is that the resulting control laws usually
are complex expressions like in Example 2.5.1.

Our goal is to arrive at less complex expressions and to gain more insight in the control laws.
This is why we follow a different approach. We use the results on cascaded systems (Ortega
1991, Mazenc and Praly 1996, Janković et al. 1996), or to be more precise the result for time-
varying systems as initially presented by Panteley and Lor´ıa (1998) and further developed in
(Panteley and Lor´ıa 1999).

Roughly speaking, we can summarize Theorem 2.4.3 by saying that under certain conditions
the stability of the system

_z1 = f1(t; z1) + g(t; z1; z2)z2 (3.1a)

_z2 = f2(t; z2) (3.1b)

can be concluded from the stability of the systems_z1 = f1(t; z1) and _z2 = f2(t; z2). This
implies that in the analysis we can simply “forget” about the termg(t; z1; z2)z2 since (under
certain conditions) it does not play a crucial role.

Example 3.1.1.Consider the second order system of Example 2.5.1 after the change of co-
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ordinates, i.e., consider the system

_x = �c1x� x3 + z (3.2a)

_z = u+ (c1 � sinx)(�c1x� x3 + z): (3.2b)

The backstepping approach resulted into the control law

u = �c2z � x� (c1 � sinx)(�c1x� x3 + z) (3.3)

which results in the globally asymptotically stable (GAS) closed-loop system

_x = �c1x� x3 + z

_z = �x� c2z:

We could also have taken a slightly different approach before applying the final step in the
backstepping design to arrive at (3.3). Notice that forz = 0 the system (3.2a) is globally
asymptotically stable (GAS). This is not surprising, sincez is precisely the difference be-
tween the virtual control and its desired value that would have stabilized thex-subsystem.
As a result we can also view the system (3.2) as the (by means of the desired virtual control
stabilized) system

�1 : _x = �c1x� x3

that is perturbed by the outputz of the system

�2 : _z = u+ (c1 � sinx)(�c1x� x3 + z): (3.4)

As a result, if we are able to render (3.4) globally asymptotically stable we can claim global
asymptotic stability of the overall system from the theory on cascaded systems.

It is clear that the control law

u = �c2z � (c1 � sinx)(�c1x� x3 + z) (3.5)

renders the system (3.4) globally exponentially stable (GES). With this control law we arrive
at the overall closed-loop system

_x = �c1x� x3 + z

_z = �c2z
which according to Lemma 2.4.5 is globally asymptotically stable (GAS).

Notice that a slight difference exists between the control laws (3.3) and (3.5). It turns out that
the “g(t; z1; z2)z2-part” of the subsystem (3.2a) is left out (the term+z in (3.2a) results in
the extra term+xz in the derivative of the Lyapunov function, which is accounted for by an
additional�x in the control law).

Although the difference is not remarkable, the main lesson that can be learned from Ex-
ample 3.1.1 is not that we are able to leave out the term�x in the control law, but that by
recognizing a cascaded structure while designing a controller one might reduce the complex-
ity of the controller.
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3.2 An introductory example: tracking of a rotating rigid
body

Example 3.1.1 gives rise to the question how to recognize a cascaded structure while design-
ing a control law and how to guarantee that the closed-loop control system can be written
in the form (3.1). One possible answer has been given there: follow a backstepping design
and notice before applying the final step that one has a globally asymptotically stable (GAS)
subsystem together with a corresponding Lyapunov function. Therefore, it might suffice to
stabilize only the difference between the virtual control and its desired value, without taking
into account the way this error enters the remaining dynamics. Clearly, also other directions
can be taken. Instead of starting from a system�1 and designing�2, we can also start with
designing�2.

To make this more clear, we consider as an introductory example the tracking problem for a
rotating rigid body, for instance a spacecraft. For reasons of simplicity, we consider not the
entire model, but only the dynamics of the velocities. Then the dynamics for a rotating rigid
body with two controls can be expressed as:

_!1 =
I2 � I3

I1
!2!3 + u1

_!2 =
I3 � I1

I2
!3!1 + u2

_!3 =
I1 � I2

I3
!1!2

where!i (i = 1; : : : ; 3) are the angular velocities andI1 > I2 > 0 and I3 > 0 are the
principal moments of inertia.

Notice that we assumeI1 6= I2 in order to be able to control!3 by means ofu1 andu2. Then
the assumptionI1 > I2 can be made without loss of generality.

Assume that a feasible reference trajectory(!r; ur) is given, i.e., a trajectory satisfying

_!1;r =
I2 � I3

I1
!2;r!3;r + u1;r

_!2;r =
I3 � I1

I2
!3;r!1;r + u2;r

_!3;r =
I1 � I2

I3
!1;r!2;r:

When we define the tracking-error!e = ! � !r we obtain the tracking error dynamics

_!1;e =
I2 � I3

I1
(!2!3 � !2;r!3;r) + u1 � u1;r (3.7a)

_!2;e =
I3 � I1

I2
(!3!1 � !3;r!1;r) + u2 � u2;r (3.7b)

_!3;e =
I1 � I2

I3
(!1!2 � !1;r!2;r): (3.7c)
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We are interested in obtaining a closed-loop system of the form (3.1). That is what we focus
on in the controller design. To start with, we look for a way to obtain in closed loop a
subsystem�2, i.e., a subsystem (3.1b). In that light it is good to remark that we can use one
input for stabilization of a subsystem of the control system (3.7). If we for instance take

u1 = u1;r � I2 � I3

I1
(!2!3 � !2;r!3;r)� k1!1;e k1 > 0; (3.8)

then the subsystem (3.7a) is rendered globally uniformly exponentially stable (GUES). In the
closed-loop system this stabilized subsystem can be considered as the system�2, i.e., the
system (3.1b). Now we still have one input left that should be chosen such that the overall
closed-loop system is rendered asymptotically stable.

We aim for a closed-loop system of the form (3.1). Besides, for asymptotic stability of the
system (3.1) it is necessary that the part

_z1 = f1(t; z1) (3.9)

is asymptotically stable. This should is something that be guaranteed by the controller design.
From Theorem 2.4.3 we furthermore know that it might be sufficient too! As a result, we can
conclude that it might suffice in the controller design for the remaining input to render the
part (3.9) asymptotically stable and “forget” about theg(t; z1; z2)z2 part.

So how to proceed? Notice that it is fairly easy to arrive from (3.1a) at (3.9). It is mainly
a matter of substitutingz2 � 0 in (3.1a). This is also the way to proceed in the controller
design. In the first step we designed a control law for one of the two inputs in such a way that
in closed loop a subsystem was stabilized. Before we proceed with the controller design we
assume that the stabilization of this subsystem worked out.

For the example of the rotating body this boils down to substituting!1;e � 0 in the remaining
dynamics, which results into the linear system

�
_!2;e
_!3;e

�
=

"
0 I3�I1

I2
!1;r

I1�I2
I3

!1;r 0

# �
!2;e
!3;e

�
+

�
1
0

�
[u2 � u2;r]: (3.10)

In general this assumption (i.e., the substitutionz2 � 0) simplifies the remaining dynamics
considerably, since part of it can be forgotten. What we are left with is the part of the closed-
loop system that is described by (3.9) and the problem has reduced to finding a control law
for the second input that is such that this remaining part becomes globally uniformly asymp-
totically stable (GUAS).

For the rotating body this can be guaranteed by a proper choice of the remaining inputu2.
From Theorem 2.3.7 we know that the control law

u2 = u2;r � k2!2;e � k3!1;r!3;e (3.11)

with k2 > 0 andk3 > I3�I1
I2

makes that the closed-loop system (3.10, 3.11) is globally
uniformly asymptotically stable (GUAS), provided that!1;r is persistently exciting.



3.2. An introductory example: tracking of a rotating rigid body 33

In that case the closed-loop system (3.7, 3.8, 3.11) can be written as

�
_!2;e
_!3;e

�
=

"
�k2 �

�
k3 � I3�I1

I2

�
!1;r

I1�I2
I3

!1;r 0

# �
!2;e
!3;e

�
| {z }

f1(t;z1)

+

"
I3�I1
I2

(!3;e + !3;r)
I1�I2
I3

(!2;e + !2;r)

#
| {z }

g(t;z1;z2)

!1;e

(3.12a)

_!1;e = �k1!1;e| {z }
f2(t;z2)

(3.12b)

which has a clear cascaded structure. That is, we can clearly recognize the systems_z1 =
f1(t; z1) and _z2 = f2(t; z2), as well as the “connecting term”g(t; z1; z2).

We now have found an overall closed-loop system with a cascaded structure, but does this
enable us to conclude asymptotic stability of the overall closed-loop system? Fortunately
the answer is: yes. Since the systems_z1 = f1(t; z1) and _z2 = f2(t; z2) both are globally
uniformly exponentially stable (GUES), it follows from Corollary 2.4.6 that we can conclude
globalK-exponential stability of the system (3.12) once we have thatg(t; z1; z2) satisfies
(2.25). This follows immediately when we assume that both!2;r and!3;r are bounded.

We can summarize this result as follows.

Proposition 3.2.1. Consider the tracking error dynamics(3.7)in closed loop with the control
laws (3.8, 3.11). If !r is bounded and!1;r is persistently exciting (PE), then the resulting
closed-loop system(3.12)is globallyK-exponentially stable.

Remark 3.2.2.Instead of first usingu1 to render the subsystem (3.7a) GUES and thenu2
to stabilize the remaining dynamics, we can also first useu2 to render the subsystem (3.7b)
GUES and then useu1 to stabilize the dynamics that remain then. This is similar to inter-
changing the indices(�)1 and(�)2 in both (3.8) and (3.11).

The example of tracking the kinematics of a rotating body learned us that another way of
obtaining a closed-loop system of the form (3.1) for a system with two inputs is the following:

� use one input for stabilizing a subsystem of the dynamics. In the overall closed-loop
system this is the system (3.1b);

� assume that the stabilization ofz2 has worked out (as guaranteed by the first step of
this procedure), i.e., substitutez2 � 0 in the remaining system;

� use the other input to stabilize the simplified remaining system;

� apply Theorem 2.4.3 to conclude asymptotic stability of the overall closed-loop dy-
namics.

This is the approach that we follow in this part of the thesis, i.e., in the next three chapters.
We study three different examples of systems with two inputs that can be stabilized using this
procedure.
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Chapter 4

Tracking of a mobile robot

4.1 Introduction

In this chapter we study the tracking problem for a wheeled mobile robot of the unicycle type,
shown in Figure 4.1. It is assumed that the masses and inertias of the wheels are negligible

�
y

x

Figure 4.1: A two-wheel mobile robot.

and that both the forward velocityv and angular velocity! can be controlled independently
by motors. Let(x; y) denote the co-ordinates of the center of mass, and� the angle between
the heading direction and thex-axis. We assume that the wheels do not slide, which results
in the following equations

_x = v cos �

_y = v sin �

_� = !

(4.1)

wherev and! are considered as inputs.
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Notice that the no-slip condition imposes the non-holonomic constraint

_x sin � � _y cos � = 0:

As a result, the system (4.1) fails to meet Brockett’s necessary condition for feedback sta-
bilization (Brockett 1983). This implies that no smooth (or even continuous) time-invariant
static state-feedback lawu = u(x) exists which makes a specified equilibrium of the closed-
loop locally asymptotically stable. Consequently either discontinuous or time-varying (or
both) controllers are needed for the stabilization problem, which explains the interest of
many researchers in this simple model. For an overview we refer to the survey paper of
Kolmanovsky and McClamroch (1995) and references cited therein.

Although the stabilization problem for wheeled mobile robots is now well understood, the
tracking problem has received less attention. As a matter of fact, it is not clear that the
current stabilization methodologies can be extended easily to tracking problems.

In (Kanayama, Kimura, Miyazaki and Noguchi 1990, Murray, Walsh and Sastry 1992, Mi-
caelli and Samson 1993, Walsh, Tilbury, Sastry, Murray and Laumond 1994, Fierro and
Lewis 1995) a linearization-based tracking control scheme was derived. The idea of input-
output linearization was used by Oelen and van Amerongen (1994). Fliess, Levine, Martin
and Rouchon (1995) dealt with the trajectory stabilization problem by means of a flatness
approach. All these papers solve the local tracking problem.

The first global tracking control law that we are aware of was proposed by Samson and
Ait-Abderrahim (1991). Another global tracking result was derived by Jiang and Nijmeijer
(1997) using integrator backstepping.

Assume that feasible reference dynamics(xr; yr; �r; vr; !r)
T is given, i.e., dynamics that

satisfies

_xr = vr cos �r

_yr = vr sin �r

_�r = !r:

For solving the tracking control problem the following global change of co-ordinates was
proposed by Kanayama et al. (1990) (cf. Figure 4.2):2

4xeye
�e

3
5 =

2
4 cos � sin � 0
� sin � cos � 0

0 0 1

3
5
2
4xr � x

yr � y

�r � �

3
5 : (4.2)

This global change of co-ordinates from[xr � x; yr � y]T to [xe; ye]
T makes that the error-

variables become independent from the choice of the inertial co-ordinate frame; the errors
are considered in a frame attached to the mobile robot. In these new co-ordinates the tracking
error dynamics becomes:

_xe = !ye � v + vr(t) cos �e

_ye = �!xe + vr(t) sin �e

_�e = !r(t)� !:

(4.3)
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yr

xe

x xr

ye

y

Figure 4.2: The new error co-ordinates.

The tracking control problem boils down to finding appropriate control laws forv and! such
that the tracking error(xe; ye; �e)T converges to zero.

This is the problem studied in this chapter. Subsequently we study in Section 4.2 the state-
feedback problem, in Section 4.3 the output-feedback problem, and in Section 4.4 the state-
feedback problem under input saturation. The performance of the derived controllers is il-
lustrated by means of simulations in Section 4.5. We conclude this chapter with some final
remarks in Section 4.6.

4.2 State-feedback

In this section we study the state-feedback tracking control problem for a mobile robot. As
mentioned in the introduction, we are aware of two global tracking results. First, we recover
these two results that both achieve global asymptotic stability (GAS) of the tracking error
dynamics. For reasons of robustness we would like to be able to conclude globaluniform
asymptotic stability (GUAS) (cf. Example 2.2.4). By means of a cascaded design approach
we derive a controller that achieves globalK-exponential stability.

4.2.1 Previous results

We first summarize the available global tracking results.
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Proposition 4.2.1 (Samson and Ait-Abderrahim (1991), Lyapunov based).Consider the
tracking error dynamics(4.3) in closed loop with the control law

! = !r(t) +
k3

k2
�e +

k1

k2
vr(t)ye

sin �e
�e

� k6

k2
xe (4.4a)

v = vr(t) + k3k5xe + (2k3k4 + vr(t)
cos �e � 1

�e
+ k6)�e

+ (1� k1)ye(!r(t) +
k3

k2
�e +

k1

k2
vr(t)ye

sin �e
�e

� k6

k2
xe)

(4.4b)

wherek1 > 0, k2 > 0, k3 > 0, k5 > k24 , andk4 andk6 are arbitrary constants. If_vr(t) and
_!r(t) are bounded and eithervr(t) or !r(t) does not converge to zero, then the closed-loop
system(4.3, 4.4)is globally asymptotically stable (GAS).

Proposition 4.2.2 (Jiang and Nijmeijer (1997), backstepping based).Consider the track-
ing error dynamics(4.3) in closed loop with the control law

! = !r(t) + k1k4�e + k1vr(t)ye
sin �e

�e
(4.5a)

v = vr(t) cos �e + k3xe � k2 _!r(t)ye � k1k2 _vr(t)y
2
e

sin �e
�e

+ k21k2k
2
4ye�e

� k1k2k3k4ye�e � 2k1k2vr(t)
2ye

sin2 �e
�e

+ 3k21k2k4vr(t)xeye sin �e

+ 3k1k2vr(t)!r(t)xeye
sin �e
�e

� k1k2k3vr(t)y
2
e

sin �e
�e

� k2k3!r(t)ye

+ k21k4vr(t)y
2
e cos �e � k2vr(t)!r(t) sin �e � k1k2k4vr(t)�e sin �e

+ 2k1k2k4!r(t)xe�e + k2!r(t)
2xe + k21k2k4xe�

2
e + 2k21k2vr(t)

2xey
2
e

sin2 �e

�2e

+ k21k2vr(t)
2y3e

�e sin �e cos �e � sin2 �e
�3e

(4.5b)

wherek1 > 0, k2 > 0, k3 > 0, k4 > 0. If vr(t), _vr(t), !r(t) and _!r(t) are bounded
and eithervr(t) or !r(t) does not converge to zero, then the closed-loop system(4.3, 4.5)is
globally asymptotically stable (GAS).

Remark 4.2.3.Jiang and Nijmeijer (1997) remarked that by means of Lyapunov theory the
control law

! = !r(t) + vr(t)ye
sin �e
�e

+ c1�e c1 > 0 (4.6a)

v = vr(t) cos �e + c2xe c2 > 0 (4.6b)

can be shown to yield GAS of the closed-loop system (4.3, 4.6), provided thatvr(t) and!r(t)
are uniformly continuous and bounded, and eithervr(t) or !r(t) does not converge to zero.
This boils down to the controller (4.4) where we takek1 = 1, k2 = 1, k3 = c1, k4 = 0,
k5 = c2

c1
, k6 = 0. However, the assumption onvr(t) and!r(t) is slightly weaker (uniform

continuous and bounded, instead of differentiable with bounded derivative).
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4.2.2 A cascaded design

In this section we derive a controller for the tracking control problem for a mobile robot. For
that we use the cascaded systems based approach sketched in Section 3.2, to achieve globally
uniformly asymptotically stable (GUAS) tracking error dynamics.

Recall that the tracking error dynamics for a mobile robot can be described by

_xe = !ye � v + vr(t) cos �e (4.7a)

_ye = �!xe + vr(t) sin �e (4.7b)

_�e = !r(t)� ! (4.7c)

wherexe andye are position errors,�e is the orientation error andvr(t) and!r(t) are the
forward and angular velocity of the reference trajectory to be tracked. As inputs we have the
forward velocityv and the angular velocity!.

As pointed out in Section 3.2 we first use one input for stabilization of a subsystem. By
means of the input! the dynamics (4.7c) can easily be stabilized. The control law

! = !r(t) + k1�e k1 > 0 (4.8)

results into the globally uniformly exponentially stable (GUES) subsystem

_�e = �k1�e k1 > 0: (4.9)

We can think of (4.9) as the system�2 (cf. Section 2.4).

The remaining dynamics is then given by

_xe = !r(t)ye + k1�eye � v + vr(t) cos �e

_ye = �!r(t)xe � k1�exe + vr(t) sin �e:
(4.10)

We proceed by assuming that the stabilization of�e has been established. What we do is to
“forget” about theg(t; z1; z2)z2 part of the dynamics (3.1a) and focus on rendering (3.9)
globally uniformly asymptotically stable (GUAS). The next step therefore is substituting
�e(t) � 0 in the remaining dynamics (4.10), which results into�

_xe
_ye

�
=

�
0 !r(t)

�!r(t) 0

� �
xe
ye

�
+

�
1
0

�
[vr(t)� v] (4.11)

which simply is a linear time-varying system. From Theorem 2.3.7 we know that if!r(t) is
persistently exciting (PE), then the control law

v = vr(t) + k2xe � k3!r(t)ye k2 > 0; k3 > �1 (4.12)

renders the resulting closed-loop system (4.11, 4.12) globally uniformly exponentially stable
(GUES).

As a result we obtain the following.
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Proposition 4.2.4. Consider the tracking error dynamics(4.7)in closed loop with the control
law

! = !r(t) + k1�e k1 > 0 (4.13a)

v = vr(t) + k2xe � k3!r(t)ye k2 > 0; k3 > �1: (4.13b)

If vr(t) is bounded and!r(t) is persistently exciting (PE) then the closed-loop system(4.7,
4.13)is globallyK-exponentially stable.

Proof. Due to the design we obtain a cascaded structure for the closed-loop system:

�
_xe
_ye

�
=

� �k2 (k3 + 1)!r(t)
�!r(t) 0

� �
xe
ye

�
| {z }

f1(t;z1)

+

"
k1ye + vr(t)

cos �e�1
�e

�k1xe + vr(t)
sin �e
�e

#
| {z }

g(t;z1;z2)

�e

_�e = �k1�e| {z }
f2(t;z2)

:

Notice that the systems_z1 = f1(t; z1) and _z2 = f2(t; z2) are globally uniformly expo-
nentially stable (GUES). Sincecos �e�1

�e
and sin �e

�e
are bounded, the boundedness ofvr(t)

guarantees that the assumption ong(t; z1; z2) is met. Applying Corollary 2.4.6 completes the
proof.

Remark 4.2.5.This result was originally presented by Panteley et al. (1998), wherek3 = 0
was used.

When we compare the result of Proposition 4.2.4 with the results as presented in Propositions
4.2.1 and 4.2.2, a difference in complexity can be noticed in (4.4) and (4.5) versus (4.13).
Furthermore, the controllers (4.4) and (4.5) were only shown to yield globally asymptotically
stable (GAS) closed-loop tracking error dynamics, whereas for (4.13) we were able to show
the more desirable property of global uniform asymptotic stability (GUAS)1. The price we
pay is that (4.13) makes it impossible to track a reference for which!r(t) tends to zero but
vr(t) does not, which is something that can be dealt with using (4.4) or (4.5).

Notice that due to the cascaded design approach we were able to reduce the problem of
stabilizing the nonlinear tracking error dynamics (4.7) to the problem of stabilizing the linear
systems

_�e = !r(t)� ! (4.14)

and �
_xe
_ye

�
=

�
0 !r(t)

�!r(t) 0

��
xe
ye

�
+

�
1
0

�
[vr(t)� v]: (4.15)

So, a sense we reduced the nonlinear problem into two easy-to-solve linear problems.
1Most likely the control laws (4.4) and (4.5) also yield GUAS of the resulting closed-loop tracking error dy-

namics.
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This observation can be very helpful in finding answers to questions that come from a more
practical point of view. In practice we also have to deal with disturbances due to errors in
the model or due to imperfect state measurements. Instead of solving the problem for a third
order nonlinear system, it suffices to solve the problem for a first order and a second order
linear system.

Assume for instance that a constant disturbance is perturbing the system (4.7). For design pur-
poses we can simply assume that this constant disturbance is perturbing the systems (4.14)
and (4.15). Therefore, the robust controller design for the nonlinear system (4.7) under con-
stant disturbances simply reduces to the robust controller design for the linear system (4.14)
and the linear time-varying system (4.15). Both can easily be solved by adding integral ac-
tion. Similar reasoning can be used in case of more general additive disturbances. Then one
can for instance useH1 control techniques for arriving at robust controllers for the two linear
systems, instead of going through a nonlinearH1 design.

In case we have noisy measurements, it is common practice to filter the measurements and use
the filtered state for feedback. Since the tracking error dynamics are nonlinear, this approach
is in general not guaranteed to work. However, for linear systems this approach can be applied
successfully. Therefore, we simply design filters such that the linear systems (4.14) and (4.15)
are rendered asymptotically stable. Corollary 2.4.6 then guaranteesK-exponential stability
of the nonlinear tracking error dynamics.

Remark 4.2.6.Not only can the cascaded design reduce the nonlinear controller design prob-
lem for the system (4.7) into two linear ones, it also provides an eye-opener to recognizing a
simpler structure for backstepping. From the cascaded design we obtained fork3 = 0 the�1

subsystem

_xe = �k2xe + !r(t)ye

_ye = �!r(t)xe
(4.16)

which can be seen as the subsystem (4.7a, 4.7b) stabilized by means of the inputv =
vr(t) cos �e + k2xe and the virtual control�e � 0. We can show global asymptotic stability
(GAS) of the system (4.16) by means of the Lyapunov function candidate

V =
1

2
x2e +

1

2
y2e

and some additional standard Lyapunov techniques. If we now ‘step back’ the virtual control
�e to the true input!, we obtain the control law

! = !r(t) + vr(t)ye
sin �e
�e

+ k1�e k1 > 0

v = vr(t) cos �e + k2xe k2 > 0

which is exactly the controller (4.6). Therefore, backstepping not necessarily has to lead to
complex expressions for control laws as (4.5), but can also result in more simple expressions
as (4.6). The only difficulty is to recognize the simpler structure for backstepping. This
structure became clear from the cascaded controller design.

Remark 4.2.7.The requirement that!r has to be persistently exciting (PE)is a serious practi-
cal limitation, since it makes it impossible to follow straight lines, while this is the first thing
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one would like to do in practice. One way is to overcome this difficultie is sketched in the
previous remark. An other idea is using the idea of uniformÆ-persistence of excitation as
introduced by Lorı́a, Panteley and Teel (1999b). This weakened version of PE makes it not
only possible to deal with tracking of straight lines, but also with stabilization. By using this
concept, global uniform asymptotic stability (GUAS) can be shown.

4.3 Dynamic output-feedback

In this section we study the dynamic output-feedback tracking control problem for a mobile
robot. That is, we study the problem of stabilizing the tracking error dynamics (4.7) where
we are only allowed to use the measured output for designing the control laws forv and
!. With the cascaded design from the previous section in mind, the control laws derived
in the previous section can easily be extended. In case we are able to measure only one of
the state-components we end up with an unobservable system, which makes it impossible to
reconstruct the state from the measurements. Therefore, we consider in the following sections
the cases where we measure two of the state components.

4.3.1 Unmeasuredxe

First, we assume that we are unable to measurexe, but that we can measureye and�e. In that
case the available output is �

y1
y2

�
=

�
ye
�e

�
: (4.17)

From a cascaded design point of view, we know that we only have to stabilize the systems

_�e = !r(t)� ! (4.18a)

y2 = �e (4.18b)

and �
_xe
_ye

�
=

�
0 !r(t)

�!r(t) 0

� �
xe
ye

�
+

�
1
0

�
[vr(t)� v] (4.19a)

y1 = ye: (4.19b)

It is clear that we can still use the control law (4.8) for stabilizing (4.18). The only problem
is to stabilize (4.19).

However, from Theorem 2.3.8 we know that the dynamic output-feedback

v = vr(t) + k2x̂e � k3!r(t)ŷe (4.20a)�
_̂xe
_̂ye

�
=

�
0 !r(t)

�!r(t) 0

� �
x̂e
ŷe

�
+

�
1
0

�
[vr(t)� v] +

��l2!r(t)
l1

�
[y1 � ŷ1] (4.20b)

ŷ1 =
�
0 1

� �x̂e
ŷe

�
(4.20c)
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with k2 > 0, k3 > �1, l1 > 0, andl2 > �1 renders the closed-loop system (4.18, 4.20)
globally uniformly exponentially stable (GUES).

As a result we obtain:

Proposition 4.3.1. Consider the tracking error dynamics(4.7) with output(4.17) in closed
loop with the control laws(4.8, 4.20). Assume that!r(t) is persistently exciting (PE) and that
vr(t) is bounded. Then the resulting closed-loop system is globallyK-exponentially stable.

Proof. We can see the closed-loop system (4.7, 4.17, 4.8, 4.20) as a cascaded system, i.e., a
system of the form (3.1) where

z1 =
�
xe ye xe � x̂e ye � ŷe

�T
z2 = �e

f1(t; z1) =

2
664
�k2 (k3 + 1)!r(t) k2 �k3!r(t)
�!r(t) 0 0 0

0 0 0 (l2 + 1)!r(t)
0 0 �!r(t) �l1

3
775 z1

f2(t; z2) = �k1z2

g(t; z1; z2) =

2
6664
k1ye + vr(t)

cos �e�1
�e

�k1xe + vr(t)
sin �e
�e

k1ye + vr(t)
cos �e�1

�e

�k1xe + vr(t)
sin �e
�e

3
7775 :

From Theorem 2.3.8 we know that the system_z1 = f1(t; z1) is globally uniformly exponen-
tially stable (GUES). It is also clear that the system_z2 = f2(t; z2) is GUES. The boundedness
of vr(t) guarantees that the assumption ong(t; z1; z2) is met. Applying Corollary 2.4.6 com-
pletes the proof.

Notice that (4.20b, 4.20c) is a full order observer for the system (4.19), i.e., even though we
can measureye we also have generated an estimate forye. It is also possible to use areduced
orderobserver, i.e., to reconstruct only the unknown signalxe.

In order to find a reduced observer for the system (4.19) we try to estimate some linear
combination of the measured and the unknown signals. To be precise, we define a new
variablez as

z = xe � b(t)y1

whereb(t) is a function still to be determined in order to guarantee asymptotic stability of
the reduced order observer. Differentiatingz with respect to time along the dynamics (4.19)
yields

_z = !r(t)ye + [vr(t)� v]� db(t)
dt

ye + b(t)!r(t)xe

= b(t)!r(t)(xe � b(t)ye) + b(t)2!r(t)ye + !r(t)ye + [vr(t)� v]� db(t)
dt

ye

= b(t)!r(t)z +

�
b(t)2!r(t) + !r(t)� db(t)

dt

�
ye + [vr(t)� v]:
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In case we define the reduced order observer dynamics as

_̂z = b(t)!r(t)ẑ +

�
b(t)2!r(t) + !r(t)� db(t)

dt

�
ye + [vr(t)� v]

we obtain for the observation-error~z = z � ẑ

_~z = b(t)!r(t)~z: (4.21)

If we now takeb(t) = �l!r(t) with l a positive constant and we furthermore assume that
!r(t) is persistently exciting (PE), we are able to conclude global uniform exponential sta-
bility (GUES) of (4.21).

We can combine this reduced observer with the controller (4.12):

Proposition 4.3.2. Consider the tracking error dynamics(4.7)with output(4.17)in closed-
loop with the control law

! = !r(t) + k1�e k1 > 0 (4.22a)

v = vr(t) + k2x̂e � k3!r(t)ye k2 > 0; k3 > �1 (4.22b)

wherex̂e is generated by the reduced order observer

x̂e = ẑ � l!r(t)ye l > 0 (4.23a)

_̂z = �l!r(t)2ẑ + [l2!r(t)
3 + !r(t) + l _!r(t)]ye + [vr(t)� v]: (4.23b)

If vr(t) is bounded and!r(t) is persistently exciting (PE), then the closed-loop system(4.7,
4.22, 4.23)is globallyK-exponentially stable.

Proof. We can view the closed-loop system (4.7, 4.22, 4.23) as a cascaded system, i.e., a
system of the form (3.1) where

z1 =
�
xe ye xe � x̂e

�T
z2 = �e

f1(t; z1) =

2
4 �k2 (k3 + 1)!r(t) k2
�!r(t) 0 0

0 0 �l!r(t)2

3
5 z1

f2(t; z2) = �k2z2

g(t; z1; z2) =

2
64

k1ye + vr(t)
cos �e�1

�e

�k1xe + vr(t)
sin �e
�e

k1ye + vr(t)
cos �e�1

�e
+ l!r(t)

�
�k1xe + vr(t)

sin �e
�e

�
3
75 :

To be able to apply Corollary 2.4.6 we need to verify global uniform exponential stability
(GUES) of the system_z1 = f1(t; z1), which can also be expressed as�

_xe
_ye

�
=

� �k2 (k3 + 1)!r(t)
�!r(t) 0

� �
xe
ye

�
| {z }

�f1(t;�z1)

+

�
k2
0

�
|{z}

�g(t;�z1;�z2)

�z2 (4.24a)

_�z2 = �l!r(t)2�z2: (4.24b)
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Since!r(t) is persistently exciting (PE), we have the existence of constantsÆ; "1; "2 > 0
such that for allt � 0:

"1 <

Z t+Æ

t

!2
r(�)d� < "2:

Therefore, the subsystem (4.24b) is GUES. Furthermore, the term�g(t; �z1; �z2) is bounded
and according to Theorem 2.3.7 the system_�z1 = �f1(t; �z1) is GUES. From Corollary 2.4.6
we can conclude that the system_z1 = f1(t; z1) is globally uniformly asymptotically stable
(GUAS). Since it is a linear time-varying system Theorem 2.3.9 enables us to conclude that
_z1 = f1(t; z1) is GUES. Since also the system_z2 = f2(t; z2) is GUES and boundedness of
bothvr(t) and!r(t) (cf. Definition 2.3.5) guarantees that the condition ong(t; z1; z2) is met,
Corollary 2.4.6 yields the desired result.

4.3.2 Unmeasuredye

In case we assume that we are unable to measureye, but we can measurexe and�e, we have
the outputs �

y1
y2

�
=

�
xe
�e

�
: (4.25)

Since we can repeat the reasoning of the previous section, we summarize this analysis in the
following two propositions.

Proposition 4.3.3. Consider the tracking error dynamics(4.7) with output(4.25) in closed
loop with the control law

! = !r(t) + k1�e k1 > 0

v = vr(t) + k2x̂e � k3!r(t)ŷe k2 > 0; k3 > �1
wherex̂e and ŷe are generated by the full order observer�

_̂xe
_̂ye

�
=

�
0 !r(t)

�!r(t) 0

� �
x̂e
ŷe

�
+

�
1
0

�
[vr(t)� v] +

�
l1

l2!r(t)

�
[y1 � ŷ1]

ŷ1 =
�
1 0

� �x̂e
ŷe

�

wherel1 > 0, l2 > �1. Assume that!r(t) is persistently exciting (PE) and thatvr(t) is
bounded. Then the resulting closed-loop system is globallyK-exponentially stable.

Proposition 4.3.4. Consider the tracking error dynamics(4.7)with output(4.25)in closed-
loop with the control law

! = !r(t) + k1�e k1 > 0 (4.26a)

v = vr(t) + k2xe � k3!r(t)ŷe k2 > 0; k3 > �1 (4.26b)

whereŷe is generated by the reduced order observer

ŷe = ẑ + l!r(t)xe l > 0 (4.27a)

_̂z = �l!r(t)2ẑ � [l2!r(t)
3 + !r(t) + l _!r(t)]xe + l!r(t)[v � vr(t)]: (4.27b)
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If vr(t) is bounded and!r(t) is persistently exciting (PE), then the closed-loop system(4.7,
4.26, 4.27)is globallyK-exponentially stable.

4.4 Saturated control

All control laws mentioned in this chapter have one thing in common: the larger the errors,
the larger the control. In practice, however, the input is constrained: the mobile car has
a maximum forward and angular velocity. Therefore, it is interesting to take these input
constraints into account when designing control laws. In this section we study the global
tracking control problem for a mobile robot under input saturation, i.e., in the controller
design we take into account the constraints

jv(t)j � vmax 8t � 0 (4.28a)

j!(t)j � !max 8t � 0: (4.28b)

We would like to design controllers such that they never result into a forward and/or angular
velocity exceeding the limits of the mobile car.

In order to be able to do so, we assume that once we are exactly on the desired trajectory we
can stay on it. This means that the reference forward and angular velocity should not exceed
the limits:

sup
t�0

jvr(t)j < vmax (4.29a)

sup
t�0

j!r(t)j < !max: (4.29b)

Under these feasibility conditions we look for controllers forv and! that always meet (4.28)
and still guarantee global uniform asymptotic stability of the tracking error dynamics.

4.4.1 A Lyapunov design

Our first approach is a Lyapunov design similar to the one which results in the (unsaturated)
control law (4.6). Inspired by Remark 4.2.6 and (Jiang and Praly 1992) we consider the
Lyapunov function candidate

V =
1

2
log(1 + x2e + y2e) +

1

2�1
�2e �1 > 0: (4.30)

DifferentiatingV along the solutions of (4.7) yields

_V =
xe

1 + x2e + y2e
(�v + vr(t) cos �e) +

vr(t)ye
1 + x2e + y2e

sin �e
�e

�e +
1

�1
�e(!r(t)� !)

=
xe

1 + x2e + y2e
(�v + vr(t) cos �e) +

1

�1
�e

�
!r(t) +

�1vr(t)ye
1 + x2e + y2e

sin �e
�e

� !

�
:
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Choosing

! = !r(t) +
�1vr(t)ye

1 + x2e + y2e

sin �e
�e

+ ��2(�e) (4.31a)

v = vr(t) cos �e + ��3(xe) (4.31b)

with � a saturation function as defined in Definition 2.1.13 and�2 > 0, �3 > 0, results in

_V = � xe��3(xe)

1 + x2e + y2e
� 1

�1
�e��2(�e) � 0:

As a result, using (4.30) we can conclude that the trajectories(xe(t); ye(t); �e(t)) are uni-
formly bounded. If we furthermore assume thatvr(t) and!r(t) are uniformly continuous,
we obtain that alsoxe(t), ye(t) and�e(t) are uniformly continuous. It follows by a direct
application of Barb˘alat’s Lemma (Lemma 2.2.10) that

lim
t!1

xe(t)��3(xe(t))

1 + xe(t)2 + ye(t)2
+

1

�1
�e(t)��2(�e(t)) = 0

which, in turn, implies that

lim
t!1

(jxe(t)j+ j�e(t)j) = 0:

In order to show thatye(t) goes to zero ast!1 we use Lemma 2.2.12 with

f(t) = �e

g(t) =
�1vr(t)ye

1 + x2e + y2e

�
sin �e
�e

� 1

�
+ ��2(�e)

which enables us to conclude that

lim
t!1

�1

1 + xe(t)2 + ye(t)2
vr(t)ye(t) = 0:

As a result also

lim
t!1

vr(t)ye(t) = 0: (4.32)

Next, we apply Lemma 2.2.12 with

f(t) = xe

g(t) =

�
�1vr(t)ye

1 + x2e + y2e

sin �e
�e

+ ��2(�e)

�
ye � ��3(xe)

in order to conclude that

lim
t!1

!r(t)ye(t) = 0: (4.33)

As a result from (4.32) and (4.33) we have thatye(t) tends to zero ast tends to infinity,
provided that eithervr(t) or !r(t) does not converge to zero.

We can summarize this result as follows.



48 Chapter 4. Tracking of a mobile robot

Proposition 4.4.1 (see (Jiang, Lefeber and Nijmeijer 1999)).Consider the tracking error
dynamics(4.7) in closed loop with the control law(4.31). If vr(t) and!r(t) are uniformly
continuous and bounded, and eithervr(t) or !r(t) does not converge to zero, then the closed-
loop system(4.7, 4.31)is GAS. Furthermore, given the constraints(4.28)and the feasibility
condition(4.29)it is always possible to choose�1, �2, �3 such that the constraints(4.28)are
satisfied.

4.4.2 A cascaded design

As mentioned in Section 4.2 the cascaded approach learned us that for the tracking problem
of a mobile robot, stabilization of the nonlinear tracking error dynamics (4.7) in a sense boils
down to the separate stabilization of the linear systems (4.14) and (4.15).

The same holds true for the saturated controller design problem. Once we are able to find con-
trollers for the systems (4.14) and (4.15) that meet the constraints (4.28), the same saturated
controllers render the tracking error dynamics asymptotically stable too.

So also the nonlinear tracking problem under input constraints reduces to two separated linear
problems. For linear systems globally asymptotically stabilizing saturated controllers and
several anti-windup controllers are available in literature and can be used.

A saturated controller for the system (4.14) is given by

! = !r(t) + ��1(�e) (4.34)

which results in the globallyK-exponentially stable closed-loop dynamics

_�e = ���1(�e): (4.35)

For stabilizing (4.15) we can use

v = vr(t) + ��2(xe) (4.36)

which results into

_xe = ���2(xe) + !r(t)ye

_ye = �!r(t)xe:
(4.37)

From Proposition 2.3.10 we know that if!r(t) is persistently exciting (PE), the system (4.37)
is globallyK-exponentially stable. As a result we obtain the following.

Proposition 4.4.2. Consider the tracking error dynamics(4.7)in closed loop with the control
laws (4.34, 4.36). Assume that!r(t) is persistently exciting (PE) and thatvr(t) is bounded.
Then the resulting closed-loop system is globallyK-exponentially stable.
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Proof. We can write the closed-loop system (4.7, 4.34, 4.36) as a system in cascade:�
_xe
_ye

�
=

����2(xe) + !r(t)ye
�!r(t)xe

�
| {z }

f1(t;z1)

+

"
k1ye

��1 (�e)

�e
+ vr(t)

cos �e�1
�e

�k1xe ��1 (�e)�e
+ vr(t)

sin �e
�e

#
| {z }

g(t;z1;z2)

�e

_�e = ���1(�e)| {z }
f2(t;z2)

:

Almost all conditions of Lemma 2.4.5 are satisfied, since both (4.35) and (4.37) are globally
K-exponentially stable andg(t; z1; z2) satisfies (2.25). We only need to find the Lyapunov
function candidate of Assumption A1 for the system (4.37) satisfying the required properties.
For that we can take

V =
1

2
x2e +

1

2
y2e

whose time-derivative along solutions of (4.37) is

_V = �xe��2(xe) � 0:

Applying Lemma 2.4.5 completes the proof.

4.5 Simulations

This section is to illustrate that the cascaded approach as presented in this chapter can be
easily extended. The simple non-holonomicexample of a knife-edge moving on the plane was
studied by Bloch, Reyhanoglu and McClamroch (1992). Letxc, yc denote the co-ordinates of
the center of mass of the knife-edge on the plane and let� denote the heading angle measured
from thex-axis. Since the velocity of the center of mass is always perpendicular to the runner,
there is a non-holonomic constraint of the form

_xc sin�� _yc cos� = 0:

The controls are the pushing force�1 in the direction of the heading angle and the steering
torque�2 about the vertical axis through the center of mass. The d’Alembert’s formulation
of the knife-edge dynamics provide

�xc =
�

m
sin�+

�1

m
cos�

�yc = � �

m
cos�+

�1

m
sin�

�� =
�2

Ic

_xc sin� = _yc cos�

(4.38)

wherem is the mass of the knife-edge,Ic is the moment of inertia of the knife-edge, and� is
the scalar constraint multiplier. When we define the variables

v = _xc cos�+ _yc sin�

! = _�
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the dynamics (4.38) can also be expressed as

_xc = v cos�

_yc = v sin�

_� = !

_v =
�1

m

_! =
�2

Ic

(4.39)

which is simply the model of a mobile robot and two additional integrators.

Kolmanovsky and McClamroch (1996) studied the problem of making the knife-edge (4.38)
follow the reference dynamics

xc;r(t) = sin t

yc;r(t) = � cos t

�r(t) = t

_xc;r(t) = cos t

_yc;r(t) = � sin t:

This trajectory corresponds to the center of mass of the knife-edge moving along a circular
path of unit radius with uniform angular rate.

Kolmanovsky and McClamroch (1996) solved this problem by defining the change of co-
ordinates

� = �xc sin�+ yc cos�

x1 = xc cos�+ yc sin�

x2 = � _xc sin�+ _yc cos�� _�(xc sin�� yc cos�)

x3 = �

x4 = _�

u1 =
�1

m
+
�2

Ic
(�xc sin�+ yc cos�)� (xc cos�+ yc sin�) _�

2

u2 =
�2

Ic

and the tracking errors

~� = � � �̂

~x = x� x̂

~u = u� û:

The following hybrid controller was proposed

~u1(t) = �~x1 � ~x2 + U1(�
k ; t) kT � t < (k + 1)T (4.40a)

~u2(t) = �~x3 � ~x4 + U2(�
k ; t) kT � t < (k + 1)T (4.40b)
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whereT = 2�, and for a scalar parameter�

U1(�; t) =
3

2
� sin(2t)� � cos(2t) + � cos t

U2(�; t) = j�j sin t+ �:

Let �k = �(kT ). Then the parameter�k is updated via the following scheme:

�0 = �

�k =

(
�k = �k�1 if �k�1�k > 0 or �k = 0

�k = 

���k�1�� sgn(�k) if �k�1�k � 0 and�k 6= 0

where the values
 = � = 0:8 were proposed.

Starting from the initial condition

�
xc(0) yc(0) �(0) _xc(0) _yc(0) _�(0)

�T
=
�
1 1 1 0:5 0:5 0:5

�T
(4.41)

the resulting performance is depicted in Figure 4.3, where we assumed thatm = 1 and
Ic = 1. Notice that it takes almost200 seconds for the knife-edge to converge to the reference
trajectory.
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Figure 4.3: Tracking error and inputs for cascade controller (4.40).
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Jiang and Nijmeijer (1999b) solved the same tracking problem by defining the global change
of co-ordinates and preliminary feedback

x1 = �

x2 = xc cos�+ yc sin�

x3 = xc sin�� yc cos�

x4 = _�

x5 = _xc cos�+ _yc sin�+ _�(�xc sin�+ yc cos�)

v1 =
�2

Ic

v2 =
�1

m
+
�2

Ic
(�xc sin�+ yc cos�)� _�2(xc cos�+ yc sin�)

and correspondingly the tracking errorsxe = x�xd. The following controller was proposed

v1 = �2�u1 � z3 + z2x5 � z1z3x
2
5 + z1v2 � 2x4e (4.42a)

v2 = �2�u2 � 2z2 � 2x5 + z3x5 (4.42b)

where

�u1 = x4 � 1z1x5 + 2z3

�u2 = x5 + 2z2 + z1

and

z1 = x3e � x2ez1e

z2 = x2e

z3 = x1e

Starting from the same initial condition (4.41) the resulting performance is depicted in Fig-
ure 4.4.

We can also use the cascaded approach presented in this chapter for solving the tracking
problem. Starting from the model (4.39) and using the change of co-ordinates (4.2) solving
the tracking problem boils down to stabilizing the linear time-invariant (!r = 1) systems:

2
4 _xe
_ye
_ve

3
5 =

2
4 0 1 1
�1 0 0
0 0 0

3
5
2
4xeye
ve

3
5+

2
4 0
0
1
m

3
5 [�1;r � �1]

and

�
_�e
_!e

�
=

�
0 1
0 0

��
�e
!e

�
+

�
0
1
Ic

�
[�2;r � �2]
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Figure 4.4: Tracking error and inputs for backstepping controller (4.42).
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where we definedve = vr � v and!e = !r � !. Both systems can easily be stabilized by
using linear controllers. For tuning these controllers we defined the costs

J1 =

Z 1

0

xe(t)
2 + ye(t)

2 + ve(t)
2 + 0:01(�1;r(t)� �1(t))

2dt

J2 =

Z 1

0

�e(t)
2 + 0:1(�2;r(t)� �2(t))

2dt

and used optimal control to minimize these costs. As a result we obtained as controllers for
the tracking control problem

�1 = �1;r + 4:4705xe � 0:0012ye + 4:3521ve (4.43a)

�2 = �2;r + 10:0000�e + 10:9545!e (4.43b)

Starting also from the initial condition (4.41) the resulting performance is depicted in Fig-
ure 4.5. Notice that the resulting performance is comparable with the backstepping based
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Figure 4.5: Tracking error and inputs for cascade controller (4.43).

controller of Jiang and Nijmeijer (1999b).

For comparison reasons we also considered the following quantities

Jr =

Z 200

0

[xc(t)� xc;r(t)]
2 + [yc(t)� yc;r(t)]

2dt
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and

J� =

Z 200

0

[�1(t)]
2 + [�2(t)]

2dt

whereJr can be thought of as an error measure andJ� as a measure of the control effort. For
the three different controllers we considered we obtained the following values:

Jr J�
hybrid controller (4.40) 103.558 63.789

backstepping controller (4.42) 3.752 8.796
cascade controller (4.43) 3.341 4.566

4.6 Concluding remarks

In this chapter we considered the tracking control problem for the kinematic model of a mo-
bile robot. We solved this problem using state-feedback, output-feedback, and under input
saturation. All results yield globallyK-exponentially stable closed-loop tracking error dy-
namics under a persistence of excitation condition on the reference angular velocity.

This persistence of excitation condition on the reference angular velocity makes that tracking
of a straight line and stabilization is not possible with the “cascaded controllers” that have
been derived. However, this problem can be overcome by weakening the persistence of exci-
tation (PE) condition by assuming a so-called uniformÆ-persistence of excitation (uÆ-PE), as
recently introduced by Lorı́a et al. (1999b). In that case global uniform asymptotic stability
(GUAS) can be shown.

We arrived at the results by means of the cascaded design approach as explained in Sec-
tion 3.2. This approach revealed a nice structure in the tracking error dynamics, which makes
that the nonlinear tracking problem can be reduced to twolinear problems. This is the case
for both the state- and output-feedback problem, as well as the control problem under input
saturation and other interesting problems like incorporating robustness against uncertainties.

This simple structure is also maintained when we consider so called dynamic extensions of
the model, when additional integrators are added. This was illustrated by means of simula-
tions using the example of a knife-edge.
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Chapter 5

Tracking of non-holonomic
systems in chained form

5.1 Introduction

In this chapter we consider the tracking problem for a special class of non-holonomic sys-
tems, namely systems in chained form. Many mechanical systems with non-holonomic con-
straints can be locally or globally converted to the chained form under co-ordinate change
and preliminary feedback, see (Murray and Sastry 1993).

Chained-form systems of ordern with two inputs can be expressed as

_x1 = u1

_x2 = u2

_x3 = x2u1

...

_xn = xn�1u1

(5.1)

wherex = (x1; : : : ; xn)
T is the state, andu1 andu2 are two inputs.

Consider the kinematic model of a mobile robot that we studied in the previous chapter:

_x = v cos �

_y = v sin �

_� = !:

(5.2)

When we define the global change of co-ordinates

x1 = �

x2 = x cos � + y sin �

x3 = x sin � � y cos �

57
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and apply the preliminary feedback

! = u1

v = u2 + !x3

whereu1 andu2 are new inputs, then the system (5.2) is transformed to

_x1 = u1

_x2 = u2

_x3 = x2u1

which is a chained-form system of order3 with two inputs.

It is well-known that many mechanical systems with non-holonomic constraints can be lo-
cally or globally converted to the chained form under co-ordinate change and preliminary
feedback. Interesting examples of such mechanical systems include not only the mobile
robot, but also cars towing several trailers, the knife edge, a vertical rolling wheel and a rigid
spacecraft with two torque actuators (see e.g., (Murray and Sastry 1993, Kolmanovsky and
McClamroch 1995) or Section 3.2).

As for the mobile robot, the system (5.1) fails to meet Brockett’s necessary condition for
smooth feedback stabilization, which implies that no smooth (or even continuous) time-
invariant static state-feedbacku = u(x) exists that renders a specified equilibrium of the
closed-loop locally asymptotically stable. For this reason the stabilization problem has re-
ceived a lot of attention (see e.g., (Pomet 1992, Murray and Sastry 1993, Canudas de Wit,
Berghuis and Nijmeijer 1994, Samson 1995, Sørdalen and Egeland 1995, Teel, Murray and
Walsh 1995, Jiang 1996)).

However, the tracking problem for systems in chained form has received little attention. Most
of the global tracking results we are aware of, are on the tracking control of a mobile robot,
which is a chained-form system of order3 (and dealt with in the previous chapter). An-
other global result for a chained-form system of order3 is given by Escobar, Ortega and
Reyhanoglu (1998), where they introduced a field-oriented control approach for the track-
ing of the non-holonomic integrator. We are not aware of any global results for general
chained-form systems of ordern. Jiang and Nijmeijer (1999b) derived semi-global tracking
controllers for general chained-form systems by means of backstepping and they achieved
global tracking results for some special cases.

In this chapter we solve the global tracking problem for general chained-form systems by
means of a cascaded systems based approach. We first apply in Section 5.2 the idea explained
in Section 3.2 to the tracking error dynamics. This results in a similar design separation
principle as in the previous chapter for the mobile robot. That is, we reduce the problem
of designing stabilizing controllers for the nonlinear tracking error dynamics to two linear
controller design problems. With this knowledge we tackle in Section 5.3 the state-feedback
tracking problem and in Section 5.4 the output-feedback tracking problem. In Section 5.5 we
deal with both these tracking control problems under input saturation for a special class of
reference trajectories. The effectiveness of the derived controllers is illustrated in Section 5.6
by means of simulations. Section 5.7 contains some concluding remarks for this chapter.
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5.2 The search for a cascaded structure

For studying the tracking control problem for systems in chained form, assume we are given
a reference trajectory(xTr ; u

T
r )

T satisfying

_x1;r = u1;r

_x2;r = u2;r

_x3;r = x2;ru1;r

...

_xn;r = xn�1;ru1;r:

We define the tracking errorxe = x� xr and obtain as the tracking error dynamics

_x1;e = u1 � u1;r = u1 � u1;r

_x2;e = u2 � u2;r = u2 � u2;r

_x3;e = x2u1 � x2;ru1;r = x2;eu1;r + (x2;e + x2;r)(u1 � u1;r)

...
...

_xn;e = xn�1u1 � xn�1;ru1;r = xn�1;eu1;r + (xn�1;e + xn�1;r)(u1 � u1;r):

(5.3)

The tracking control problem boils down to finding appropriate control laws foru1 andu2
such that the tracking errorxe converges to zero. For that we like to use the cascaded design
approach as proposed in Section 3.2. We look for a control law for one of the two inputs
which is such that a subsystem of (5.3) is asymptotically stabilized in closed loop. Preferably,
this subsystem has to be such that the remaining dynamics reduces considerably in case we
assume that the stabilization of this subsystem has been established.

Notice that either thex1;e dynamics or thex2;e dynamics can be easily rendered asymptot-
ically stable by choosing an appropriate control law foru1 or u2, respectively. As the next
step is to assume that the stabilization has been established, we could decide to useu2 for
stabilizing thex2;e dynamics, but this does not look too promising. On the other hand, if we
decide to useu1 for stabilizing thex1;e dynamics, the assumption that this stabilization has
worked out simplifies almost all equations in (5.3). Therefore, we decide to first useu1 for
stabilizing thex1;e dynamics.

Next, we assume that the stabilization ofx1;e has been established, that is, we substitute
x1;e(t) � 0 in the remaining dynamics. Notice that as a result alsou1(t)�u1;r(t) � 0. After
this substitution the remaining dynamics becomes

_x2;e = u2 � u2;r(t)

_x3;e = x2;eu1;r(t)

...

_xn;e = xn�1;eu1;r(t)



60 Chapter 5. Tracking of non-holonomic systems in chained form

which is the same as the linear time-varying system2
6666664

_x2;e
_x3;e
...
...

_xn;e

3
7777775
=

2
6666664

0 : : : : : : : : : 0
u1;r(t) 0 : : : : : : 0

0
...

...
...

...
...

...
...

...
0 : : : 0 u1;r(t) 0

3
7777775

2
6666664

x2;e
x3;e

...

...
xn;e

3
7777775
+

2
6666664

1
0
...
...
0

3
7777775
[u2 � u2;r(t)]: (5.4)

All we need to do is to find a feedback controller foru2 that stabilizes the system (5.4) and
hope that all conditions for applying the cascaded theorem (Theorem 2.4.3) are met. No-
tice from Corollary 2.3.4 that ifu1;r(t) is persistently exciting the system (5.4) is uniformly
completely controllable.

To summarize: instead of solving the problem of finding stabilizing control laws for the
nonlinear tracking error dynamics (5.3) we might as well look at the two separate problems
of finding a stabilizing control law for the linear system

_x1;e = u1 � u1;r(t) (5.5)

and finding one for the linear time-varying system

2
6666664

_x2;e
_x3;e
...
...

_xn;e

3
7777775
=

2
6666664

0 : : : : : : : : : 0
u1;r(t) 0 : : : : : : 0

0
...

...
...

...
...

...
...

0 : : : 0 u1;r(t) 0

3
7777775

2
6666664

x2;e
x3;e

...

...
xn;e

3
7777775
+

2
6666664

1
0
...
...
0

3
7777775
[u2 � u2;r(t)]: (5.6)

When we do so, the stabilized system (5.6) plays the role of the system�1 in Section 2.4
and (5.5) the role of the system�2. Then we can use Theorem 2.4.3 to conclude asymptotic
stability of the entire nonlinear tracking error dynamics. So instead of solving a nonlinear
control problem, we have to solve two linear ones.

5.3 State-feedback

In this section we study the state-feedback tracking control problem for chained-form sys-
tems. As derived in the previous section from a cascaded systems point of views the problem
of stabilizing (5.3) reduces to stabilizing the linear systems (5.5) and (5.6).

Clearly, the system (5.5) can easily be stabilized. A possible control law foru1 is

u1 = u1;r(t)� k1x1;e k1 > 0 (5.7)

since then the resulting closed-loop system

_x1;e = �k1x1;e k1 > 0
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is globally uniformly exponentially stable (GUES).

For stabilizing (5.6) we can use the result of Theorem 2.3.7, provided thatu1;r(t) is persist-
ently exciting (PE).

We can combine both results and solve the global state-feedback tracking control problem.

Proposition 5.3.1. Consider the chained-form tracking error dynamics(5.3). Assume that
u1;r(t) is persistently exciting (PE) and thatx2;r; x3;r; : : : ; xn�1;r are bounded.

Then the control law

u1 = u1;r(t)� k1x1;e (5.8a)

u2 = u2;r(t)� k2x2;e � k3u1;r(t)x3;e � k4x4;e � k5u1;r(t)x5;e � � � � (5.8b)

renders the closed-loop system(5.3, 5.8)globallyK-exponentially stable, provided thatk1 >
0 andki (i = 2; : : : ; n) are such that the polynomial

�n�1 + k2�
n�2 + � � �+ kn�1�+ kn

is Hurwitz.

Proof. Due to the design, we can recognize a cascaded structure in the closed-loop system
(5.3, 5.8):

2
6664

_x2;e
_x3;e

...

...
_xn;e

3
7775 =

2
6664

�k2 �k3u1;r(t) �k4 �k5u1;r(t) :::

u1;r(t) 0 ::: ::: 0

0
...

...
...

...
...

...
...

...
0 ::: 0 u1;r(t) 0

3
7775
2
6664

x2;e
x3;e

...

...
xn;e

3
7775

| {z }
f1(t;z1)

+

2
664

0
�k1(x2;e+x2;r)

�k1(x3;e+x3;r)

...
�k1(xn�1;e+xn�1;r)

3
775

| {z }
g(t;z1;z2)

x1;e

_x1;e = �k1x1;e| {z }
f2(t;z2)

:

From Theorem 2.3.7 we know that the system_z1 = f1(t; z1) is globally uniformly exponen-
tially stable (GUES). Also the system_z2 = f2(t; z2) is GUES. Sincex2;r; : : : ; xn�1;r are
bounded we have thatg(t; z1; z2) satisfies (2.25). As a result, Corollary 2.4.6 completes the
proof.

Remark 5.3.2.Notice that the only property of the system_z1 = f1(t; z1) that we need in this
proof, is the fact that it is globally uniformly exponentially stable (GUES). This is something
that (according to Theorem 2.3.7) is guaranteed by the choice for the inputu2. However,
under the assumption thatu1;r(t) is persistently exciting (which yields uniform complete
controllability according to Corollary 2.3.4), more control laws foru1 are available in litera-
ture that also guarantee GUES. In case we replaceu2 with any of these, the proof still holds.
Therefore, several other choices foru2 can be made. For instance, one might consider

� a ‘standard’ linear control law (Rugh 1996) which involves using the state-transition
matrix of the system (5.6) (see (Lefeber, Robertsson and Nijmeijer 1999a));
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� a less complicated control law (which also needs the state-transition matrix of the
system (5.6)) as presented by Chen (1997) (see (Lefeber, Robertsson and Nijmeijer
1999b));

� a pole-placement based control law, like for instance the one presented by Val´ašek and

Olgac (1995) (which requiresu1;r 2 Cn�2 and the signalsdu1;rdt (t); : : : ;
dn�2u1;r

dtn�2 (t) to
be available),

or any other control law one prefers that guarantees GUES of the system (5.6).

Remark 5.3.3.As pointed out by Samson (1995), it is possible to normalize the system’s
equations in terms of the advancement velocityju1;r(t)j, in order to replace time by the
distance gone by the reference vehicle. This “time normalization” makes the solutions “ge-
ometrically” unaffected by velocity changes, yielding convergence in terms of this distance,
instead of time. In practice this has the advantage that the damping rate does not change with
different values ofu1;r(t).

Remark 5.3.4.The mobile robot we studied in the previous chapter is also a chained-form
system. It would be interesting to compare the results of the previous chapter with the result
derived here. It would be most reasonable to compare both results in the original error co-
ordinates, i.e., in the variablesxe andye as defined by (4.2). In case we translate the result of
this chapter using the original error co-ordinates, we obtain

! = !r + k1�e k1 > 0

v = vr + k2xe � (k3 � 1)ye + f(�e; t) k2; k3 > 0

wheref(�e; t) is a quite complicated expression that satisfiesf(0; t) = 0. In case we interpret
f(0; t) as a part of the connecting term “g(t; z1; z2)z2” we can decide to forget about it. When
we do so, we regain exactly the control law (4.13).

The conclusion that we are allowed to leave out the termf(0; t), however, can only be drawn
with the cascaded structure of the mobile robot in mind. Therefore, the work of the previous
chapter can not be considered redundant. Furthermore, this makes clear that one should avoid
changing co-ordinates in order to be able to apply a standard control design technique, since
it can lead to unnecessary complicated controllers. One of the advantages of the cascaded
control design approach is that all analysis can be done in the original co-ordinates.

5.4 Dynamic output-feedback

In this section we study the dynamic output-feedback tracking control problem for chained-
form systems. That is, we study the problem of stabilizing the tracking error dynamics (5.3)
where we are only allowed to use the measured output for designing the control laws foru1
andu2.

Notice that for the system (5.1) we are unable to reconstruct the variablesx1 andxn, no
matter what output we have. Furthermore, in case we are able to measure onlyx1 andxn, the
system (5.1) is locally observable at anyx 2 Rn (see e.g., (Astolfi 1995)).
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This is why we assume to have[x1; xn]T available as an output for the chained-form system
(see (Astolfi 1995, Jiang and Nijmeijer 1999a)), since in a sense it represents the least amount
of components of the state vector that is required for being able to control the system (5.1).

In light of Section 5.2 it is clear that the problem can be reduced to the problem of finding
stabilizing dynamic output-feedback laws for the systems

_x1;e = u1 � u1;r(t) (5.9a)

y1 = x1;e (5.9b)

and2
6666664
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3
7777775
=

2
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0 : : : : : : : : : 0
u1;r(t) 0 : : : : : : 0
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...
...

...
...

...
...
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0 : : : 0 u1;r(t) 0
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7777775
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6666664

x2;e
x3;e
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xn;e
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6666664

1
0
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0

3
7777775
[u2 � u2;r(t)] (5.10a)

y2 =
�
0 : : : 0 1

�
2
64
x2;e

...
xn;e

3
75 : (5.10b)

For stabilizing (5.9) we can use

u1 = u1;r(t)� k1x1;e k1 > 0 (5.11)

since then the resulting closed-loop system becomes

_x1;e = �k1x1;e k1 > 0

which is globally uniformly exponentially stable (GUES).

For stabilizing (5.10) by means of output-feedback we need both uniform complete controlla-
bility and uniform complete observability of the system (5.10). For this it suffices thatu1;r(t)
is persistently exciting. Uniform complete controllability follows from Corollary 2.3.4 as
mentioned in the previous section. Uniform complete observability follows from duality. For
stabilizing (5.10) we can use Theorem 2.3.8.

By combining both results we obtain a solution for the dynamic output-feedback tracking
control problem.

Proposition 5.4.1. Consider the chained-form tracking error dynamics(5.3). Assume that
u1;r(t) is persistently exciting (PE) and thatx2;r; x3;r; : : : ; xn�1;r are bounded.

Then the control law

u1 = u1;r(t)� k1x1;e (5.12a)

u2 = u2;r(t)� k2x̂2;e � k3u1;r(t)x̂3;e � k4x̂4;e � k5u1;r(t)x̂5;e � � � � (5.12b)
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wherex̂ is generated from the observer2
66664
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(5.13)

renders the closed-loop system(5.3, 5.12, 5.13)globallyK-exponentially stable, provided
thatk1 > 0 andki; li (i = 2; : : : ; n) are such that the polynomials

�n�1 + k2�
n�2 + � � �+ kn�1�+ kn

and

�n�1 + l2�
n�2 + � � �+ ln�1�+ ln

are Hurwitz.

Proof. We can see the closed-loop system (5.3, 5.12, 5.13) as a cascaded system, i.e., a
system of the form (3.1) where

z1 =
�
x2;e : : : xn;e ~x2;e : : : ~xn;e

�T
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666666666666666664

�k2 �k3u1;r(t) �k4 �k5u1;r(t) ::: k2 k3u1;r(t) k4 k5u1;r(t) :::

u1;r(t) 0 ::: ::: 0 0 ::: ::: ::: 0

0
...

...
...

...
...

...
...

...
...

...
...

...
0 ::: 0 u1;r(t) 0 0 ::: ::: ::: 0

0 ::: ::: ::: 0 0 ::: ::: 0
...

...
... u1;r(t)

...
... �l5u1;r(t)

...
... 0

...
...

... �l4

...
...

...
...

... 0 �l3u1;r(t)

0 ::: ::: ::: 0 0 ::: 0 u1;r(t) �l2

3
777777777777777775

z1

f2(t; z2) = �k1z2
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0
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0
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�k1(xn�1;e+xn�1;r)

3
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and~xi;e = xi;e � x̂i;e (i = 2; : : : ; n). From Theorem 2.3.8 we know that the system_z1 =
f1(t; z1) is globally uniformly exponentially stable (GUES). Also the system_z2 = f2(t; z2)
is GUES. Sincex2;r; : : : ; xn�1;r are boundedg(t; z1; z2) satisfies (2.25). Application of
Corollary 2.4.6 completes the proof.
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5.5 Saturated control

In a similar way as in the previous sections, we can study the tracking problem for a system in
chained form under input saturation. That is, we can study the problem of designing tracking
controllers in such a way that we are always guaranteed to meet the constraints

ju1(t)j � umax
1 (5.14a)

ju2(t)j � umax
2 : (5.14b)

Obviously, we need to assume that once we are on the reference trajectory we can stay on
the trajectory, that is, for the reference trajectory the condition (5.14) is met. Therefore, we
assume that the reference trajectory that we would like to track satisfies

sup
t�0

ju1;r(t)j < umax
1

sup
t�0

ju2;r(t)j < umax
2 :

Instead of the nonlinear tracking control problem under input constraints, we only have to
address the two linear problems of stabilizing the subsystems (5.5) and (5.6) under the input
constraints (5.14).

As can easily be seen, stabilizing (5.5) while meeting (5.14a) is not difficult. We can modify
the control laws (5.7) and (5.11) into

u1 = u1;r(t)� ��(x1;e) (5.15)

where�� is a saturation function as defined in Definition 2.1.13 and

� � umax
1 � sup

t�0
ju1;r(t)j :

Then the resulting closed-loopx1;e dynamics becomes

_x1;e = ���(x1;e)
which is globallyK-exponentially stable.

Assume that we have a control law foru2 for the system (5.6) which is such that for the result-
ing closed-loop system Assumption A1 of Theorem 2.4.3 is satisfied. Then Corollary 2.4.4
tells us that we have global uniform asymptotic stability of the tracking error dynamics (5.3)
in closed loop with this control law foru2 and (5.15). In addition, ifu2 guarantees local
uniform exponential stability (LUES) we can conclude globalK-exponential stability of the
closed-loop tracking error dynamics (cf. Lemma 2.4.5).

Therefore, the only problem that remains, is to find a control law foru2 that in closed loop
with (5.6) results in a globally uniformly asymptotically stable (GUAS) system (most prefer-
able globallyK-exponentially stable), while meeting (5.14b). As far as we know, no result
on stabilizing linear time-varying systems by means of saturated state or output-feedback is
known (yet).

For linear time-invariant systems we have the results of Sussmann, Sontag and Yang (1994),
which deals with the stabilization under input constraints, both by using state-feedback and
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output-feedback. For linear time-invariant systems we can also think of using anti-windup
controllers, like for example the one proposed by Kapoor, Teel and Daoutidis (1998).

As a result, the tracking problem under input constraints (5.14) for chained-form systems
(under both state- and output-feedback) can (yet) only be solved for a special class of refer-
ence trajectories, namely those reference trajectories for whichu1;r(t) is a non-zero constant.
However, as soon as we have a result on the stabilization of linear time-varying systems un-
der input saturation, we also have a solution to the general tracking problem for chained-form
systems.

5.6 Simulations

In this section we apply the proposed state-feedback design for the tracking control of a
well-known benchmark problem: a towing car with a single trailer, see e.g., (Murray and
Sastry 1993, Samson 1995, Jiang and Nijmeijer 1999b).

The state configuration of the articulated vehicle consists of the position of the car(xc; yc),
the steering angle�, and the orientations�0 respectively�1 of the car and the trailer with
respect to thex-axis, see Figure 5.1 The rear wheels of the car and the trailer are aligned

yc

x
xc

y

�1

l

�

�0d1

Figure 5.1: Kinematic model of a car with a single trailer, where the controls are the forward
velocityv and the steering velocity! of the tow car.

with the chassis and are not allowed to slip sideways. The two input signals are the driving
velocity of the front wheels,v, and the steering velocity!.
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The kinematic equations of motion for the vehicle can be described by

_xc = v cos �0

_yc = v sin �0

_� = !

_�0 =
v

l
tan�

_�1 =
v

d1
sin(�0 � �1)

(5.16)

wherel is the wheelbase of the tow car andd1 is the distance from the wheels of the trailer
to the rear wheels of the car.

Although the system (5.16) is not in chained form, it can locally be transformed into the
chained form (5.1) via a change of co-ordinates and preliminary state-feedback (Murray and
Sastry 1993):

x1 = xc

x2 =
sin �1 sin

2(�0 � �1)

d21 cos
2 �0 cos3 �1

+
tan�

ld1 cos3 �0 cos �1
� sin(�0 � �1)

d21 cos �0 cos
3 �1

x3 =
sin(�0 � �1)

d1 cos �0 cos2 �1

x4 = tan �1

x5 = yc � d1 log

�
1 + sin �1
cos �1

�

v =
u1

cos �0

! = �1(�; �0; �1)u1 + �2(�; �0; �1)u2

(5.17)

where

�1 = �3 sin �0 sin
2 �

l cos2 �0
+

4 sin� cos�

d1 cos �1
� 3 sin� cos�

d1 cos �0
� 7l cos2 �

d21 cos �1
sin(�0 � �1)

� 6l cos2 �0 cos
2 �

d21 cos
3 �1

sin(�0 � �1) +
12l cos2 �0 cos

2 �

d21 cos �1
sin(�0 � �1)

+
6l

d21
sin �0 cos

2 �� 6l cos2 �0 sin �0 cos
2 �

d21 cos
2 �1

�2 = ld1 cos
3 �0 cos �1 cos

2 �:

This change of co-ordinates and preliminary feedback, results into the chained-form system

_x1 = u1

_x2 = u2

_x3 = x2u1

_x4 = x3u1

_x5 = x4u1:
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(Jiang and Nijmeijer 1999b) studied for this system the problem of tracking the straight line�
xc;r yc;r �r �0;r �1;r vr !r

�
=
�
t 0 0 0 0 1 0:

�
(5.18)

In chained-form co-ordinates the reference (5.18) can be expressed as�
x1;r x2;r x3;r x4;r x5;r u1;r u2;r

�
=
�
t 0 0 0 0 1 0

�
:

Starting from the initial condition

xe(0) =
�
1 0:5 0:5 0:5 0:5

�T
it was shown by Jiang and Nijmeijer (1999b) that their backstepping based controller

u1 = u1;r +
��c5x1;e � u2;rx2;rx1;e � u2;rx4;rx1;e + u2;rx3;e + u2;rx5;e

� 2c4x2;rx3;rx
2
1;e � 2c4x3;rx4;rx

2
1;e � 3u1;rx

2
2;rx

2
1;e � 4u1;rx2;rx4;rx

2
1;e

� u1;rx
2
4;rx

2
1;e � u2;rx1;ex2;e + c4x2;rx1;ex2;e + c4x4;rx1;ex2;e

+ 2c4x3;rx1;ex3;e + 6u1;rx2;rx1;ex3;e + 4u1;rx4;rx1;ex3;e � u2;rx1;ex4;e

+ 2c4x2;rx1;ex4;e + 2c4x4;rx1;ex4;e + 2c4x3;rx1;ex5;e + 4u1;rx2;rx1;ex5;e

+ 2u1;rx4;rx1;ex5;e � c4x2;ex3;e � c4x2;ex5;e � 3u1;rx
2
3;e � 2c4x3;ex4;e

� 4u1;rx3;ex5;e � 2c4x4;ex5;e � u1;rx
2
5;e � 2c4x3;rx

2
1;ex2;e

� 6u1;rx2;rx
2
1;ex2;e � 4u1;rx4;rx

2
1;ex2;e � 2c4x2;rx

2
1;ex3;e

� 2c4x4;rx
2
1;ex3;e � 2c4x3;rx1;e

2x4;e � 4u1;rx2;rx
2
1;ex4;e

� 2u1;rx4;rx
2
1;ex4;e + c4x1;ex

2
2;e + 6u1;rx1;ex2;ex3;e + 3c4x1;ex2;ex4;e

+ 4u1;rx1;ex2;ex5;e + 2c4x1;ex
2
3;e + 4u1;rx1;ex3;ex4;e + 2c4x1;ex3;ex5;e

+ 2c4x1;ex
2
4;e + 2u1;rx1;ex4;ex5;e � 3u1;rx

2
1;ex

2
2;e � 2c4x

2
1;ex2;ex3;e

� 4u1;rx
2
1;ex2;ex4;e � 2c4x

2
1;ex3;ex4;e � u1;rx

2
1;ex

2
4;e

� Æ �
�

+ 6x2;rx3;rx1;e + 2x3;rx4;rx1;e � 2x2;rx2;e � x3;rx3;e � 5x2;rx4;e

� 2x3;rx5;e + 6x3;rx1;ex2;e + 6x2;rx1;ex3;e + 2x4;rx1;ex3;e

+ 2x3;rx1;ex4;e � 2x22;e � 5x2;ex4;e � x23;e � 2x3;ex5;e + 6x1;ex2;ex3;e

+ 2x1;ex3;ex4;e
�

(5.19a)

u2 = u2;r + 2c4x3;rx1;e + 3u1;rx2;rx1;e + u1;rx4;rx1;e � c4x2;e � 3u1;rx3;e

� 2c4x4;e � u1;rx5;e + 3u1;rx1;ex2;e + 2c4x1;ex3;e + u1;rx1;ex4;e
(5.19b)

where� = 5, c4 = 2, c5 = 2 behaved as shown in Figure 5.2.

This behavior was compared to that of the control law (5.8). For tuning the gains we con-
sidered the two linear subsystems that result from the cascaded analysis. Both can be ex-
pressed as a standard linear time-invariant system of the form_x = Ax + Bu. We used
optimal control to arrive at the control lawu = �Kx for which the costsZ 1

0

kx(t)k2 + r ku(t)k2 dt
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Figure 5.2: Tracking errors and inputs for backstepping controller (5.19).
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are minimized, where we took the constantr such that similar control effort is needed as by
Jiang and Nijmeijer (1999b). The control law we used was

u1 = u1;r(t)� 3:1623x1;e (5.20a)

u2 = u2;r(t)� 2:0770x2;e � 2:1070x3;e � 1:1969x4;e � 0:3162x5;e (5.20b)

The resulting behavior is presented in Figure 5.3.
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Figure 5.3: Tracking errors and inputs for cascade controller (5.20).

We see from this simulation that the cascaded control law (5.20) not only looks more ap-
pealing than (5.19) but also obtains better convergence and is much easier to tune. Notice
that due to the local nature of the change of co-ordinates and preliminary feedback (5.17) the
control laws (5.20) and (5.19) are only global respectively semi-global in the chained-form
co-ordinates, but local in the original co-ordinates.

5.7 Concluding remarks

In this chapter we studied the tracking problem for a special class of non-holonomic systems,
namely the class of chained-form systems. This class contains several interesting examples
of mechanical systems with non-holonomic constraints.
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Using a cascaded systems approach we solved both the state- and output-feedback tracking
problems globally for this class of systems. We also solved the saturated tracking problem
(both under state- and output-feedback) for only a special class of reference trajectories,
namely those with constantu1;r(t). All results assume a persistence of excitation condition
onu1;r(t).

We like to emphasize that the fact that the kinematic model of a mobile car is contained in the
class of chained-form systems does not make the results in the previous chapter redundant.
On the contrary: a cascaded approach to the model of the mobile robot in the original co-
ordinates leads to less complicated expressions for the controller. This is also what should
be kept in mind when designing controllers for general systems that can be transformed into
chained form: apply the approach in the original co-ordinates! Besides, the change of co-
ordinates that brings the system in chained form is not global in general. Fortunately, very
oftenx1 andu1 are natural co-ordinates of the system (as for the mobile robot). Then the
cascaded approach used in this chapter can easily be applied to the system in original co-
ordinates. That is, first stabilize the tracking error dynamics that corresponds tox1;e using
the input that corresponds tou1. Then assume that this stabilization has worked out (which
boils down to substitutingx1;e � 0 andu1 = u1;r(t) in the remaining dynamics). Using the
remaining input, this system can be stabilized, provided thatu1;r(t) is persistently exciting.
Next, Theorem 2.4.3 guarantees global uniform asymptotic stability of the cascaded system
under some additional boundedness assumptions on the reference trajectory.

As mentioned in the previous chapter a persistence of excitation (PE) condition on the ref-
erence inputu1;r(t) might not be required. Lorı́a et al. (1999b) used the weaker notion of
uÆ-PE to study the stabilization problem for chained-form systems of order3. It is worth
investigating whether weakening the PE condition onu1;r to a uÆPE condition can be done
for general chained-form systems of ordern too.

Furthermore, a uniform global stabilization result for linear time-varying systems under in-
put saturation (and for the system (5.6) in particular) would extend the class of reference
trajectories we can track under input saturation.

For the mobile robot the cascaded design was an eye-opener to recognize a simpler structure
for backstepping. Since for the mobile robot this enabled us to weaken the assumption on the
reference trajectory, it is worth trying the same for chained-form systems. That is, we can
start from the nonlinear tracking error dynamics (5.3) with the inputu2 as in Proposition 5.3.1
and the virtual controlx1;e = 0 and “step back” the virtual control to obtain an expression
for the inputu1.
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Chapter 6

Tracking control of an
under-actuated ship

6.1 Introduction

In this chapter we study the tracking problem for an under-actuated ship. For a conven-
tional ship it is common to consider the motion insurge(forward),sway(sideways) andyaw
(heading), see Figure 6.1. Often, we have surge and sway control forces and yaw control

z

x

y

u (surge)

p (roll)

w (heave)

r (yaw)

v (sway)q (pitch)

Figure 6.1: Definition of state variables in surge, sway, heave, roll, pitch and yaw for a marine
vessel.

moment available for steering the ship. However, this assumption is not valid for all ships.
It is very well possible that ships are either equipped with two independent aft thrusters or
with one main aft thruster and a rudder, but are without any bow or side thrusters, like for
instance many supply vessels. As a result, we have no sway control force. Therefore, we

73
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assume to have only surge control force and yaw control moment available. Since we need
to control three degrees of freedom and have only two inputs available we are dealing with
an under-actuated problem.

For modeling the ship we follow Fossen (1994). We neglect the dynamics associated with
the motion in heave, roll and pitch and a slowly-varying bias term due to wind, currents, and
wave drift forces. Furthermore we assume that the inertia, added mass and damping matrices
are diagonal. In that case the ship dynamics can be described by (see e.g., (Fossen 1994)):

_u =
m22

m11
vr � d11

m11
u+

1

m11
u1 (6.1a)

_v = �m11

m22
ur � d22

m22
v (6.1b)

_r =
m11 �m22

m33
uv � d33

m33
r +

1

m33
u2 (6.1c)

_x = u cos � v sin (6.1d)

_y = u sin + v cos (6.1e)

_ = r (6.1f)

whereu, v andr are the velocities in surge, sway and yaw respectively andx, y,  denote
the position and orientation of the ship in the earth-fixed frame. The parametersmii > 0 are
given by the ship inertia and added mass effects. The parametersdii > 0 are given by the
hydrodynamic damping. The available controls are the surge forceu1, and the yaw moment
u2. The ship model (6.1) is neither static feedback linearizable, nor can it be transformed
into chained form. It was shown by Pettersen and Egeland (1996) that no continuous or
discontinuous static state-feedback law exists which makes the origin asymptotically stable.

The stabilization problem for an under-actuated ship has been studied in (Wichlund, Sørdalen
and Egeland 1995, Pettersen and Egeland 1996, Reyhanoglu 1996, Pettersen and Nijmeijer
1998). Tracking control of ships has mainly been based on linear models, giving local results,
and steering only two degrees of freedom. (Godhavn 1996) investigated output-tracking con-
trol based on a nonlinear model of the ship, and a controller providing global exponential
stability (GES) of the desired trajectory was developed. As only the position variables are
controlled, typically the ship may turn around and the desired position trajectory is followed
backwards. That is why we focus on state-tracking instead of output-tracking.

The first complete state-tracking controller based on a nonlinear model was developed by
Pettersen and Nijmeijer (1998) and yields global practical stability. Pettersen and Nijmeijer
(2000) achieved semi-global asymptotic stability by means of backstepping, inspired by the
results of Jiang and Nijmeijer (1999b). We are not aware of any global tracking results for
the tracking control of an under-actuated ship in literature.

In this chapter we present a global solution to the tracking problem for an under-actuated
ship. In Section 6.2 we derive the tracking error dynamics considered in (Pettersen and
Nijmeijer 2000) and also more natural error dynamics. In Section 6.3 we solve the state-
feedback tracking control problem. The controller derived in Section 6.3 is implemented for
tracking control of a scale model of an offshore supply vessel. The experimental results are
presented in Section 6.4. Some conclusions are drawn in Section 6.5.
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6.2 The tracking error dynamics

Assume that a feasible reference trajectory(ur; vr; rr; xr; yr;  r; u1;r; u2;r)
T is given, i.e., a

trajectory satisfying

_ur =
m22

m11
vrrr � d11

m11
ur +

1

m11
u1;r

_vr = �m11

m22
urrr � d22

m22
vr

_rr =
m11 �m22

m33
urvr � d33

m33
rr +

1

m33
u2;r

_xr = ur cos r � vr sin r

_yr = ur sin r + vr cos r

_ r = rr:

(6.2)

Notice that a drawback exists in considering the error co-ordinatesx � xr andy � yr, since
these position errors depend on the choice of the inertial frame. This problem is solved by
defining the change of co-ordinates as proposed by Pettersen and Egeland (1996) which boils
down to considering the dynamics in a frame with an earth-fixed origin having thex- and
y-axis always oriented along the ship surge- and sway-axis:

z1 = x cos + y sin 

z2 = �x sin + y cos 

z3 =  :

(6.3)

The reference variablesz1;r, z2;r andz3;r are defined correspondingly. Next, we define the
tracking errors

ue = u� ur (6.4a)

ve = v � vr (6.4b)

re = r � rr (6.4c)

z1;e = z1 � z1;r (6.4d)

z2;e = z2 � z2;r (6.4e)

z3;e = z3 � z3;r: (6.4f)

In this way, we obtain the tracking error dynamics

_ue =
m22

m11
(vere + verr(t) + vrre)� d11

m11
ue +

1

m11
(u1 � u1;r) (6.5a)

_ve = �m11

m22
(uere + uerr(t) + urre)� d22

m22
ve (6.5b)

_re =
m11 �m22

m33
(ueve + uevr + urve)� d33

m33
re +

1

m33
(u2 � u2;r) (6.5c)

_z1;e = ue + z2;ere + z2;err(t) + z2;rre (6.5d)

_z2;e = ve � z1;ere � z1;err(t)� z1;rre (6.5e)

_z3;e = re: (6.5f)
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Like Pettersen and Nijmeijer (2000) we study the problem of stabilizing the tracking error
dynamics (6.5).

As mentioned, the change of co-ordinates (6.3) boils down to considering the dynamics in
a frame with an earth fixed origin having thex- andy-axis always oriented along the ship
surge- and sway-axis. This is done for both the ship and the reference. Therefore, a physical
interpretation of the error co-ordinates (6.4d, 6.4e, 6.4f) is less clear. More natural error co-
ordinates would be to consider the position errorsx � xr andy � yr in a frame attached to
the body of the ship (as for the mobile robot). This leads to the error co-ordinates2

4xeye
 e

3
5 =

2
4 cos sin 0
� sin cos 0

0 0 1

3
5
2
4x� xr
y � yr
 �  r

3
5 : (6.6)

When using the error co-ordinates (6.4a, 6.4b, 6.4c, 6.6) the tracking error dynamics becomes

_ue =
m22

m11
(vere + verr(t) + vrre)� d11

m11
ue +

1

m11
(u1 � u1;r)

_ve = �m11

m22
(uere + uerr(t) + urre)� d22

m22
ve

_re =
m11 �m22

m33
(ueve + uevr + urve)� d33

m33
re +

1

m33
(u2 � u2;r)

_xe = u� ur cos e � vr sin e + reye + rr(t)ye

_ye = v � vr cos e + ur sin e � rexe � rr(t)xe

_ e = re:

(6.7)

Therefore, we could as well study the problem of stabilizing the tracking error dynamics (6.7).
However, for comparison reasons we focus in Section 6.3 on stabilizing (6.5). Stabilizing
(6.7) can be dealt with in a similar way.

6.3 State-feedback: a cascaded approach

We want to use the cascaded design approach for solving the state-feedback tracking problem.
For that, we follow the ideas presented in Section 3.2 and look for a control law for one of
the two inputs, which is such that in closed loop a subsystem is asymptotically stabilized.

By defining the preliminary feedback

u2 = u2;r � (m11 �m22)(uv � urvr) + d33re +m33� (6.8)

where� is a new input, the subsystem (6.5c, 6.5f) reduces to the linear system

_re = �

_z3;e = re
(6.9)

which can easily be stabilized by choosing a suitable control law for�, for example

� = �c1re � c2z3;e c1; c2 > 0: (6.10)
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Next, we assume that the stabilization of (6.9) has been established, that is, we substitute
re � 0 andz3;e � 0 in (6.5a, 6.5b, 6.5d, 6.5e). This results in

_ue =
m22

m11
verr(t)� d11

m11
ue +

1

m11
(u1 � u1;r)

_ve = �m11

m22
uerr(t)� d22

m22
ve

_z1;e = ue + z2;err(t)

_z2;e = ve � z1;err(t)

which is just a linear time-varying system:2
664

_ue
_ve
_z1;e
_z2;e

3
775 =

2
664

� d11
m11

m22

m11
rr(t) 0 0

�m11

m22
rr(t) � d22

m22
0 0

1 0 0 rr(t)
0 1 �rr(t) 0

3
775
2
664
ue
ve
z1;e
z2;e

3
775+

2
664

1
m11

0
0
0

3
775 [u1 � u1;r]:

(6.11)

All that remains to be done, is to find a feedback controller foru1 that stabilizes the system
(6.11). It follows from Corollary 2.3.4 that the system (6.11) is uniformly completely con-
trollable (UCC) if the reference yaw velocityrr(t) is persistently exciting. Notice that this
condition is similar to that of the mobile robot studied in Chapter 4, where also the reference
angular velocity had to be persistently exciting. As a result, if the reference yaw velocity
rr(t) is persistently exciting, we can use any of the control laws available in literature for
stabilizing linear time-varying systems, as mentioned in Remark 5.3.2.

In addition to these results we arrived at the following.

Proposition 6.3.1. Consider the system(6.11)in closed loop with the control law

u1 = u1;r � k1ue + k2rr(t)ve � k3z1;e + k4rr(t)z2;e (6.12)

whereki (i = 1; : : : ; 4) satisfy

k1 > d22 � d11 (6.13a)

k2 =
k4(k4 + k1 + d11 � d22)
m11

m22
(d22k4 +m11k3)

(6.13b)

0 < k3 < (k1 + d11 � d22)
d22

m11
(6.13c)

k4 > 0: (6.13d)

If rr(t) is persistently exciting (PE) then the closed-loop system(6.11, 6.12)is globally uni-
formly exponentially stable (GUES).

Proof. See Appendix A.

Combining the controllers (6.8, 6.10) and (6.12) we are now able to formulate the cascaded
systems based solution to the tracking control problem:
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Proposition 6.3.2. Consider the ship tracking error dynamics(6.5) in closed loop with the
control law

u1 = u1;r � k1ue + k2rr(t)ve � k3z1;e + k4rr(t)z2;e (6.14a)

u2 = u2;r � (m11 �m22)(ueve + vrue + urve)� k5re � k6z3;e (6.14b)

where

k1 > d22 � d11

k2 =
k4(k4 + k1 + d11 � d22)
m11

m22
(d22k4 +m11k3)

0 < k3 < (k1 + d11 � d22)
d22

m11

k4 > 0

k5 > �d33
k6 > 0:

If ur, vr, z1;r andz2;r are bounded andrr(t) is persistently exciting (PE), then the closed-
loop system(6.5, 6.14)is globallyK-exponentially stable.

Proof. Due to the design, the closed-loop system (6.5, 6.14) has a cascaded structure:2
4 _ue

_ve

_z1;e
_z2;e

3
5 =

2
64
�
k1+d11
m11

k2+m22
m11

rr(t) �
k3
m11

k4
m11

rr(t)

�
m11
m22

rr(t) �
d22
m22

0 0

1 0 0 rr(t)
0 1 �rr(t) 0

3
75
2
4 ue

ve
z1;e
z2;e

3
5

| {z }
f1(t;z1)

+

2
4

m22
m11

(ve+vr) 0

�
m11
m22

(ue+ur) 0

z2;e+z2;r 0

�(z1;e+z1;r) 0

3
5

| {z }
g(t;z1;z2)

[
re
z3;e ]

�
_re
_z3;e

�
=

��d33+k5
m33

� k6
m33

1 0

� �
re
z3;e

�
| {z }

f2(t;z2)

:

From Proposition 6.3.1 we know that the system_z1 = f1(t; z1) is globally uniformly ex-
ponentially stable (GUES) and from standard linear control that the system_z2 = f2(t; z2)
is GUES. Furthermore, due to the fact thatur, vr, z1;r, andz2;r are bounded,g(t; z1; z2)
satisfies (2.25). Applying Corollary 2.4.6 provides the desired result.

Remark 6.3.3.As pointed out in Remark 5.3.2 the control law (6.14) is not the only control
law that results in globalK-exponential stability. Any control law foru1 that renders the
system (6.11) globally uniformly exponentially stable works also.

Notice that the stabilization of the “more natural” tracking error dynamics (6.7) follows along
the same lines. Using the control law (6.8, 6.10), i.e.,

u2 = u2;r � (m11 �m22)(uv � urvr)� k5re � k6 e k5 > �d33; k6 > 0 (6.15)

results in the globally uniformly exponentially stable closed-loop (sub)system�
_re
_ e

�
=

��d33+k5
m33

� k6
m33

1 0

� �
re
 e

�
:



6.4. Experimental results 79

Substitution ofre � 0 and e � 0 in (6.7) yields the linear time-varying system:

2
664
_ue
_ve
_xe
_ye

3
775 =

2
664

� d11
m11

m22

m11
rr(t) 0 0

�m11

m22
rr(t) � d22

m22
0 0

1 0 0 rr(t)
0 1 �rr(t) 0

3
775
2
664
ue
ve
xe
ye

3
775+

2
664

1
m11

0
0
0

3
775 [u1 � u1;r]

which is identical to (6.11). For stabilizing this system we can use the control law

u1 = u1;r � k1ue + k2rr(t)ve � k3xe + k4rr(t)ye (6.16)

whereki (i = 1; : : : ; 4) satisfy (6.13).

Corollary 6.3.4. Assume thatrr(t) is persistently exciting and thatur andvr are bounded,
then we have that the control law(6.15, 6.16)renders the closed-loop tracking error dynamics
(6.7)globallyK-exponentially stable.

6.4 Experimental results

To support our claims we performed some experiments at the Guidance, Navigation and Con-
trol Laboratory located at the Department of Engineering Cybernetics, NTNU, Trondheim,
Norway. In the experiments we used Cybership I, which is a1 : 70 scale model of an off-
shore supply vessel. The model ship has a length of1:19 m, and a mass of17:6 kg and
is equipped with four azimuth-controlled thrusters (i.e., thrusters where the direction of the
propeller force can be controlled). The maximum force from one thruster is approximately
0:9 N. The vessel moves in a10-by-6 meter pool with a depth of about0:25 meters.

Three spheres are mounted on the model of the vessel that can be identified by infra red
cameras (for the simulation of a global positioning system (GPS)). Three infra red cameras
are mounted in such a way that (almost always) one or two cameras can see the boat. From
each camera the positions of the spheres are transfered via a serial line to adSPACE signal
processor (DSP). From these positions the ship position and orientation can be calculated. A
nonlinear passive observer of Fossen and Strand (1999) is used to estimate the unmeasured
states. The estimates for position and velocities generated by this observer are used for feed-
back in the control law. No theoretical guarantee for a stable controller observer combination
can be given (yet), as for nonlinear systems no separation principle exists. However, in the
experiments it turned out to work satisfactory.

The control law and position estimates are implemented on a Pentium 166 MHz PC which
is connected with the DSP via adSPACE bus. By usingSimulink R
 blocks, the software is
compiled and then downloaded into the DSP. The DSP sends the thruster commands to the
ship via a radio-transmitter. The sampling frequency used in the experiments was50 Hz.

The reference trajectory to be tracked was similar to that in (Pettersen and Nijmeijer 2000),
namely a circle with a radius of1 meter using a constant surge velocity of0:05 m/s. From
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the initial reference state

ur(0) = 0:05 m/s

vr(0) = 0 m/s

rr(0) = 0:05 rad/s

xr(0) = 4:75 m

yr(0) = 3:5 m

 r(0) = � rad

and the requirement

ur(t) = 0:05 m/s 8t � 0

rr(t) = 0:05 rad/s 8t � 0

the reference trajectory[ur; vr; rr; xr; yr;  r]T can be generated, since it has to satisfy (6.2).

As did Pettersen and Nijmeijer (2000) we chose in the experiments not to cancel or compen-
sate for the damping terms (i.e., assumed11 = d33 = 0), since these are restoring terms, and
due to possible parameter uncertainties cancellations could result in destabilizing terms.

In the experiments we compare the control law (6.14) that we obtained by a cascaded design
with the control of Pettersen and Nijmeijer (2000) that was derived by means of backstepping.
This backstepping-based controller is given by

u1 = �m11k
2
2urz3;e

rr
� m11k

2
2uez3;e

rr
+
m11k2dve

crr
+
m11k2duez3;e

rr

+
m11k2durz3;e

rr
+m11
z2;ez3;e +m11
z3;ez2;r �m11k1ue �m11
z1;e

�m11a1ue �m22vrrr �m22vrre �m22verr �m22vere � m11a1k
2
2z2;e

crr

+m11a1k1z3;ez2;r +m11a1k1z2;ez3;e � m11a1k
2
2z3;ez1;r

crr

+m11c
2�rruez3;e +

m11a1k2dz3;ez1;r

crr
+
m11a1k2dz1;ez3;e

crr

+m11c�rrk2z2;e +m11c�rrk2z1;ez3;e �m11a1k1z1;e

�m11k1rrz3;ez1;r +m11c�rrve �m11k1rrz1;ez3;e +
m11a1k2dz2;e

crr

+m11c
2�rrurz3;e +m11c�rrk2z3;ez1;r � m11a1k

2
2z1;ez3;e

crr

�m11k1rrz2;e � m11k2dz1;e

c
+
m11k2dz2;ez3;e

c
+
m11k2dz3;ez2;r

c

� m11k
2
2z2;ez3;e

c
� m11k

2
2z3;ez2;r

c
� m11k

2
2ve

crr
+
m11k

2
2z1;e

c

(6.17a)

u2 = fk1;k2;a1;a2;a3;�;�;
 (ue; ve; re; z1;e; z2;e; z3;e; t) (6.17b)

wherefk1;k2;a1;a2;a3;�;�;
 (ue; ve; re; z1;e; z2;e; z3;e; t) is a complex expression of 2782 terms
over a little less complex expression of 64 terms. For sake of not being incomplete, the
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control law foru2 is contained in Appendix B. The controller gains are given byk1 = 0:45,
k2 = 0:25, a1 = 0:5, a2 = 2, a3 = 15, � = 0:75, 
 = 0:005, and� = 50. These gains were
found by trial and error, using a computer model of the ship.

For tuning the gains of (6.14) we prefer a more systematic approach. However, for compari-
son we first look for a set of control parameters for (6.14) more or less corresponding to the
parameters of Pettersen and Nijmeijer (2000) for (6.17).

First we define the auxiliary signals

v1 = u1 � u1;r (6.18a)

and

v2 = u2 � u2;r + (m11 �m22)(ueve + vrue + urve) (6.18b)

and substituting foru1 andu2 the control laws (6.14) we obtain

v1 = �k1ue + k2rr(t)ve � k3z1;e + k4rr(t)z2;e

and

v2 = �k5rr(t)� k6z3;e

where for the experimentrr(t) = 0:05. This is a linear controller. Therefore, the first
approach for tuning the controller (6.14) is to consider a first order Taylor approximation of
the auxiliary signals (6.18) where we takeu1 andu2 as in (6.17). This results in

�v1 � �18:05ue + 3:90ve � 4:63z1;e + 2:31z2;e � 0:17re

+ (0:15 + 2:31z1;d + 4:63z2;d)z3;e
(6.19a)

�v2 � �60:00re � 2:40z3;e + 0:01ue + 1:6ve + 0:003z1;e � 0:005z2;e

� (0:005z1;d + 0:003z2;d)z3;e:
(6.19b)

In the cascaded analysis we first used�v2 for stabilizing the(re; z3;e)T dynamics and while
designing in the second stage�v1 we assume thatre = z3;e = 0. Therefore, we leave out the
re andz3;e terms of (6.19a) and neglect the small terms in (6.19b), as well as the term with
ve. This leads us to the control law

u1 = u1;r � 18:05ue + 3:90ve � 4:63z1;e + 2:31z2;e (6.20a)

u2 = u2;r � (m11 �m22)(ueve + vrue + urve)� 60:00re � 2:40z3;e: (6.20b)

The second approach for tuning the controller (6.14) is to consider the two linear subsystems
(6.9) and (6.11) that resulted from the cascaded analysis. Both can be expressed as a standard
linear time-invariant system of the form_x = Ax + Bu. We use optimal control to arrive at
the control lawu = �Kx for which the costsZ 1

0

x(t)TQx(t) + u(t)TRu(t)dt
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are minimized. ForQ we choose a diagonal matrix with entriesqii = 1
�xi

(i = 1; : : : ; 4),
where�xi is the maximum error we can tolerate inxi. ForRwe take the inverse of maximum
allowed input. This results in the choice

Q =

2
664
10 0 0 0
0 5 0 0
0 0 20 0
0 0 0 10

3
775 R = 1:1

for the system (6.11) and

Q =

�
50 0
0 50

�
R = 1:1

for the system (6.9). In this way we obtain for the control law:

u1 = u1;r � 10:28ue + 9:2ve � 4:44z1;e + 2:74z2;e (6.21a)

u2 = u2;r � (m11 �m22)(ueve + vrue + urve)� 9:02re � 6:74z3;e: (6.21b)

To summarize: we have three different control laws available, namely the backstepping-
controller (6.17) as proposed in (Pettersen and Nijmeijer 2000), its cascaded-systems-based
linearization (6.20) and the linear optimal control based cascaded controller (6.21).

We did experiments with all three controllers. The resulting performance of the cascaded
controller (6.20), which was based on a linearization of the backstepping controller, is shown
in Figure 6.3. In the first two graphs we compare the actual position of the ship with its desired
position. The third graph contains the error in orientation. The fourth and fifth graph depict
the controls applied to the ship. The bottom graph depicts the camera status. The reason for
showing this is that the infrared cameras from time to time loose track of the ship. As long as
the camera status equals zero we have position measurements from the camera-system, but
as soon as the camera status is non-zero we no longer get correct position measurements. In
Figure 6.3 we can see that for instance after about120 seconds we had a temporary failure
of the camera-system. This explains the sudden change in the orientation error e and in the
controlu1.

The resulting performance of the backstepping controller (6.17) is presented in Figure 6.4.

The resulting performance of the cascaded controller (6.21), of which the gains were chosen
by means of optimal control theory, is presented in Figure 6.5.

When we compare the backstepping controller (6.17) with the cascaded controller (6.21)
the tracking of the reference positionsxr(t) andyr(t) is comparable. However, the angular
tracking error is considerably less for the cascaded controller.

From the fact that the presented controllers can be applied successfully in experiments, we
might conclude that they possess some robustness with respect to modeling errors and with
respect to disturbances due to currents and wave drift forces.

To illustrate this robustness even more, we performed one experiment using the “optimal
gains” in which the author was wearing boots and walking through the pool, trying to create
as much waves as possible and disturbing the ship as much as he could. The results are
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Figure 6.3: Cascade controller (6.20) with gains based on linearization of the backstepping
controller.
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Figure 6.4: Backstepping controller (6.17).
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Figure 6.5: Cascade controller (6.21) with gains based on optimal control.
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Figure 6.6: Cascade controller (6.21) under disturbance of author walking through the pool.



88 Chapter 6. Tracking control of an under-actuated ship

depicted in Figure 6.6. It can be noticed that due to the heavy waves, the camera system
had much more difficulties in keeping track of the ship. Nevertheless a reasonable tracking
performance was achieved.

6.5 Concluding remarks

In this chapter we studied the tracking problem for an under-actuated ship that has only surge
control force and yaw control moment, which is a common situation for many supply vessels.

By means of a cascaded approach we developed a global tracking controller for this tracking
problem. The resulting control law has a much simpler structure than the backstepping based
controller that was available in literature and which guarantees semi-global tracking. The
cascaded approach reduced the problem of stabilizing the nonlinear tracking error dynamics
to two separated problems of stabilizing linear systems. This insight simplified the gain-
tuning a lot, since optimal control could be used to arrive at suitable gains.

A disadvantage of both the backstepping and the cascade controller is the demand that the
reference angular velocity does not tend to zero. As in the previous chapters, the cascaded
approach leads us to a simpler structure for backstepping (cf. Remark 4.2.6). Starting from
this we might be able to weaken this condition that the angular velocity of the reference
should not tend to zero. Another possibility might be to consider the idea of uÆ-PE.

The controllers presented in this chapter also proved to work reasonably well in experiments.
This implies a certain robustness against modeling errors and disturbances due to currents and
wave drift forces. In an attempt to get better robustness results, the cascaded approach might
be helpful. Disturbances due to currents and wave drift forces are in general modeled by a
constant force acting on the ship. The cascaded approach learned us that instead of looking
at the nonlinear tracking error dynamics, we could as well consider two linear systems. Ob-
taining asymptotic stability of a linear system under a constant disturbance is a well-known
problem that can be solved by using integral control. Therefore, adding integral control to
the cascaded controller adds robustness against constant disturbances.
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Chapter 7

Introduction to Part II

The second part of this thesis consists of three papers. All three deal with the tracking control
of nonlinear mechanical systems, but each focuses on different aspects than those discussed
so far in the first part of the thesis. Specifically, Chapter 8 and Chapter 9 deal with tracking
of fully-actuated rigid robots, whereas Chapter 10 treats a new adaptive control problem for
an under-actuated system. In what follows we briefly describe the subject of the three papers
and finally give a short discussion on a number of relevant similarities in these papers.

7.1 Paper I: Global asymptotic stability of robot manipula-
tors with linear PID and PI 2D control

This paper deals with the control of a special nonlinear mechanical system, namely a fully-
actuated rigid robot manipulator. The tracking problem considered is to move the manipulator
to a desired fixed point. This particular tracking problem also goes under the name set-point
control or is called the regulation problem. Takegaki and Arimoto (1981) showed that a PD
plus gravity compensation controller can globally asymptotically stabilize a rigid robot ma-
nipulator to any desired fixed point. One of the drawbacks of this approach is that the vector
of gravitational forces is assumed to be known accurately. Whenever the gravitational vector
is not known exactly and an estimate is used, the position error converges to a bounded steady
state error. Common practice is to use PID control to overcome this problem. However, only
local (or at best semi-global) asymptotic stability of this scheme has been proven so far (see
e.g., (Kelly 1995)).

Based on the ideas presented by Lefeber (1996) and applied to the bounded tracking control
of chaotic systems in (Lefeber and Nijmeijer 1996, Lefeber and Nijmeijer 1997a, Lefeber and
Nijmeijer 1997b) we combine a PD controller with a PID controller. First we apply the global
PD controller, which leads to a steady state error. Then we switch to the PID controller by
activating the integral action, which results in asymptotic stability. Using this hybrid linear
controller we are able to showglobalasymptotic stability.
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7.2 Paper II: Adaptive and filtered visual servoing of pla-
nar robots

This paper also deals with the regulation problem for rigid robot manipulators, but now with
time visual servoing (under a fixed camera configuration). In fixed-camera robotic systems,
a vision system fixed in the world co-ordinate frame captures images of the robot and its
environment. The objective is to move the robot in such a way that its end-effector reaches a
desired target.

Among the existing approaches to solve this problem, it has been recognized that the “image-
based” scheme possesses some degree of robustness against camera miscalibrations (Mi-
yazaki and Masutani 1990, Lei and Ghosh 1993, Hager, Chang and Morse 1995). In this
approach, the vision system provides an image position error, measured directly on the image
plane as the visual distance between the target and end-effector positions. This error is used
to drive the controller. Kelly and Marquez (1995) introduced a model of the vision system
incorporating a perspective projection based on thin lens geometric optics and they derived
a control law to solve the problem. Asymptotic stability of the resulting closed-loop system
was shown under the assumption that the orientation of the camera is known. No intrinsic
camera parameters were assumed to be known and neither the robot’s inverse kinematics nor
the inverse Jacobian was used. Kelly (1996) showed robustness of this controller in face of
unknown radial lens distortions and uncertainty in the camera orientation.

In this paper we extend the controllers proposed in (Kelly and Marquez 1995, Kelly 1996) to
a class of visual servoing controllers which also includes the controllers reported in (Miya-
zaki and Masutani 1990, Lei and Ghosh 1993, Coste-Manière, Couvignou and Khosla 1995,
Kelly 1996, Kelly, Shirkey and Spong 1996). Our class of controllers also containssaturated
controllers, which enables us to deal with constraints on the inputs. Furthermore, we extend
in this paper the results of (Kelly and Marquez 1995, Kelly 1996) to the cases where velocity
measurements are not available and the camera orientation parameter is unknown. The latter
problem involves a nonlinear parameterized adaptive system for which special analysis and
synthesis tools have to be developed, since this problem is almost unexplored in adaptive
control.

7.3 Paper III: Adaptive tracking control of non-holonomic
systems: an example

As in the previous paper, this third paper also studies a control problem where certain param-
eters are unknown. In the first part of this thesis we studied the tracking problem for nonlinear
mechanical systems with non-holonomic constraints. We assumed all system parameters to
be known exactly and no disturbances to be present. In case some system parameters are not
known exactly, things change considerably. This paper deals with the adaptive state-tracking
problem for the kinematic model of a four-wheel mobile robot with unknown length. The ex-
ample illustrates that the formulation of the adaptive state-tracking problem is far from trivial.
At first glance this might look surprising since adaptive tracking problems have been studied
throughout in literature. However, for all these problems feasibility of the reference trajectory
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is not an issue, since it turns out to be a priori guaranteed. Most results in adaptive control
deal either with the adaptive stabilization problem or the adaptiveoutput-tracking problem.
The adaptive stabilization problem usually is studied for systems without drift which can be
stabilized to an arbitrary point, no matter what value the unknown parameters have. In case
of the adaptive output tracking problem, one has as many inputs to the system as outputs. As
a result an arbitrary signal can be specified for the output. This output can be tracked for any
parameter.

As mentioned in Section 1.1, we insist on a state-tracking problem instead of an output-
tracking problem. Usually it is undesirable in the tracking problem for a mobile robot or
ship that the system turns around and follows the reference trajectory backwards. Therefore,
output-tracking does not suffice and state-tracking is what we are looking for. We like to
extend the results of the first part of this thesis to the case where certain system parameters are
unknown. We illustrate in this paper that not knowing certain parameters, like in this example
the length of the vehicle, and specifying a feasible reference trajectory is in conflict with each
other. The question then arises how to formulate the adaptive state-tracking problem. One of
the necessary conditions in formulating the adaptive state-tracking problem is that in case the
parameters are known it reduces to the state-tracking problem (as formulated in Section 1.1).

By means of the kinematic vehicle model we illustrate in this paper the above mentioned
conflict. We propose a natural formulation for the adaptive state-tracking problem and present
a general methodology for solving this problem.

7.4 Discussion

This thesis is concerned with the tracking of nonlinear mechanical systems. In the first part
we focussed on tracking of under-actuated systems and developed a new approach which
can lead to simple controllers. However, all analysis is done on the known model, which is
assumed to be accurate, whereas in practice all kinds of uncertainties play a role. That is why
in this second part we shift attention to some of the uncertainties that are of interest when
studying tracking of nonlinear mechanical systems.

To start with, in Chapter 8 and Chapter 9 we deal with uncertainties for fully-actuated sys-
tems. In Chapter 10 we return to the under-actuated problem studied in Part I, but this time in
the presence of parametric uncertainties. The fully-actuated system studied in Chapter 8 and
Chapter 9 is a rigid robot manipulator. In Chapter 8 we assume that the vector of gravitational
forces is not known exactly. We show that the common practice of using PID control yields
global asymptotic stability when the integral action is activated after some time. The ques-
tion remains if using integral action from the beginning can also result in global asymptotic
stability. The result we obtain is just a switch between a PD and a PID control. Switching
controllers is closely related to the results of Teel and Kapoor (1997) and Prieur and Praly
(1999).

An other approach of the problem would be to view the unknown constant gravitational vector
as an unknown parameter. In that case the integrated error can be seen as an estimate for this
unknown parameter and the additional integral action can be seen as an update law for this
estimate.



94 Chapter 7. Introduction to Part II

In Chapter 9 we study a different adaptive control problem. Here we adapt for the unknown
orientation of the camera that provides us with measurements. The main difficulty in solving
this adaptive problem is given by the fact that the unknown parameter enters the dynamics in
a nonlinear way. As a result none of the standard linear-in-the-parameters adaptive control
techniques can be used. Our solution consists of switching between two controllers which
results in a chattering behavior. Although not presented, also a smooth semi-global solution
is available. In Chapter 4 we studied the output-feedback tracking problem where part of the
position was unmeasured. However, if we consider the same problem where we assume that
the position is measured but not the orientation, then we run into similar problems. In this
case we also have to reconstruct an unknown angle that enters the dynamics nonlinearly. As
illustrated by Jakubiak, Lefeber, Tch´on and Nijmeijer (2000) the problems turn out to be the
closely related. Actually, similar semi-global solutions can be derived. Results on adaptive
control of nonlinearly parameterized systems (in a more general framework) can for instance
be found in the work of Loh, Annaswamy and Skantze (1999) and Kojic and Annaswamy
(1999).

Whereas in Chapter 8 and Chapter 9 we studied the adaptive regulation problem for fully-
actuated systems, in Chapter 10 we study the adaptivestate-trackingproblem for under-
actuated systems. In light of Chapter 8 and Chapter 9 the extension of the state-tracking
problem as considered in Part I to an adaptive state-tracking problem seems to be a natural
next step. As it turns out the first step to be made is arriving at a suitable problem formulation.
A precise statement of the general adaptive state-tracking control problem is not so simple.
An attempt is made in Chapter 10 by considering the example of a four-wheel mobile robot
with unknown length. The reason for considering this example is not given from a practical
point of view (since in practice the length of a mobile car can easily be measured), but mainly
to illustrate the difficulties one runs into when considering the (also from a practical point
of view interesting) adaptive state-tracking problem. For this specific example a problem
formulation is presented which could form a basis to arrive at a general problem formulation
of the adaptive tracking control problem as for instance presented by Lefeber and Nijmeijer
(1998).
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Abstract

In this paper we address the problem of set-point control of robot manipulators

with uncertain gravity knowledge by combining several previous contributions to PID

control. The main contribution is a linear PID controller which ensures global asymp-

totic stability of the closed loop. The key feature of the controller, which allows to

prove globality is that the integration is started after a short transient. In the case

of unmeasurable velocities, a similar \delayed" PI2D controller is shown to globally

asymptotically stabilize the manipulator.

1
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1 Introduction

1.1 Literature review

From the seminal paper [19] it is well known now that a PD plus gravity compensation

controller can globally asymptotically stabilize a rigid-joints manipulator. However, this

approach has two drawbacks (which have been already extensively studied): 1) the vector of

gravitational forces is assumed to be known accurately and 2) velocities are needed to inject

the necessary damping.

An ad hoc solution to the �rst problem is to compensate for the gravitational vector with

the best estimate available. It is well known that in such case, the manipulator in closed

loop with a simple PD controller will exhibit some robustness properties; more precisely, the

position error will converge to a bounded steady state error.

This problem is not exclusive to robot control but it is often encountered in di�erent

industrial processes. A typical and eÆcient remedy is to use PID control, originally proposed

by Nicholas Minorsky in 1922. In the western literature the �rst stability proof of a PID

controller in closed loop with a rigid-joints manipulator is attributed to [3]. Unfortunately,

due to some \mathematical technicalities" of the model only local (or at best semiglobal)

asymptotic stability can be proven. (See for instance [11]).

Concerning the problem of unmeasurable velocities, we know at least the following linear

dynamic position feedback controllers which appeared independently [10, 1, 5, 6], see also

[16] where the concept of EL controllers was introduced and which generalizes the results

of the previous references. As in the simple PD control case one can expect that if one

compensates with a constant vector estimate of the gravitational forces instead of the true

one, the manipulator error trajectories will converge to a bounded domain.

Furthermore, as in the case of measurable velocities, one can prove that the steady state

error can be eliminated by adding an integrator. More precisely, the PI2D controller originally

introduced in [15], is based upon the PD structure and the approximate di�erentiation �lter

as proposed in [10], in combination with a double integrator: of the position error and of the

�lter output. Unfortunately, due to some technical diÆculties, one can prove only semi-global

asymptotic stability, see also [7].

For the case of measurable velocities one can design, with some smart modi�cations,

nonlinear PID's which guarantee global asymptotic stability. As far as we know, the �rst

nonlinear PID controller is due to [9]1 which was inspired upon the results of Tomei [21].

Tomei proposed a PD plus adaptive gravity cancellation and used a normalization (�rstly

introduced by Koditschek in [12]) to prove global asymptotic convergence. Using the same

normalization idea, Kelly showed in [9] that global asymptotic convergence is still possible

in the case when one compensates for the gravity forces evaluated at the desired position.

The latter allows to reformulate the controller of [9] as a normalized PID.

Later, Arimoto [2] proposed to use a saturated proportional term. This idea helps in

the same way as the normalization to cope with the third order terms which appear in the

Lyapunov function derivative and impede claiming globality.

1Even though Kelly [9] presented his result as an \adaptive" controller, in section 4 it will become clear

why we use the \PID" quali�er.

2
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As far as we know, there exist no proof of global asymptotic stability of a linear PID

controller in closed loop with a robot manipulator. In this paper we use some well known

results to prove that the set-point regulation can be established by means of a linear delayed

PID controller, that is a simple PD controller to which an integral action is added after some

transient of time. In the sequel we will refer to this controller as \delayed PID", in short

PIdD.

Also, in case when no velocity measurements are available we show in a similar way that

the integral action of a PI2D controller can be delayed as to guarantee the global asymptotic

stability of the closed loop. This linear controller will be referred to in the sequel as \delayed

PI2D" or in short PI2dD.

Our approach is inspired on the ideas of composite control developed in2 [14]. The idea

of the composite control approach is simple and practically appealing: to apply in a �rst

phase, a global control law, which drives the closed loop trajectories inside some pre-speci�ed

bounded set. In the second phase, more precisely at time instant ts when the trajectories

are contained in the bounded domain, one switches to a locally stabilizing control law which

drives the tracking error to zero. A successful usage of this approach hinges upon the ability

of designing both controllers in a way such that the bounded set of the �rst phase, is contained

within the domain of attraction designed for the closed loop in the second phase.

Finally it is also worth mentioning the related {but di�erent{ work [20] where the authors

propose an algorithm to combine global with local controllers with the aim at improving both

robustness and performance.

1.2 Model and problem formulation

The rigid-joints robot kinetic energy is given by T (q; _q) = 1

2
_q>D(q) _q, where q 2 IRn represents

the link positions, D(q) = D>(q) > 0 is the robot inertia matrix, and the potential energy

generating gravity forces is denoted by Ug(q). Applying the Euler-Lagrange equations we

obtain the well known model

D(q)�q + C(q; _q) _q + g(q) = u (1)

where g(q) :=
@Ug

@q
(q), C(q; _q) _q represents the Coriolis and centrifugal forces, and u 2 IRn

are the applied torques. It is also well known now (see for instance [17]) that the following

properties hold.

P1 For all q 2 IRn the matrix D(q) is positive de�nite and, with a suitable factorization

(more precisely using the so-called Christo�el symbols of the �rst kind) the matrix

N(q; _q) = _D(q) � 2C(q; _q) is skew-symmetric. Moreover, there exist some positive

constants dm and dM such that

dmI < D(q) < dMI: (2)

P2 There exists some positive constants kg and kv such that for all q 2 IRn

kg � sup
q2IRn










@2Ug(q)

@q2









; (3)

2It is worth mentioning that the name \composite control" has already been used by other authors to

baptize di�erent approaches than the one used in this paper, see for instance [18].
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kv � sup
q2IRn










@Ug(q)

@q









: (4)

P3 The matrix C(x; y) is bounded in x and linear in y, that is, for all z 2 IRn

C(x; y)z = C(x; z)y (5)

kC(x; y)k � kckyk; kc > 0: (6)

In this paper we are interested in the solution to the state and output (position) feedback

set-point control problem of (1) assuming that the potential energy Ug(q), is not exactly

known. More precisely, consider the following problems.

Set-point control problem with uncertain gravity knowledge.

Assume that the gravitational energy function Ug(q) is not exactly known but only its es-

timate Ûg(q) is available. Moreover, assume that the estimate of the gravitational forces

vector, ĝ(q)
4

= @Û

@q
(q) satis�es

kv � sup
q2IRn

kĝ(q)k ; 8 q 2 IRn (7)

where kv is de�ned in (4). Under these conditions design continuous control laws

(state feedback) u = u(t; q; _q)

(output feedback) u = u(t; q; qc), _qc = f(q; qc)

such that, given any desired constant position the error ~q
4

= q � qd be asymptotically con-

vergent, that is, for any initial conditions

lim
t!1

~q(t) = 0: (8)

In particular we are interested in PID-like control laws achieving this goal, more precisely

we seek for controllers of the form

u = �kp~q � kd _q + �(t); kp; kd > 0 (9)

�(t) =

8<
:

ĝ(qd); 8 0 � t � ts

�ki
R t

ts
~q(s)ds+ ĝ(qd) 8 t � ts; ki > 0

(10)

for the case when joint velocities are measured. In the sequel controllers like (9), (10) will

be referred to as PIdD. In the case when velocity measurements are not available we seek for

a position feedback PI2dD controller, that is

u = �kp~q � kd#+ �(t) (11)

# = diag

�
bp

p+ a

�
q; a; b > 0; p =

d

dt
(12)

� =

8<
:

ĝ(qd); 8 0 � t � ts

�ki
R t

ts
(~q(s)� #(s))ds + ĝ(qd) 8 t � ts:

(13)

4
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The paper is organized as follows. In section 2 we analyze in certain detail some results which

appear fundamental to our main contributions. Section 3 contains our main results, that

is, we show that the PIdD and PI2dD controllers solve the global set-point control problem

with uncertain gravity knowledge. In section 4 we discuss the advantages of our results over

the mentioned nonlinear PID's. Section 5 presents a comparative simulation study of our

contributions against previous results. We �nish the paper with some concluding remarks

in section 6.

Notation. In this paper we use k�k for the Euclidean norm of vectors and matrices. We

denote by kpm and kpM the smallest and largest eigenvalues of matrix Kp and similarly for

any matrix M2 IR
n�n

.

2 Preliminary results

In order to put our contributions in perspective and to introduce some notation used in the

sequel, we �nd it convenient to describe in more detail some of the above-mentioned PID and

PD controllers. Even though some of these results are well known or can be easily derived

they are fundamental to our main contributions.

2.1 First case: measurable velocities

Based on the results of [19] and [22] we present below a simple robustness result vis-a-vis

the uncertainty of g(q).

2.1 Proposition. Consider the robot manipulator model (1) in closed loop with the PD

control law

u = �Kp~q �Kd _q + ĝ(qd): (14)

Let kpm > kg, then there exists a unique equilibrium point ( _q; q) = (0; qs) for the closed

loop system. The point ( _q; q) = (0; qs) is globally asymptotically stable for (1), (14) and the

steady state error ~qs
4

= qs � qd satis�es

k~qsk �
2kv

kpm
: (15)

�

Proof. The closed loop equation (1), (14) is given by

D(q)�q + C(q; _q) _q + g(q)� ĝ(qd) +Kp~q +Kd _q = 0: (16)

System (16) is a Lagrangian system with potential energy

U1(q)
4

= Ug(q)� Ûg(qd)� ~q>ĝ(qd) +
1

2
~q>Kp~q:

It is well known that (16) has its equilibria at the minima of U1(q). To evaluate these

equilibria we calculate the critical points of U1(q) say, all points q = qs satisfying

@U1

@q
(qs) = 0 , Kp(qs � qd) + g(qs)� ĝ(qd) = 0; (17)

5
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moreover the equilibrium q = qs is global and unique if kpm > kg where kg satis�es (3). The

global asymptotic stability result is then established with help of the Lyapunov function

candidate

V1(q; _q) =
1

2
_q>D(q) _q + U1(q) (18)

which corresponds to the total energy of the closed loop system (16), hence it is positive

de�nite and moreover has a global and unique minimum at ( _q; q) = (0; qs) if kpm > kg. The

time derivative of V1 along the trajectories of (16) is

_V1( _q) = � _q>Kd _q:

Global asymptotic stability of the equilibrium ( _q; q) = (0; qs) immediately follows using

Krasovskii-LaSalle's invariance principle. Finally the bound for the steady state error

de�ned in (15) is easily derived from (17) using the triangle inequality and the conditions

on kv given by (7), (4). �

However, as it is well known the steady state error ~qs can be eliminated by the use of

an integrator, this result was �rstly proved in [3]. Reformulating (for further analysis) the

original contribution of [3] we have the following

2.2 Proposition. Consider the dynamic model (1) in closed loop with the PID control law

u = �Kp~q �Kd _q + � (19)

_� = �Ki~q; �(0) = �0 2 IRn: (20)

where Kp, Kd, and Ki are diagonal positive de�nite matrices. If Kp is suÆciently large then

the closed loop is locally asymptotically stable at the origin x
4

= col[~q; _q; ~�] = 0. �

Proof. Choose any positive de�nite diagonal matrix K 0

p and let

Kp
4

= K 0

p +
1

"
Ki (21)

where " > 0 is a (small) constant to be determined, clearly Kp is also positive de�nite and

diagonal for any " > 0. Then the error equation (1), (19), (20) can be written as

D(q)�q + C(q; _q) _q + g(q)� g(qd) +K 0

p~q +Kd _q = �
1

"
Ki~q + ~� (22)

_~� = �Ki~q (23)

where we have de�ned ~�
4

= � � g(qd) in order to compact the notation. A simple inspection

shows that the unique equilibrium of the system (22), (23) is ~q = 0, ~� = 0 and _q = 0. Now

we proceed to analyze the stability of the closed loop system, for this we use the Lyapunov

function candidate

V2(~q; _q; ~�) =
1

2
_q>D _q+Ug�Ugd� ~q>gd+

1

2
~q>K 0

p~q+
"

2
(�

1

"
Ki~q+~�)>K�1

i (�
1

"
Ki~q+~�)+"~q>D _q

(24)

where we have dropped the arguments and de�ned Ugd

4

= Ug(qd), gd
4

= g(qd) to simplify the

notation. It is worth mentioning at this point that, Lyapunov candidate functions with cross

6



102 Chapter 8. GAS of robot manipulators with linear PID and PI2D control

terms as V2 have been widely used in the literature starting probably with [12] (see also

[23, 11, 2, 15] and references therein).

We �nd it convenient to this point to split the kinetic, and part of the potential energy

terms as

~q>K 0

p~q = (�1 + �2 + �3)~q
>K 0

p~q

_q>D(q) _q = (�1 + �2 + �3) _q
>D(q) _q

with 1 > �i > 0, i = 1; 2; 3. Then one can show that if

k0pm � max

�
kg

�1

;
"2dM

�1�2

�
; (25)

then the function V2(q; _q; ~�) satis�es the lowerbound:

V2(~q; _q; ~�) �
�3

2
~q>K 0

p~q +
�2 + �3

2
_q>D _q (26)

hence it is positive de�nite and radially unbounded. The motivation for this partitioning of

the energy terms will become more evident in the sequel. Next, using the well known bounds

(6) and

kg(q)� g(qd)k � kg k~qk (27)

we obtain that the time derivative of V2(q; _q; ~�) along the trajectories of (22), (23) is bounded

by

_V2(~q; _q) � �
�
kdm �

"

2
kdM � "kc k~qk � "dM

�
k _qk2 � "

�
k0pm � kg �

1

2
kdM

�
k~qk2 (28)

which is negative semide�nite for instance if

kdm > "(kdM + 2dM) (29)

k0pm > kg +
1

2
kdM (30)

k~qk �
kdm

2"kc
: (31)

Local asymptotic stability of the origin x = 0 follows using Krasovskii-LaSalle's invariance

principle. Furthermore one can de�ne a domain of attraction for the closed loop system (22),

(23) as follows. De�ne the level set

BÆ

4

=
�
x 2 IR3n : V2(x) � Æ

	
(32)

where Æ is the largest positive constant such that _V2(x) � 0 for all x 2 BÆ. Since V2 is

radially unbounded and positive de�nite, and _V2(x) � 0 for all x 2 BÆ, this level set is

positive invariant (i.e. if x(0) 2 BÆ then x(t) 2 BÆ for all t � 0) and quali�es as a domain

of attraction for x. �

7
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2.2 Second case: unmeasurable velocities

In this section we brie
y present some similar results to those contained in Propositions 2.1

and 2.2 for the case when only position feedback is available. First, based on the results of

Kelly [11], consider the following

2.3 Proposition. Consider the dynamic model (1) in closed loop with the PD control law

u = �Kp~q �Kd#+ ĝ(qd) (33)

_qc = �A(qc +Bq) (34)

# = qc +Bq (35)

where A, B, Kd and Kp are diagonal positive de�nite matrices. Then, if kpm > kg, the

equilibrium point ( _q; #; q) = (0; 0; qs) where qs satis�es (15), of the closed loop system is

globally asymptotically stable. �

Proof. The proof can be easily given along the lines of the proof of Proposition 2.1. First

we write the error equation (1), (33)-(35) as

D(q)�q + C(q; _q) _q + g(q)� ĝ(qd) +Kp~q +Kd# = 0 (36)

_# = �A# +Bq: (37)

Then, consider the Lyapunov function candidate

V3( _q; #; q) = V1( _q; q) +
1

2
#>KdB

�1# (38)

which is positive de�nite and radially unbounded with a global and unique minimum at

col[ _q; #; q] = col[0; 0; qs] if kpm > kg. Its time derivative along the trajectories of (36), (37)

is
_V3(#) � �#

>KdB
�1A#;

then global asymptotic stability follows by invoking Krasovskii-LaSalle's invariance principle

and using standard arguments. �

The proposition above ensures the global asymptotic convergence of ~q ! ~qs as t ! 1

where ~qs satis�es (15). However, as in the case of measurable velocities, one can eliminate

the steady state error by using PID control. More precisely, in [15] we introduced the

PI2D controller which establishes semi-global asymptotic stability with uncertain gravity

knowledge. For simplicity and for the purposes of this paper we formulate below a proposition

which follows as a corollary of the main result contained in [15] (see also [7]). The result

below guarantees local asymptotic stability.

2.4 Proposition. Consider the robot model (1) in closed loop with the PI2D control law

8>><
>>:

u = �Kp~q �Kd# + �

_� = �Ki(~q � #); �(0) = �0 2 IRn

_qc = �A(qc +Bq)

# = qc +Bq:

(39)

8



104 Chapter 8. GAS of robot manipulators with linear PID and PI2D control

Let Kp; Ki; Kd; A and B be positive de�nite diagonal matrices where B is such that

BD(q) = D(q)B > 0. Under these conditions, we can always �nd a suÆciently large propor-

tional gain Kp (or suÆciently small Ki) such that the equilibrium �
4

= col[~q; _q; #; ~�] = 0 is

locally asymptotically stable. �

Proof. Below we give an outline of the proof proposed in [15], which we will use in the

sequel for our main results. First, the error equation (1), (39) can be written as

D(q)�q + C(q; _q) _q + g(q)� g(qd) +K 0

p
~q +Kd# = ~� �

1

"
Ki~q (40)

_~� = �Ki(~q � #) (41)

_# = �A# +B _q (42)

where K 0

p
is de�ned by (21).

From [15] we know that the Lyapunov function candidate

V4(~q; _q; #) = V2(~q; _q; ~�) +
1

2
#>KdB

�1#� "#>D(q) _q

is positive de�nite and radially unbounded with a global and unique minimum at the origin

if " is suÆciently small. For the sake of completeness we rewrite the conditions derived in

[15] with a slight modi�cation convenient for the purpose of this paper. Let us partition the

term #>KdB
�1# = (�1 + �2)#

>KdB
�1# where 0 < �1 + �2 � 1, �i > 0 with i = 1; 2. With

these de�nitions, one can prove that if (25) holds and

" <

�
2kdm�2�2

dMbM

�1=2

(43)

then V4(~q; _q; #) satis�es the bound

V4(~q; _q; #) �
�3

2
_q>D _q +

�3

2
~q>K 0

p
~q +

�1

2
#>KdB

�1#: (44)

Furthermore, it has also been shown in [15] that if the position error ~q and the �lter output

# satisfy

k#k + k~qk �
bmdm

2kc
(45)

and if " > 0 is suÆciently small to satisfy

" < min

(
(k0

pm
� kg)kdmam

2bM
�
k0
pM

+ kdM + kg
�2 ; kdmamdm

2[amdM ]2
;

kdmam

2bMkdM

)
(46)

then there exist strictly positive constants �1, �2, and �3 such that the time derivative of V4
along the closed loop trajectories (40), (41) is bounded by

_V4(q; _q; #; ~�) � ��1 k~qk
2
� �2 k _qk

2
� �3k#k

2: (47)

Since V4 is positive de�nite and _V4 is locally negative semide�nite, local asymptotic stability

of � = 0 can be proven by invoking Krasovskii-LaSalle's invariance principle and using

standard arguments. Furthermore a domain of attraction for system (40), (42) with state

9
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� = col[~q; _q; #; ~�] can be de�ned similarly as in the proof of Proposition 2.2 as the level

set

B�

4

=
�
� 2 IR4n : V4(�) � �

	
(48)

where � is the largest positive constant such that _V4(�) � 0 for all � 2 B�. The proof

�nishes using similar arguments as in the proof of Proposition 2.2. �

We are ready now to present our main results: global asymptotic stability with PID and

PI2D control.

3 Main results

In this section we present our main results, which leans on the results derived in Propositions

2.1 - 2.4 and the composite control approach proposed in [13]. We show that one can achieve

global asymptotic stability with PID and PI2D control by simply delaying the integral action.

3.1 First case: measurable velocities

3.1 Proposition. Consider the robot manipulator model (1) in closed loop with the PIdD

control law

u = �Kp~q �Kd _q + �(t) (49)

�(t) =

8<
:

ĝ(qd); 8 0 � t � ts

�Ki

R t

ts
~q(s)ds+ ĝ(qd) 8 t � ts

(50)

where Kp, Kd, and Ki are diagonal positive de�nite matrices. There always exist a �nite

time instant ts � 0, a suÆciently large proportional gain Kp and/or a suÆciently small

integral gain Ki, such that the closed loop system is globally asymptotically stable at the

origin x
4

= col[ _q; ~q; ~�] = 0. �

Roughly speaking, in its �rst phase (that is 0 � t � ts), the delayed PID of Proposition

3.1 collapses to the robust controller of Proposition 2.1 which guarantees global asymptotic

stability of a di�erent equilibrium than desired but it also guarantees that the steady position

error is con�ned to the closed ball of radius determined by (15). In its second phase (that is,

for all t � ts), the delayed PID collapses to the \conventional" PID controller of Proposition

2.2 with initial conditions x0 = x(ts). From the proof of Proposition 2.2 we know that if the

initial conditions x0 are small enough then the trajectories x(t) are asymptotically stable

(hence q(t) ! qd as t ! 1). Thus the main diÆculty in the proof of Proposition 3.1 is to

show that there exist suitable gains Kp and Ki such that the bounded set of convergence

de�ned for the �rst phase is contained in the domain of attraction de�ned for the second

phase. The latter implies that, before the integral action is incorporated (i.e. for all t � ts),

the delayed PID drives the generalized positions and velocities into the domain of attraction

BÆ in �nite time. From this the existence of a �nite start-integration time ts to guarantee

GAS, follows. We prove below that this is the case.

10



106 Chapter 8. GAS of robot manipulators with linear PID and PI2D control

3.2 Remark. It is important to remark that even though the (delayed) PID controller

proposed above is not smooth, it is continuous. This depends of course on the correct

setting of the initial conditions of the integrator, that is �(ts) = ĝ(qd).

Proof of Proposition 3.1. From Proposition 2.1 it follows that during the �rst phase of

the delayed PID, (~q; _q; ~�) ! (~qs; 0; ĝ(qd) � g(qd)) as t ! 1. Furthermore, ~qs satis�es the

upperbound (15). De�ne the set

�
4

=

�
x 2 IR3n : k~qk �

2kv

kpm
; _q = 0; k~�k � 2kv

�
;

from the discussion above, we must �nd a constant Æ large enough so that � � BÆ where

BÆ is de�ned in (32), henceforth a suitable time moment ts to guarantee GAS of the closed

loop. Notice that in order to give an explicit value to Æ in terms of the control gains, V2(x)

is needed, however the potential energy term Ug(q) is not known explicitly. Therefore, let us

de�ne

V2M(~q; _q; ~�) =
1

2
_q>D _q +

1

2
(kpM + kg) k~qk

2
+ k~�k k~qk+

"

2kim
k~�k

2
+ "~q>D _q (51)

and the level set

BM
Æ

4

=
�
x 2 IR3n : V2M(x) � Æ

	
:

It is not diÆcult to see that V2M(x) � V2(x) hence B
M
Æ � BÆ. Now we look for a Æ such that

� � BM
Æ � BÆ, it suÆces that the four corners of the \plane" � be contained in BM

Æ hence,

using (51) and (15) it is suÆcient that

Æ >
1

2
(kpM + kg)

�
2kv

kpm

�
2

+
4k2v
kpm

+
2"k2v
kim

: (52)

In words, the lower-bound on Æ given above, ensures that the delayed PID controller in its

�rst phase will drive the trajectories into the domain of attraction BÆ in �nite time. The

second requirement on Æ is that _V2 be negative semi-de�nite for all x 2 BÆ, hence we proceed

to calculate an upperbound for Æ so that _V2(BÆ) � 0.

From the proof of Proposition 2.2 (see (26)) we know that (25) implies that V2(x) �

V2m(x) where we de�ned

V2m(x)
4

=
�3

2
k0pm k~qk

2
;

De�ne the set Bm
Æ

4

=
�
x 2 IR3n : V2m(x) � Æ

	
. With these de�nitions we have that BÆ � Bm

Æ

hence it suÆces to prove that _V2(B
m
Æ ) � 0. Notice that among the three suÆcient conditions

(29)-(31) to ensure _V2(x) � 0, the only one which a�ects the de�nition of the domain of

attraction (hence of Æ) is (31) thus, it should hold true that

2Æ

�3k
0
pm

<
k2dm
4"2k2c

: (53)

In summary, recalling (52) it is suÆcient that Æ satis�es

1

2
(kpM + kg)

�
2kv

kpm

�
2

+
4k2v
kpm

+
2"k2v
kim

< Æ <
�3k

0

pm
k2dm

8"2k2c
(54)

11
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to ensure that the trajectories x(t) converge to the domain of attraction BÆ in �nite time.

Finally, to ensure global asymptotic stability of the origin it suÆces to choose the time ts
as the �rst time moment when the \initial conditions" x(ts) 2 BÆ that is, ts : V2(x(ts)) � Æ

however, since V2(x) is not accurately known consider the function

�V2M(x)
4

=
1

2
_q>D _q +

1

2
(kpM + kg) k~qk

2
+ 2kv

�
k~qk+

"kv

kiM

�
+ "~q>D _q:

To this point, we recall that for all t � ts the PIdD controller is a robust PD with ~� =

ĝ(qd)� g(qd) = constant, hence k~�k � 2kv. From this it follows that �V2M (x(t)) � V2M(x(t))

for all t � ts. Thus, the proof is completed by de�ning the start-integration time as

ts : �V2M(x(ts)) � Æ (55)

and noticing that (54) holds for suÆciently small ", hence due to (21) for suÆciently large

kpm and/or suÆciently small kiM < ".

�

Summarizing all conditions, we draw the following corollary from the proofs of Propo-

sitions 2.2 and 3.1. This gives an insight to the practitioner on how to choose the control

gains and the switching time ts to guarantee GAS of the origin.

3.3 Corollary. Consider the dynamic model (1) in closed loop with the PIdD control law

(49), (50). Let Kp, Kd, and Ki be diagonal positive de�nite matrices, satisfying

kdm > "(kdM + 2dM) (56)

k0
pm

> max

�
kg

�1
;
"2dM

�2�1
; kg +

kdM
2

�
; (57)

and (54). De�ne the start-integration time ts as in (55). Under these conditions, the closed

loop system is globally asymptotically stable at the origin.

The �rst two parts of condition (57) ensure that V2(x) � V2m(x), V2(x) is positive de�nite

and radially unbounded. Then, condition (56) and the third part of condition (57) imply

that _V2(x) is negative semi-de�nite. Thus all suÆcient conditions derived in the previous

proofs have been collected in the corollary above. In order to satisfy them one may proceed

as follows:

1. Pick any " and �i in the interval (0; 1) satisfying �1+�2+�3 � 1 and any proportional

and derivative gains Kp and Kd satisfying (56) and (57).

2. Pick any \small" integral gain Ki and check whether there is a Æ satisfying (54). If

not, then pick a smaller " hence either larger kpm or smaller kiM according with (21).

3. Repeat steps 1 and 2 until all conditions are satis�ed. Finally, de�ne ts as in (55).

Thus all conditions can be easily veri�ed and the controller gains can be computed for any

initial conditions x(0).

12



108 Chapter 8. GAS of robot manipulators with linear PID and PI2D control

3.2 Second case: unmeasurable velocities

3.4 Proposition. Consider the robot model (1) in closed loop with the PI2
d
D control law

u = �Kp~q �Kd# + �(t) (58)

_qc = �A(qc +Bq) (59)

# = qc +Bq (60)

� =

8<
:

ĝ(qd); 8 0 � t � ts

�Ki

R
t

ts
(~q(s)� #(s))ds+ ĝ(qd) 8 t � ts:

(61)

Let Kp; Ki; Kd; A and B be positive de�nite diagonal matrices where B is such that

BD(q) = D(q)B > 0.Under these conditions, we can always �nd a �nite time instant ts � 0,

suÆciently large gains Kp, B and/or a suÆciently small integral gain Ki such that the closed

loop system is globally asymptotically stable at the origin �
4

= col[ _q; ~q; #; ~�] = 0. �

Proof. The proof follows along the lines of the proof of Proposition 3.1, based on the

results obtained in Propositions 2.3 and 2.4. We start by de�ning the set

�0
4

=

�
� 2 IR4n : k~qk �

2kv

kpm
; _q = # = 0; k~�k � 2kv

�
;

and denoting the level set

BM

�

4

=
�
� 2 IR4n : V4M(�) � �

	
:

where

V4M(�)
4

= V2M(x) +
1

2
#>KdB

�1#� "#>D _q:

Notice from the proof of Proposition 2.4 that V4M(�) � V4(�), hence B
M

�
� B�. Notice also

that V4M(�0) = V2M (�) hence �0 � BM

�
if � satis�es a similar bound as (52). We only need

to de�ne an upperbound for � which ensures that _V4(B�) � 0. Let

V4m(�)
4

= V2m(x) +
�1kdm

2bM
k#k

2
(62)

and from (44) we have that V4(�) � V4m(�) if condition (43) and (25) hold. Consider next

the condition established by inequality (45), then analogously to (53) we have that

max

��
2�

�3k0pm

�
;

�
2�bM

�1kdm

��
<

b2
m
d2
m

16k2
c

and (46) imply that _V4(�) � 0 for all � such that V4m(�) � �, hence also for all � 2 B�. In

summary, it is suÆcient that � satis�es

1

2
(kpM + kg)

�
2kv

kpm

�
2

+
4k2

v

kpm
+

2"k2
v

kim
< � <

b2
m
d2
m

16k2
c

min

��
�3k

0

pm

2

�
;

�
�1kdm

2bM

��
; (63)

to ensure that the delayed PI2D controller in its �rst phase drives the trajectories �(t) into

the domain of attraction de�ned for the second phase. Hence there exists a �nite ts � 0

13
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ensuring GAS of the origin � = 0. As in the proof of Proposition 3.1, considering that for

all t � ts, the gravity compensation error k~�k is a constant bounded by 2kv, the instant ts
can be chosen as

ts : �V4M (x(ts)) � � (64)

where

�V4M(x)
4

=
1

2
_q>D _q +

1

2
(kpM + kg) k~qk

2
+ 2kv

�
k~qk+

"kv

kim

�
+ "~q>D _q +

1

2
#>KdB

�1#� "#>D _q:

The proof �nishes noticing that (63) holds for suÆciently large bm and suÆciently small ",

hence due to (21) for suÆciently large kpm and/or suÆciently small kiM < ". �

3.5 Remark. Notice from (64) that the switching time ts does depend indeed on the unmea-

surable velocities _q(ts). Hence, the precise theoretical result which is contained in Proposition

3.4 is that \there exists a start-integration time ts such that the origin � = 0 is GAS". For

practical purposes however, observe that the velocity measurements are not used in the

controller equations (58) { (61). As it can be seen from the proof above, in practice the

start-integration time ts can be computed with knowledge of the best estimate available of

the velocity measurement at a precise instant. For instance any ts such that �V4M (x(ts)) < �

where we rede�ned

�V4M(x(ts))
4

=
1

2
_̂q(ts)

>D _̂q(ts) +
1

2
(kpM + kg) k~q(ts)k

2
+ 2kv

�
k~q(ts)k+

"kv

kim

�
+ "~q(ts)

>D _̂q(ts):

(65)

and _̂q(ts) is the best estimate available of _q(ts), that is, at the precise instant ts. Such

estimate can be computed for instance from the last two position measurements prior to the

moment ts.

We �nally draw the following Corollary from Propositions 2.4 and 3.4.

3.6 Corollary. Consider the dynamic model (1) in closed loop with the PI2dD control law
(58){(61). Let Kp, Kd, and Ki be diagonal positive de�nite matrices with Kp de�ned by
(21), satisfying (43), (46), and (63). There exists time instant ts (for instance given by
(64)) such that the closed loop system is globally asymptotically stable at the origin � =

col[~q; _q; #; ~�] = 0.

For practical applications however one may choose the start-integration time ts according to

(65). It is important to remark that the semiglobal stability results reported in [15] and [7]

have the same practical drawback: the initial (unmeasurable) velocity must be known.

4 Discussion

As it is clear now from the proof of Proposition 2.2, what impedes claiming global asymptotic

stability for a PID controller is the presence of the cubic term "kc k~qk k _qk
2
in the Lyapunov

function derivative _V2. As mentioned in the introduction, this technical diÆculty can be

overcome by making some \smart" modi�cations to the PID control law, leading for instance,

to the design of nonlinear PID controllers.

14
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To the best of our knowledge, the �rst non-linear PID controllers appeared in the liter-

ature are [9] and [2]. In this section we discuss these controllers and show that seemingly

these results cannot so easily be extended to the case of unmeasurable velocities.

4.1 The normalized PID of Kelly [9]

In order to cope with the cubic term "kc k~qk k _qk
2
in (28), Kelly [9] has proposed the \adap-

tive" PD controller

u = �K 0

p~q �Kd
_~q + �(qd)�̂ (66)

together with the update law

_~� =
_̂
� = �

1



�(qd)

>

�
_q +

"0~q

1 + k~qk

�
(67)

where "0 > 0 is a small constant. Kelly [9] proved that this \adaptive" controller in closed

loop with a rigid-joint robot results in a globally convergent system. However, since the

regressor vector �(qd) is constant the update law (67), together with the control input (66)

can be implemented as a nonlinear PID controller by integrating out the velocities vector

from (67):

�̂ = �
1



�(qd)

>

�
~q +

Z t

0

"0~q

1 + k~qk
d�

�
+ �̂(0): (68)

Notice that the choice Kp = K 0

p +Ki, with Ki =
1



�(qd)�(qd)

>, yields the controller imple-

mentation

u = �Kp~q �Kd _q + � (69)

_� = �"0Ki

~q

1 + k~qk
; �(0) = �0 2 IRn: (70)

Since controllers (66), (68) and (69), (70) are equivalent, following the steps of Kelly [9] one

can prove global asymptotic stability of the closed loop system (1), (69){(70). Evaluating

the time derivative of the Lyapunov function candidate

Vk(~q; _q; zk) =
1

2
_q>D(q) _q+Ug(q)�U(qd)� ~q>g(qd)+

1

2
~q>K 0

p~q+
1

2
z>k K

�1

i zk+"k~q
>D(q) _q: (71)

where we have de�ned

"k
4

=
"0

1 + k~qk
(72)

zk
4

= �Ki~q + ~�; (73)

we obtain that

_Vk(~q; _q; zk) � �

�
kdm �

"0kc

1 + k~qk
k~qk � "0dM �

"0kdM
2

�
k _qk2�

"0

1 + k~qk
(k0pm�kg�

"0kdM
2

) k~qk2

(74)

however, notice that the normalized term "kkc k~qk k _qk
2 � kc k _qk

2
, hence _Vk(~q; _q; zk) is neg-

ative semi-de�nite for suÆciently small "0. Global asymptotic stability follows by invoking

Krasovskii-LaSalle's invariance principle.

15
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4.2 The saturated PID controller of Arimoto [2]

An alternative trick to achieve GAS is the scheme of Arimoto [2] who proposed the nonlinear

PID:

u = �K 0

p sat(~q)�
1

"
Ki~q �Kd _q + � (75)

_� = �Ki~q; �(0) = �0 2 IRn: (76)

where the saturation function sat : IRn ! IRn satis�es sat( )> > 0 for all  6= 0,

sat(0) = 0 and it is bounded as k sat( )k � 1. Arimoto3 [2] proved that if kpm > kg, and

Ki is suÆciently small, the closed loop is globally asymptotically stable.

The key idea used in [2] is to dominate the cubic terms in the Lyapunov function derivative

by means of the saturated proportional feedback in (75). More precisely, it can be easily

proven that the time derivative of the Lyapunov function

Va(~q; _q; z) =
1

2
_q>D(q) _q+Ug(q)�U(qd)�~q>g(qd)+

1

2
~q>K 0

p~q+
"

2
z>K�1

i z+" sat(~q)>D(q) _q (77)

where " > 0 is a small constant and z is de�ned by

z
4

= ~� �
1

"
Ki~q (78)

(78), along the trajectories of the closed loop system (1), (75)-(76) is bounded by

_Va(~q; _q; z) � �(kdm � "kc k sat(~q)k � "dM �
"

2
kdM ) k _qk

2 � "(k0pm � kg �
1

2
kdM ) sat(~q)

2 (79)

however, notice that the term "kc k sat(~q)k k _qk
2
� kc k _qk

2
, hence _Va(~q; _q; z) is negative

semi-de�nite for suÆciently small " and global asymptotic stability follows by observing

that sgn( sat(~q)) = sgn(~q) and invoking Krasovskii-LaSalle's invariance principle.

Remarks.

1. Besides their complexity, a practical drawback of the nonlinear PID controllers of [2]

and [9] with respect to the controller of Proposition 3.1 is that one may expect from the

expressions of the Lyapunov derivatives _Va and _Vk, that they converge slower than our

linear PIdD controller. More precisely, notice that the saturation and normalization

used in those approaches clearly attenuates the growth rate of � _Va and � _Vk with

respect to k~qk.

2. In contrast to this, our approach guarantees global asymptotic stability with a simple

linear PID as it is used in many practical applications. Roughly speaking the user can

apply a simple robust PD controller as that of Proposition 2.1 and start the integration

e�ect when the generalized velocities and the positions are small.

3. From a theoretical point of view, the trick of introducing cross terms in the Lyapunov

function is not new [12, 23] however, the idea of using a saturated proportional feedback

in (75) is due, as far as we know, to [2]. This trick in combination with the saturated

cross term used in Va were fundamental to prove GAS. The same observation is valid

for the approach of Kelly where the normalization plays a crucial role.

3It is worth mentioning that in [2], Arimoto used a saturation function which is a particular case of sat

considered here, however this point is not fundamental for the validity of the result.
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4. Even though these \tricks" can be eÆciently applied to bound the \position dependent"

cubic terms "kc sat(~q) _~q
2

, and "0
kc~q

1+k~qk
_~q
2

, when velocity measurements are supposed un-

available, it is not possible to apply the same approaches. To illustrate this idea, let {

without loss of generality { sat(#)
4
= tanh(#) then, if one uses the saturation �a la Ari-

moto in the PI2D scheme, seemingly the saturated cross term " tanh(#)>D(q) _~q should

be used in the Lyapunov function candidate V4, instead of "#>D(q) _~q. However, this

yields the term �"bmdm



 sech2(#)




 _~q

2

in the Lyapunov function derivative, instead of

�"bmdm _~q
2

and since



 sech2(#)




 vanishes as #!1 the Lyapunov function derivative

will be locally negative semide�nite. Similar conclusions can be drawn if one tries to

use the normalization used in [9]. For this reason there is not much hope to extend

the approaches of [2] and [11] to the output feedback case. For its simplicity and the

arguments exposed in Remark 3.5, our result of Corollary 3.6 seems more promising

for practical applications.

5 Simulation results

To illustrate the working of the controllers derived in this paper, simulations have been

carried out usingMatlab
TM. We compared the delayed PID controller derived in section 3.1

with the normalized PID of Kelly [9] and the saturated PID controller of Arimoto [2]. For

our simulations we used the model presented in [4], where

D(q) =

�
8:77 + 1:02 cos q2 0:76 + 0:51 cos q2
0:76 + 0:51 cos q2 0:62

�

C(q; _q) = 0:51 sin q2

�
� _q2 �( _q1 + _q2)

_q1 0

�

g(q) = 9:81

�
7:6 sin q1 + 0:63 sin(q1 + q2)

0:63 sin(q1 + q2)

�

For this system we have dm = 0:45, dM = 9:96, kc = 1:53, kv = 80:7, kg = 81:2. We assume

to have no better estimate of the gravitational forces vector than ĝ(q) = [0; 0]>.

We considered the problem of controlling the manipulator from the position [2; 0]> to-

wards [1; 1]>. For this we used Kp = 240I, Kd = 75I, Ki = 150I, where K 0
p = 120I. From

(21) it follows that � = 1:25. From (25) we see that V2 � 0 and by choosing Æ = 290 we meet

(52) and are guaranteed to enter the set �BM
Æ

4
= f� 2 IR4n : �V2M(x) � Æg and therefore the

existence of ts as de�ned in (55) is also guaranteed.

By choosing �1 = 0:7, �2 = 0:2 and �3 = 0:1 we see from (25) that

V2(~q; _q; ~�) � 6k~qk2

so that from V2(~q; _q; ~�) � Æ we can conclude that k~qk < 7, which results into

_V2 < �2:2k _qk2 � 1:6k~qk2:

Therefore, if we start integrating as soon as we enter �BM
Æ we have asymptotic stability of

the second phase and global asymptotic stability of the PIdD controller.
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From section 4 we know that our selection of gains also guarantees global asymptotic

stability of the normalized PID of Kelly [9] (we use �0 = 1) and the saturated PID controller

of Arimoto [2].

The resulting performance is depicted in Figure 1.
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Figure 1: A comparitive study

We see that the partially saturated proportional term leads to a larger overshoot for Ari-

moto's controller [2], whereas the saturation in Kelly's controller [9] leads to a slower con-

vergence of � to g(qd). We can also see the delayed integration (starting at ts = 0:2533) of

the PIdD controller.

To make not only a qualitative but also a quantitative comparison between the three

controllers, we looked at the expression

ise(t)
4

=

Z
t

0

~q(s)>~q(s)ds
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Then we see that Arimoto's controller [2] all the time has the largest ise due to the

partially saturated proportional term. We also see that during the �rst second, the ise of

Kelly's controller [9] is a little bit lower than the ise of our delayed PID controller, however,

due to the saturation in the integral part the �nal convergence of Kelly's controller is slower,

resulting into a larger ise.
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Figure 2: Delayed PI2D controller (�rst 25 seconds)

In case of unmeasurable velocities we also consider the problem of controlling the manipulator

from the position [2; 0]> towards [1; 1]>. For this we used Kp = 240I, Kd = 75I, Ki = 2I,

A = 15I, B = 200I. The smaller value for Ki in comparison with the state-feedback case

is due to the more restrictive inequalities. By choosing K 0

p
= 100I (which results into

� = 0:0143) we have that V4 � 0, and using �1 = 0:82, �2 = 0:08, �3 = 0:10, �1 = 0:95,

�2 = 0:05, (62) becomes

V4m(~q; _q; #) � 5k~qk2 + 0:1781k#k2 (80)
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By choosing � = 275 we meet the left hand side of (63) and are guaranteed to enter the set

BM
� and therefore the existence of ts as de�ned in (64).

From V4m � � we conclude that

k~qk+ k#k � 40

so that

_V4 � �

2
4
k _qk

k~qk

k#k

3
5
> 2
4

0:3974 0 �1:0675

0 0:2679 �0:6697

�1:0675 �0:6697 4:5535

3
5
2
4
k _qk

k~qk

k#k

3
5

Therefore if we start integrating as soon as we are in BM
� we have asymptotic stability of

the second phase and global asymptotic stability of the delayed PI2D controller.

As already pointed out in Remark 3.5 the problem is to determine when we are in BM
� ,

since we need velocity measurements for determining this. However, we are guaranteed that

during the �rst phase we converge to a �xed point that is contained in BM
� .

In Figure 2 we can see the behaviour of the signals during the �rst 25 seconds of sim-

ulation. It can be seen that at t = 25 we have almost converged a �xed point. Therefore,

we decided to start integrating from t = 25 on. The resulting overall performance of the

delayed PI2D controller is depicted in Figure 3. We can see that the integrating that started

at ts = 25 results into zero position error.
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Figure 3: Delayed PI2D controller
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6 Concluding remarks

We have addressed the practically important problem of global asymptotic stabilization of

robot manipulators with PID and PI2D control, i.e. the problem of set-point control with

uncertain gravity knowledge and both by state and output feedback. Our main contribution

is the proof that GAS is possible with linear PID and PI2D controllers by simply delaying

the integral action. We have called our new controllers PIdD and PI2
d
D.

From a theoretical point of view we have shown for both cases state and position feed-

back, that there exists a \start-integration time" ts such that GAS is guaranteed. From

a practical point of view, we have given criteria on how to choose the instant ts and the

control gains. Unfortunately, in both cases the time ts depend on the whole state however

since the PI2D does not use velocity feedback, this drawback can be overcome in practice

by using an estimate of the generalized velocities at the precise instant ts. Finally, we have

shown in simulations the potential advantages of our schemes vis-a-vis existing nonlinear

PID controllers.

From a theoretical point of view, the technique of switching controllers has recently

become very popular (see e.g. [20, 14, 8] and references therein) in the nonlinear systems

literature. Our results illustrate the impact that this theory has in practice, and an important

issue of future research is how to combine local and global controllers avoiding the fact that

the switching time ts depend on unmeasurable state variables.
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de Moulon, 91192 Gif Sur Yvette Cedex, France,

Romeo.Ortega@lss.supelec.fr
���� Faculty of Mechanical Engineering

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven,
The Netherlands

Abstract: In this paper we address the visual servoing of planar robot manipulators with
a fixed–camera configuration. The control goal is to place the robot end-effector over a
desired static target by using a vision system equiped with a fixed camera to ‘see’ the
robot end-effector and target. To achieve this goal we introduce a class of visual servo
state feedback controllers and output (position) feedback controllers provided the camera
orientation is known. For the case of unknown camera orientation a class of adaptive visual
servo controllers is presented. All three classes contain controllers that meet input constraints.

Keywords: Visual servoing, robotics, stability

1. INTRODUCTION

External sensors such as visual systems enlarge the
potential applications of actual robot manipulators
evolving in unstructured environments. Although this
fact has been recognized decades ago, it is until recent
years that its effectiveness has reached the real world
applications thanks to the technological improvement
in cameras and dedicated hardware for image process-
ing (Hashimoto, 1993; Hutchinsonet al., 1996).
This paper deals with a fixed camera configuration
for visual servoing of robot manipulators. Most pre-
vious research has been started with the optics of the
kinematic control where the robot velocity control (in
joint or Cartesian space) is assumed to be computed
in advance, and therefore the robot dynamics can be
neglected (Allenet al., 1993; Casta˜no and Hutchin-
son, 1994; Chaumetteet al., 1991; Espiau, 1993; Fed-
dema et al., 1991; Hageret al., 1995; Nelsonet

al., 1996; Mitsudaet al., 1996). This approach is an
example of a mechanical control system in which a
kinematic model is used for control design, that is,
the velocity of the system is assumed to be a direct
input which can be manipulated. In physical systems,
however, actuators exert forces or torques. This con-
trol philosophy is certainly effective for slow robot
motion but its application is of a limited value when
high speed motions are demanded.
We focus the visual servoing problem from an auto-
matic control point of view by considering the full
robot nonlinear dynamics with the applied torques
as the control actions, and a rigorous stability ana-
lysis is given for an appropriate (adaptive) set point
controller. Also, we are interested in simple control
schemes avoiding the common procedures of camera
calibration, inversion of the robot Jacobian and com-
putation of the inverse kinematics. Previous efforts in
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this subject have been reported in (Coste-Manièreet
al., 1995; Kelly, 1996; Kellyet al., 1996; Lei and
Ghosh, 1993; Miyazaki and Masutani, 1990).
The main contributions of our work are extensions of
the results in (Kelly, 1996) to the cases where velocity
measurements are not available and the camera ori-
entation parameter is unknown. The first problem is
solved invoking the (by now) standard ”dirty deriva-
tive” solution. However, the later problem involves a
nonlinearly parametrized adaptive system, –a situation
which is essentially unexplored in the field– hence
special analysis and synthesis tools have to be de-
veloped for its solution. Furthermore, we provide a
simple common framework to design standard propor-
tional or saturated controllers.
The organisation of this paper is as follows. Section 2
contains the problem formulation, preliminaries and
notation. In section 3 we introduce a class of visual
servo controllers which includes the controllers re-
ported in (Coste-Manièreet al., 1995; Kelly, 1996;
Kelly et al., 1996). In section 4 we derive a class of
adaptive visual servo controllers in case the camera
orientation is unknown. In section 5 we present a class
of visual servo controllers in case we have no velocity
measurements available. Section 6 contains our con-
cluding remarks.

2. PROBLEM FORMULATION, PRELIMINARIES
AND NOTATION

2.1 Robot dynamics

In the absence of friction or other disturbances, the
dynamics of a serial2–link rigid robot manipulator
can be written as (see e.g. (Ortega and Spong, 1989;
Spong and Vidyasagar, 1989)):

M(q)�q + C(q; _q) _q + g(q) = � (1)

whereq is the2� 1 vector of joint displacements,� is
the2 � 1 vector of applied joint torques,M(q) is the
2 � 2 symmetric positive definite manipulator inertia
matrix, C(q; _q) _q is the 2 � 1 vector of centripetal
and Coriolis torques, andg(q) is the2 � 1 vector of
gravitational torques. Two important properties of the
robot dynamic model are the following:

Property 1. (see e.g. (Ortega and Spong, 1989; Spong
and Vidyasagar, 1989)) The time derivative of the
inertia matrix, and the centripetal and Coriolis matrix
satisfy:

_qT
�
1

2

_M(q)� C(q; _q)

�
_q = 0; 8 q; _q 2 IR2: (2)

Property 2.(see e.g. (Craig, 1988)). The gravitational
torque vectorg(q) is bounded for allq 2 IR2. This
means there exist finite constantski � 0 such that

max
q2IR2

jjgi(q)jj � ki i = 1; 2

wheregi(q) stands for the elements ofg(q).

For the purposes of this paper we consider a planar
two degrees of freedom robot arm. For convenience
we define a Cartesian reference frame anywhere in the
robot base.

2.2 Output equation

We consider a fixed CDD camera whose optical axis is
perpendicular to the plane where the robot tip evolves.
The orientation of the camera with respect to the robot
frame is denoted by�.
The image acquired by the camera supplies a two–
dimensional array of brightness values from a three–
dimensional scene. This image may undergo various
types of computer processing to enhance image prop-
erties and extract image features. In this paper we
assume that the image features are the projection into
the 2D image plane of 3D points in the scene space.
The output variabley 2 IR2 is defined as the position
(in pixels) of the robot tip in the image. The mapping
from the joint positionsq to the outputy involves
a rigid body transformation, a perspective projection
and a linear transformation (Feddemaet al., 1991;
Hutchinsonet al., 1996). The corresponding output
equation has the form (Kelly, 1996)

y = ae�J�[k(q)� #1] + #2 (3)

where a > 0 and #1, #2 denote intrinsic camera
parameters (scale factors, focal length, center offset),
k : IR2 ! IR2 stands for the robot direct kinematics,
and

J =

�
0 �1

1 0

�
:

The direct kinematics yields_k = J (q) _q, where
J (q) 2 IR2�2 is the analytic robot Jacobian. An
important property of this Jacobian is the following
(see e.g. (Spong and Vidyasagar, 1989)):

Property 3. The Jacobian is bounded for allq 2 IR2,
i.e. there exists a finite constantJM such that

jjJ (q)jj � JM 8q 2 IR2

2.3 Problem formulation

Consider the robotic system (1) together with the out-
put equation (3), where the camera orientation� is
known, but the intrinsic camera parametersa, #1 and
#2 are unknown. Suppose that together with the posi-
tion y of the robot tip in the image also measurements
of the joint positionsq and velocities_q are available.
Let yd 2 IR2 be a desired constant position for the
robot tip in the image plane. This corresponds to the
image of a point target which is assumed to be located
strictly inside the robot workspace. Then the control
problem can be stated as to design a control law for
the actuator torques� such that the robot tip reaches,
in the image supplied on the screen, the target point
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122 Chapter 9. Adaptive and filtered visual servoing of planar robots

placed anywhere in the robot workspace. In other
words:

lim
t!1

y(t) = yd

Later in this paper the assumption that the camera
orientation� is known will be relaxed, as well as the
assumption that measurements of the joint velocities_q

are available.
To be able to solve the problem formulated above we
make the following assumptions:

Assumption 4.(Problem solvability) There exists a
constant (unknown) vectorqd 2 IR2 such that

yd = ae�J�[k(qd)� #1] + #2

Assumption 5.(Nonsingularity at the desired con-
figuration) For the (unknown) vectorqd 2 IR2 it
holds true that

detfJ (qd)g 6= 0:

Corollary 6. There exists a neighborhood aroundqd
for which detfJ (q)g 6= 0 (by smoothness of the
Jacobian).

It is worth noticing that in caseyd corresponds to the
image of a point target located strictly inside the robot
workspace, then Assumptions 4 and 5 are trivially
satisfied. Also, under Assumptions 4 and 5 we have
thatq = qd 2 IR2 is an isolated solution of

yd = ae�J�[k(q)� #1] + #2 (4)

i.e. there exists a neighborhood aroundqd for which
q = qd is the only solution of (4).

2.4 Notation

Throughout we use the following notation.

Definition 7. Let Fn denote the class of continuous
functionsf : IRn ! IRn for which there exists a
positive definiteF : IRn ! IR such that

f(x) = f(x1; : : : ; xn) =

2
66664

@F

@x1
(x1; : : : ; xn)

...
@F

@xn
(x1; : : : ; xn)

3
77775

(5)

and for whichxT f(x) is a positive definite function.

Definition 8. Let Bn denote the class off 2 Fn that
are bounded, i.e the class off 2 Fn for which there
exists a constantfM 2 IR such thatjjf(x)jj � fM for
all x 2 IRn.

An important property off 2 Fn is the following:

Property 9. Let f 2 Fn. Thenf(x) = 0 if and only
if x = 0.

In general it is not easy to verify whether a given
f : IRn ! IRn can be written as the gradient of
a radially unboundedF : IRn ! IR. However, a
necessary condition for continuously differentiablef

is that its Jacobian@f
@x

is symmetric.
It is easy to see that elements ofFn are the functions

f(x) = K1[f1(x1); : : : ; fn(xn)]
T

and
f(x) = K2x

whereK1 = KT
1 is an� n diagonal positive definite

matrix,K2 = KT
2 is an�n (not necessarily diagonal)

positive definite matrix, andfi are continuous nonde-
creasing functions satisfyingfi(0) = 0 andf 0i(0) > 0

(i = 1; : : : ; n). By choosingfi(x) = tanh(�ix),
fi(x) = sat(�ix) or fi(x) =

x
�i+jxj

(�i > 0) we
obtain elements ofBn, whereasf(x) = K2x is an
element ofFn but not ofBn.
Throughout we denote forf 2 Fn by F (x) the
associated function of whichf is the gradient (cf. (5)).
Furthermore, we define

~q = q � qd and~y = y � yd:

Sincey is measurable andyd is given,

~y = ae�J�(k(q)� k(qd))

can be measured too. However, sinceqd is unknown,
~q is notavailable for measurement.
We conclude this section by noticing that sinceqd is
fixed, _~y = ae�J�J (q) _q and therefore

_F (~y) = a _qTJ (q)T eJ�f(~y):

3. A CLASS OF STABLE VISUAL SERVO
CONTROLLERS

In this section we introduce a class of visual servo
controllers which includes those reported in (Coste-
Manièreet al., 1995; Kelly, 1996; Kellyet al., 1996).
Assuming that the camera orientation� is known,
and the full state (q; _q) is measured, these controllers
ensure local regulation. This is formally stated in the
next

Proposition 10.Consider the system (1) in closed-
loop with the control law

� = g(q)� f1( _q)�J (q)T eJ�f2(~y) (6)

wheref1; f2 2 F2. Under Assumptions 4–5 we have

lim
t!1

~y(t) = lim
t!1

_q(t) = 0

provided the initial conditions_q(0) and~y(0) are suffi-
ciently small.

PROOF. Using the control law (6) results in the
closed-loop dynamics

M(q)�q + C(q; _q) _q + f1( _q) + J (q)T eJ�f2(~y) = 0(7)

According to Assumptions 4–5 this equation has an
isolated equilibrium at[qT _qT ]T = [qTd 0

T
]
T .
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Consider the Lyapunov function candidate

V (~q; _q) =
1

2
_qTM(q) _q +

1

a
F2(~y)

which is a (locally) positive definite function.
Along the closed-loop dynamics (7) its time-derivative
becomes, using Property 1:

_V (~q; _q) =� _qTf1( _q)� _qTJ (q)T eJ�f2(~y) +

+ _qTJ (q)T eJ�f2(~y)

=� _qTf1( _q) � 0

which is negative semidefinite in the state(~q; _q). Using
LaSalle’s theorem and Corollary 6, for any initial
condition in a small neighborhood of the equilibrium
we have

lim
t!1

_q(t) = lim
t!1

f2(~y(t)) = 0

so we can conclude using Property 9:

lim
t!1

~y(t) = 0: 2

Consider the system (1) where we deal with the input
constraints

j�i(t)j � �i;max i = 1; 2: (8)

Then we can derive the following

Corollary 11. If �i;max > ki, where ki has been
defined in Property 2, then there existf1; f2 2 B2

such that the controller (6) meets (8) and in closed-
loop with the system (1) yields

lim
t!1

~y(t) = 0

provided the initial conditions are sufficiently small.

4. ADAPTIVE VISUAL SERVOING

In this section we consider the case in which, in con-
trast with the previous section, also the camera ori-
entation� is unknown. Still assuming that the full
state(q; _q) is available for measurement we introduce
a class of adaptive controllers that ensure local regula-
tion:

Proposition 12.Consider the system (1) in closed-
loop with the control law

� =

8>>><
>>>:

g(q)� f1( _q)�J (q)T eJ�̂f2(~y)

if _qTJ (q)T eJ�̂f2(~y) � 0

g(q)� f1( _q) + J (q)T eJ�̂f2(~y)

if _qTJ (q)T eJ�̂f2(~y) < 0

(9)

wheref1; f2 2 F2. We update the parameter�̂ as

_̂
� = 
 _qTJ (q)T JeJ�̂f2(~y) (10)

where
 > 0 is a constant. Under Assumptions 4–5
we have, if we define~� = �̂ � �:

lim
t!1

~y(t) = lim
t!1

_q(t) = lim
t!1

_~�(t) = 0

provided the initial conditions_q(0), ~y(0) and~�(0) are
sufficiently small.

PROOF. Using the control law (9) together with the
parameter update law (10) results in the closed-loop
dynamics

M(q)�q + C(q; _q) _q + f1( _q) = �J (q)T eJ�̂f2(~y)
_~� = 
 _qTJ (q)T JeJ�̂f2(~y)

(11)

where the ’�’ reads as a ’+’ if _qTJ (q)T eJ�̂f2(~y) � 0

and as a ’�’ if _qTJ (q)T eJ�̂f2(~y) < 0.
Consider the Lyapunov function candidate

V (~q; _q; ~�)=
1

2
_qTM(q) _q+

1

a
F2(~y)+

1



(1�cos ~�) (12)

which is a (locally) positive definite function.
Along the closed-loop dynamics (11) its time-deriva-
tive becomes, using Property 1:

_V (~q; _q; ~�) =� _qT f1( _q)�
��� _qTJ (q)T eJ�̂f2(~y)

���+
+ _qTJ (q)T eJ�f2(~y) +

+ sin ~� _qTJ (q)T JeJ�̂f2(~y)

=� _qT f1( _q)�
��� _qTJ (q)T eJ�̂f2(~y)

���+
+ _qTJ (q)T (e�J

~� + sin ~�J)eJ�̂f2(~y)

=� _qT f1( _q)�
��� _qTJ (q)T eJ�̂f2(~y)

���+
+cos ~� _qTJ (q)T eJ�̂f2(~y)

�� _qT f1( _q)

which is negative semidefinite in the state(~q; _q; ~�).
According to LaSalle’s theorem, the closed-loop sys-
tem tends to the largest invariant set of points(~q; _q; ~�)

for which _V = 0. From0 = _V � � _qT f1( _q) � 0

it follows that necessarily_q = 0. Then from the

closed-loop dynamics (11) we know_~� = 0 and us-
ing Corollary 6 alsof2(~y) = 0. Therefore LaSalle’s
theorem gives us for any initial condition in a small
neighborhood of the origin

lim
t!1

_~�(t) = lim
t!1

_q(t) = lim
t!1

~y(t) = 0

2

Remark 13.The switching nature of the controller
(9) leads to chattering, which is undesirable. Using
a suitably smoothed control law might be a way to
overcome the chattering.

As in the previous section we can derive the following

Corollary 14. If �i;max > ki, where ki has been
defined in Property 2, then there existf1; f2 2 B2

such that the controller (9) meets (8) and in closed-
loop with the system (1) yields

lim
t!1

~y(t) = lim
t!1

_q(t) = lim
t!1

_~�(t) = 0

provided the initial conditions are sufficiently small.

Remark 15.For the system (1) it is well known
(Ortega and Spong, 1989) that there exist a repara-
metrization of all unknown system parameters into a
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124 Chapter 9. Adaptive and filtered visual servoing of planar robots

parameter vector� 2 IRp that enters linearly in the
system dynamics (1). Therefore the following holds:

M(q;�)�q + C(q; _q;�) _q + g(q;�) =

M0(q)�q + C0(q; _q) _q + g0(q) + Y (q; _q; _q; �q)�

We can cope with those unknown system parameters
in the ‘standard’ way by addingY (q; _q; _q; �q)�̂ to the
control law (and replacingg(q) with g0(q)), where�̂
is updated according to

_̂
� = ��Y T (q; _q; _q; �q) _q

where� = �T > 0 is a positive definite matrix. To
prove asymptotic stability as in Proposition 12, we
only add 1

2

~�T��1 ~� to the Lyapunov function (12),
where we defined~� = �̂��.

5. FILTERED VISUAL SERVOING

In this section we consider the case in which, in
contrast with section 3, no measurements of the joint
velocities _q are available. Assuming that the camera
orientation� is known and only measurements of the
joint positionsq are available we introduce a class of
controllers and filters that ensure local regulation. This
is formally stated in the next

Proposition 16.Consider the system (1) in closed-
loop with the control law

� = g(q)�J (q)T eJ�f1(z)�J (q)T eJ�f2(~y) (13)

wheref1; f2 2 F2, andz is generated from the filter

z = ~y � w

_w = ~y � w
(14)

Under Assumptions 4–5 we have

lim
t!1

w(t) = lim
t!1

z(t) = lim
t!1

_q(t) = lim
t!1

~y(t) = 0

provided the initial conditionsw(0), _q(0), and ~y(0)

are sufficiently small.

PROOF. Using the control law (13) together with the
filter (14) results in the closed-loop dynamics

M(q)�q+C(q; _q) _q+J (q)T eJ�[f1(z)+ f2(~y)] = 0

_z = ae�J�J (q) _q � z
(15)

Consider the Lyapunov function candidate

V (~q; _q; z) =
1

2
_qTM(q) _q +

1

a
F2(~y) +

1

a
F1(z) (16)

which is a (locally) positive definite function.
Along the closed-loop dynamics (15) its time-deriva-
tive becomes:

_V (~q; _q; z) =� _qTJ (q)T eJ�f1(z)� _qTJ (q)T eJ�f2(~y)+

+ _qTJ (q)T eJ�f2(~y)+
1

a
_zTf1(z)

=� _qTJ (q)T eJ�f1(z)+ _qTJ (q)T eJ�f1(z)�

�
1

a
zT f1(z)

=�
1

a
zT f1(z) � 0

which is negative semidefinite in the state(~q; _q; z). Us-
ing LaSalle’s theorem and Corollary 6, for any initial
condition in a small neighborhood of the equilibrium
we can conclude

lim
t!1

w(t) = lim
t!1

z(t) = lim
t!1

_q(t) = lim
t!1

~y(t) = 0:

2

Remark 17.The filter (14) can, similar to the one
presented in (Lefeber and Nijmeijer, 1997), be seen
as a simple representative of a whole class of possible
filters. For instance iff1 2 F2 satisfies the property
that also�f 2 F2, where� is an arbitrary positive
definite matrix, then it can easily be seen that instead
of (14) also the filter

z = �1~y � �2w

_w = �3(�2~y � �2w)
(17)

can be used (replace in (16)F1(~y) with the F (~y)

associated with��1
1
f1(~y) to obtain

_V = �
1

a
zT�3�2�

�1

1
f1(z) = zT ~f1(z)

with ~f1(z) 2 F
2). The filter (17) is similar to the ones

presented in (Ailon and Ortega, 1993; Berghuis and
Nijmeijer, 1993). Also the more general class of linear
filters presented in (Arimotoet al., 1994; Kelly and
Santiba˜nez, 1996) can similarly be seen as a special
case of (14). Also a wide variety of nonlinear filters
can be rewritten as (14).
In general one can say that the filter (14) is a repre-
sentative of a whole class of controllers that takes its
simple form due to a well chosen change of coordi-
nates.
To obtain other possible filters, just apply a suitable
change of coordinates inz andw (suitable in the sense
that _V remains negative definite). As far as the proof
is concerned, one possibly has to replaceF1(~y) in (16)
with a differentF , as we have seen in deriving (17),
sometimes resulting in a different expression forf1(z)

in (13).

As in the previous sections we can derive the follow-
ing

Corollary 18. If �i;max > ki, where ki has been
defined in Property 2, then there existf1; f2 2 B2

such that the controller (13) meets (8) and in closed-
loop with the system (1) yields

lim
t!1

w(t) = lim
t!1

z(t) = lim
t!1

_q(t) = lim
t!1

~y(t) = 0

provided the initial conditions are sufficiently small.

6. CONCLUDING REMARKS

In this paper we addressed the visual servoing of pla-
nar robot manipulators under a fixed camera config-
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uration. In case the camera orientation is known, we
introduced a class of visual servo controllers for both
the state feedback and output feedback case (position
measurements). In case of unknown camera orienta-
tion a class of adaptive controllers has been presented.
The results include controllers that satisfy input con-
straints.
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Abstract

We study an example of an adaptive (state) tracking control
problem for a four-wheel mobile robot, as it is an illustra-
tive example of the general adaptive state-feedback tracking
control problem. It turns out that formulating the adaptive
state-feedback tracking control problem is not straightfor-
ward, since specifying the reference state-trajectory can be
in conflict with not knowing certain parameters. Our exam-
ple illustrates this difficulty and we propose a problem for-
mulation for the adaptive state-feedback tracking problem
that meets the natural prerequisite that it reduces to the state-
feedback tracking problem if the parameters are known. A
general methodology for solving the problem is derived.

1 Introduction

In recent years a lot of interest has been devoted to (mainly)
stabilization and tracking of nonholonomic dynamic sys-
tems, see e.g. [1, 2, 3, 4] and references therein. One
of the reasons for the attention is the lack of a continuous
static state feedback control since Brockett’s necessary con-
dition for smooth stabilization is not met, see [5]. The pro-
posed solutions to this problem follow mainly two routes,
namely discontinuous and/or time-varying control. For a
good overview, see the survey paper [6].

Less studied is the adaptive control of nonholonomic sys-
tems. Results on adaptive stabilization can be found in
[7, 8]. In [9, 10, 11, 12] the adaptive tracking problem
is studied, but all papers are either concerned with adap-
tive output tracking, or the state trajectory to be tracked is
feasable for any possible parameter. However, it is possible
that specifying a reference-state trajectory and not know-
ing certain parameters are in conflict with each other. The
question then arises how to formulate the adaptive tracking
problem in such a way that it reduces to the state feedback
tracking problem in case the parameters are known.

In this paper we consider a simple academic example that
clearly illustrates the above mentioned conflict. We pro-
pose a formulation for the adaptive (state) tracking control
problem and derive a general methodology for solving this
problem.

The example we study is the kinematic model of a mobile

car with rear wheel driving and front wheel steering:

_x = v cos �

_y = v sin �

_� =
v

L
tan�

_� = !

(1)

The forward velocity of the rear wheelv and the angular ve-
locity of the front wheel! are considered as inputs,(x; y) is
the center of the rear axis of the vehicle,� is the orientation
of the body of the car,� is the angle between front wheel
and car andL > 0 is a constant that denotes the length of
the car (see also Figure 1), and is assumed to be unknown.

x

y
�

�

L

��!

���
v

Figure 1: The mobile car

The organization of the paper is as follows. Section 2 con-
tains the problem formulation of the tracking problem and
illustrates the difficulties in arriving at the problem formu-
lation for the adaptive tracking problem. Section 3 con-
tains some definitions and preliminary results. Section 4
addresses the tracking problem and prepares for Section 5
in which the adaptive tracking problem is considered. Fi-
nally, Section 6 concludes the paper.

2 Problem formulation

2.1 Tracking control problem
Since we want the adaptive tracking control problem to re-
duce to the tracking problem for knownL, we first have to
formulate the tracking problem for the caseL is known.

0-7803-5250-5/99/$ 10.00 c
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10.2. Problem formulation 129

Consider the problem of tracking a feasible reference trajec-
tory, i.e. a trajectory([xr ; yr; �r; �r]T ; [vr; !r]T ) satisfying

_xr = vr cos �r
_yr = vr sin �r
_�r =

vr

L
tan�r

_�r = !r

(2)

This reference trajectory can be generated by any of the
motion planning techniques available from literature. The
tracking control problem then can be formulated as

Problem 2.1 (Tracking control problem) Given a feasi-
ble reference trajectory([xr ; yr; �r; �r]T ; [vr; !r]T ), find
appropriate control lawsv and! of the form

v = v(t; x; y; �; �); ! = !(t; x; y; �; �) (3)

such that for the resulting closed-loop system (1,3)

lim
t!1

�
jx(t) � xr(t)j+ jy(t)� yr(t)j+

+j�(t)� �r(t)j+ j�(t)� �r(t)j
�

= 0

Remark 2.2 Notice that in general, the control laws (3) are
not only a function ofx, y, �, and�, but also ofvr(t), !r(t),
xr(t), yr(t), �r(t), �r(t), and possibly their derivatives
with respect to time. This explains the time-dependency in
(3).

Remark 2.3 Notice that the tracking control problem we
study here is not the same as an output tracking problem
of the flat output[xr(t); yr(t)]T . First of all, by specifying
xr(t) andyr(t) the reference trajectory can not be uniquely
specified (e.g.vr(t) can be either positive or negative). But
more important is the fact that tracking ofxr(t) andyr(t)
does not guarantee tracking of the corresponding�r(t) and
�r(t).

2.2 Adaptive tracking control problem
In case the parameterL is unknown, however, we can not
formulate the adaptive tracking problem in the same way.
This is due to the fact that for unknownLwe can not specify
a feasible reference trajectory([xr ; yr; �r; �r]T ; [vr; !r]T ),
satisfying (2). In specifyingvr(t), �r(t) and�r(t) we have
to make sure that

_�r =
vr

L
tan�r (4)

in order to obtain a feasible reference trajectory. This is in
conflict with the assumption that we do not knowL, since
oncevr(t), �r(t) and�r(t) are specified it is possible to
determineL from (4).

So the question is how to formulate the adaptive tracking
problem for the nonholonomic system (1) in such a way that
it reduces to the state-feedback tracking control problem for
the caseL is known? Appearently we can not both specify
vr, �r and�r as functions of time, and assume thatL is
unknown.

When generating a feasible reference trajectory satisfying
(2), one usually generates some sufficiently smooth refer-
ence signals, e.g.xr(t) andyr(t), and then all other signals
are derived from the equations (2). Notice that it is possible
to specifyvr(t), xr(t), yr(t), and�r(t) without assuming
anything onL. These signals mainly cover the behaviour
of the mobile car. However, as mentioned in Remark 2.3,
tracking of the outputxr, yr, �r is not what we are inter-
ested in, since it is possible to havex(t)�xr(t), y(t)�yr(t),
and�(t) � �r(t) converge to zero ast goes to infinity, but
�(t) not converge to�r(t). Actually, �(t) can even grow
unbounded. That is why we insist on looking at thestate
tracking problem.

In case we knowL it is possible, oncevr(t), xr(t), yr(t)
and �r(t) are given, to determine�r(t) uniquely. No-
tice that we can determinetan�r(t), from which�r(t) is
uniquely determined (since_�r has to exist and therefore
�r 2] � �

2
; �
2
[). Once�r(t) is known, also!r(t) can be

uniquely determined using (2).

WhenL is unknown we still know that oncevr(t), xr(t),
yr(t) and�r(t) are given,�r(t) and!r(t) are uniquely de-
termined. The only problem is that these signals are un-
known, due to the fact thatL is unknown. This is some-
thing we illustrate throughout by writing�Lr (t) and!Lr (t).
Therefore, we can assume that a feasible reference trajec-
tory ([xr; yr; �r; �

L
r
]T ; [vr; !

L
r
]T ), satisfying (2) is given

and study the problem of finding a state-feedback law that
assures tracking of this reference state.

Problem 2.4 (Adaptive tracking control problem) Let a
feasible reference trajectory([xr ; yr; �r; �Lr ]

T ; [vr; !
L
r ]

T )

be given (i.e.xr(t), yr(t), �r(t) andvr(t) are known time-
functions, but�Lr (t) and!Lr (t) are unknown, due to the fact
thatL is unknown). Find appropriate control lawsv and!
of the form

v = v(t; x; y; �; �); ! = !(t; x; y; �; �) (5)

such that for the resulting closed-loop system

lim
t!1

�
jx(t)� xr(t)j+ jy(t)� yr(t)j+

+j�(t) � �r(t)j+
�
��(t) � �Lr (t)

�
�� = 0

Remark 2.5 Notice that the time-dependency in (5) allows
for usingvr(t), xr(t), yr(t), �r(t) in the control laws (as
well as their derivatives with respect to time), but in this
case we cannot use!L

r
(t) or �L

r
(t).

Remark 2.6 It is clear that onceL is known this prob-
lem formulation reduces to that of the tracking problem for
knownL. Then also�r(t) and!r(t) can be used in the
control laws again, since these signals are just functions
(depending onL) of vr(t), �r(t) and their derivatives with
respect to time.

In order to be able to solve the (adaptive) tracking control
problem, we need to make the following assumptions on the
reference trajectory
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130 Chapter 10. Adaptive tracking control of non-holonomic systems: an example

Assumption 2.7 First of all, the reference dynamics need
to have a unique solution, which is why we need�r(t) 2

]�M;M [ withM < �

2
. This is equivalent to assuming that

_�r

vr
is bounded.

Second, we assume that the reference is always moving in
a forward direction with a bounded velocity, i.e. there exist
constantsvmin

r andvmax
r such that

0 < vmin
r � vr(t) � vmax

r

Furthermore, we assume that the forward and angular ac-
celeration, i.e._vr and��r, are bounded.

3 Preliminaries

In this section we introduce the definitions and theorems
used in the remainder of this paper.

Definition 3.1 We callw(t) = [w1(t); : : : ; wn(t)]
T persis-

tently excitingif there exist constantsÆ; �1; �2 > 0 such that
for all t > 0:

�1I �

Z t+Æ

t

w(�)w(�)T d� � �2I

Lemma 3.2 (cf. e.g. [13, 14])Consider the system

�
_e
_�

�
=

�
Am bmw

T (t)

�
w(t)cTm 0

��
e

�

�
(6)

wheree 2 R
n , � 2 R

m , w 2 R
k , 
 > 0. Assume that

M(s) = cT
m
(sI�Am)�1bm is a strictly positive real trans-

fer function, then�(t) is bounded and

lim
t!1

e(t) = 0:

If in additionw(t) and _w(t) are bounded for allt � t0, and
w(t) is persistently exciting then the system (6) is globally
exponentially stable.

Lemma 3.3 ([15]) Let f : R+ ! R be any differentiable
function. Iff(t) converges to zero ast!1 and its deriva-
tive satisfies

_f(t) = f0(t) + �(t) t � 0

wheref0 is a uniformly continuous function and�(t) tends
to zero ast ! 1, then _f(t) andf0(t) tend to zero ast !
1.

Using standard techniques it is easy to show that

Lemma 3.4 Assume that origin of the system

_x = f(t; x) f(t; 0) = 0 8t

wherex 2 R
n is globally exponentially stable. Then the

disturbed system

_x = f(t; x) + �(t)

where�(t) is a bounded vanishing disturbance, i.e.

sup
t

k�(t)k �M and lim
t!1

�(t) = 0

is globally asymptotically stable.

Remark 3.5 Throughout this paper we use the expressions
x cos x�sin(x)

x2
, x�sin(x)

x2
, cos(x)�1

x
, 1�x sinx�cos(x)

x2
, cos(x)�1

x2
,

and sin(x)

x
. These functions are discontinuous inx = 0,

but if we define their values forx = 0 as respectively0, 0,
0, � 1

2
, � 1

2
, and1 it is easy to verify that all functions are

continuous and bounded.

4 A tracking controller

First we consider the tracking problem for the caseL is
known. To overcome the problem that the errorsx � xr
andy � yr depend on how we choose the inertial reference
frame, we define errors in a body reference frame, i.e. in a
coordinate-frame attached to the car (cf. [16]):2

4 xe
ye
�e

3
5 =

2
4 cos � sin � 0

� sin � cos � 0

0 0 1

3
5
2
4 xr � x

yr � y

�r � �

3
5 (7)

In order to be able to control the orientation� of our mobile
car by means of the input!, we prefer to havev(t) 6= 0 for

all t � 0. Sincevr(t) � vmin
r

> 0 we know that if�(�) is a
function that fulfills

�(x) > �vmin
r

8x 2 R

the control law

v = vr + �(xe) (8)

automatically guaranteesv(t) > 0 for all t � 0. Further-
more, we assume that�(x) is continuously differentiable
and satisfies

x�(x) > 0; 8x 6= 0

Examples of possible choices for�(x) are

�(x) = vmin
r � tanh(x)

�(x) = vmin
r �

x

1 + jxj

With the control law (8) the dynamics in the new coordi-
nates (7) and� become

_xe = ye
vr+�(xe)

L
tan�+ vr(cos �e � 1)� �(xe)

_ye = �xe
vr+�(xe)

L
tan�+ vr sin �e

_�e = vr

L
tan�r �

vr+�(xe)

L
tan�

_� = !

(9)
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10.5. An adaptive controller 131

Differentiating the functionV1 =
1

2
x2
e
+

1

2
y2
e

along the so-
lutions of (9) yields

_V1 = �xe�(xe) + vr

�
cos �e � 1

�e
xe +

sin �e

�e
ye

�
�e

When we consider� as avirtual controlwe could design an
intermediate control law for� that achieves (k1; k2 > 0):

_�e = �k1�e � k2vr

�
cos �e � 1

�e
xe +

sin �e

�e
ye

�

Using the Lyapunov function candidateV2 =
1

2
x2
e
+

1

2
y2
e
+

1

2k2
�2
e

and similar reasoning as in [2], we can then claim
thatxe, ye and�e converge to zero, provided that Assump-
tion 2.7 is satisfied.

It would be the ‘standard procedure’ to define theerror vari-
able

�z =
vr

L
tan�r �

vr + �(xe)

L
tan�+ k1�e+

+k2vr

�
cos �e � 1

�e
xe +

sin �e

�e
ye

�

However, for simplicity of analysis we prefer to consider
the error variablez = L�z, i.e. we define (c1; c2 > 0):

z = vr tan�r � v tan�+ c1�e + c2vr

�
cos �e�1

�e
xe +

sin �e

�e
ye

�
(10)

With this definition the error-dynamics (9) now become

_xe = ye
v

L
tan�+ vr(cos �e � 1)� �(xe) (11a)

_ye = �xe
v

L
tan�+ vr sin �e (11b)

_�e = �
c1

L
�e �

c2

L
vr

�
cos �e � 1

�e
xe +

sin �e

�e
ye

�
+

+
1

L
z (11c)

_z =
v

cos2 �

�
1

L
�(t) sin � cos�� !

�
+ �(t) (11d)

where

�(t) = ye tan�+ c1 � c2vr

�
1�cos �e

�2
e

xe +
�e�sin �e

�2
e

ye

�

�(t) = _vr tan�r +
vr!r

cos2 �r
+ (vr cos �e � v) tan�+

+c2( _vrxe � vvr � v2
r
)
cos �e�1

�e
+ c2 _vrye

sin �e

�e
+

+c1
vr

L
tan�r + c2vr

�
1��e sin �e�cos �e

�2
e

xe+

+
�e cos �e�sin �e

�2
e

ye

�
vr

L
tan�r

When we choose the input!

! =
1

L
�(t) sin � cos�+

cos
2 �

v
(�(t) + c3z) (12)

we obtain
_z = �c3z

Consider the Lyapunov function candidate

V3 =
1

2
x2
e
+

1

2
y2
e
+

L

2c2
�2
e
+

1

2c1c2c3
�z2 (13)

Differentiating (13) along solutions of (11,12) yields

_V3 = �xe�(xe)�
c1

c2
�2e +

1

c2
�ez �

1

c1c2
z2

� �xe�(xe)�
c1

2c2
�2e �

1

2c1c2
z2 � 0

(14)

We establish the following result

Proposition 4.1 Assume that Assumption 2.7 is satisfied.
Then all trajectories of (11,12) are globally uniformly
bounded. Furthermore, all closed-loop solutions converge
to zero, i.e.

lim
t!1

�
jxe(t)j+ jye(t)j+ j�e(t)j+ jz(t)j

�
= 0

Proof: Since V is positive-definite and radially un-
bounded, we conclude from (14) thatxe, ye, �e and z

are uniformly bounded. From (10) and Assumption 2.7
it follows that alsov, tan� and as a result also! and
� � �r are uniformly bounded. Also the derivatives of all
these signals are bounded. With Barbalat’s Lemma it fol-
lows thatxe, �e andz converge to zero ast goes to infin-
ity. Using Lemma 3.3 withf = �e, f0 = �k2vrye and

� = �k1�e� k2vr

�
cos �e�1

�e
xe + (

sin �e

�e
� 1)ye

�
+ z gives

also thatye tends to zero ast goes to infinity.

Corollary 4.2 Consider the system (1) in closed loop with
the control laws (8,12) where the reference trajectory satis-
fies (2) and Assumption 2.7. For the resulting closed-loop
system we have

lim
t!1

�
jx(t)� xr(t)j+ jy(t)� yr(t)j+

+ j�(t)� �r(t)j+ j�(t) � �r(t)j
�

= 0

Proof: Using (7) it follows fromxe andye tending to zero
that alsox�xr andy�yr converge to zero. It only remains
to show that�(t)��r(t) tends to zero ast tends to infinity.
This comes down to showing thattan�(t)�tan �r(t) tends
to zero ast tends to infinity, which is a direct result from the
fact thatz tends to zero (andxe, ye and�e).

5 An adaptive tracking controller

From now on we assume that the parameterL is unknown.
As mentioned in section 2 we have the difficulty that not
onlyL is unknown, but also the reference signals�L

r
(t) and

!L
r
(t) (that appear in the expression�(t)) can not be used

in the control law.

Fortunately, we are not only allowed to usexe, ye, �e and
�, but also_�r and��r. Notice that in (10) we can replace the
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132 Chapter 10. Adaptive tracking control of non-holonomic systems: an example

occurence of�L
r

by means of the signal_�r:

z = L _�r � v tan�+ c1�e + c2vr

�
cos �e�1

�e
xe +

sin �e

�e
ye

�
(15)

However, using the variablez as defined in (10) or (15)
makes it hard to design a controller using conventional
adaptive techniques becausez includes the unknown param-
eterL. Therefore, we define

ẑ = L̂ _�r � v tan�+ c1�e + c2vr

�
cos �e�1

�e
xe +

sin �e

�e
ye

�
(16)

which can be seen as an estimate forz. Usingẑ the tracking
error dynamics(9) can be expressed as

_xe = ye
v

L
tan�+ vr(cos �e � 1)� �(xe) (17a)

_ye = �xe
v

L
tan�+ vr sin �e (17b)

_�e = �
c1

L
�e �

c2

L
vr

�
cos �e � 1

�e
xe +

sin �e

�e
ye

�
+

+
1

L
ẑ � ~L

1

L
_�r (17c)

_̂z =
v

cos2 �
(%�(t) sin � cos�� !) + �̂(t) (17d)

where we introduced the parameter% =
1

L
. Furthermore,

we defined~L = L̂� L and

�(t) = ye tan�+ c1 � c2vr

�
1�cos �e

�2
e

xe +
�e�sin �e

�2
e

ye

�
�̂(t) =

_̂
L _�r + L̂��r + (vr cos �e � v) tan�+

+c2( _vrxe � vvr � v2r)
cos �e�1

�e
+ c2 _vrye

sin �e

�e
+

+c1 _�r + c2vr

�
1��e sin �e�cos �e

�2
e

xe+

+�e cos �e�sin �e

�2
e

ye

�
_�r

When we choose the input

! = %̂�(t) sin � cos�+
cos

2 �

v

�
�̂(t) + k3ẑ

�
(18)

we obtain (~% = %̂� %):

_̂z = �k3ẑ � ~%�(t)v tan�

Consider the Lyapunov function candidate (
1; 
2 > 0)

V4 =
1

2
x2e +

1

2
y2e +

L�2
e

2c2
+

ẑ2

2c1c2c3
+

~L2

2c2
1
+

~%2

2c1c2c3
2
(19)

Differentiating (19) along solutions of (17,18) yields

_V4 � �xe�(xe)�
c1

2c2
�2e �

1

2c1c2
ẑ2 +

+
1

c2
1

�
_̂
L� 
1�e _�r

�
~L+

+
1

c1c2c3
2

�
_̂%� 
2ẑ�(t)v tan�

�
~%

So, if we define the parameter-update-laws

_̂
L = 
1�e _�r (20a)
_̂% = 
2ẑ�(t)v tan� (20b)

we get

_V4 � �xe�(xe)�
c1

2c2
�2
e
�

1

2c1c2
ẑ2 � 0

and can establish the following result

Proposition 5.1 Assume that Assumption 2.7 is satisfied.
Then all trajectories of (17,18,20) are globally uniformly
bounded. Furthermore,

lim
t!1

jxe(t)j+ j�e(t)j+ jẑ(t)j+ j�(t) � �r(t)j = 0

If in addition _�r(t) is persistently exciting, we also have that

lim
t!1

�
jye(t)j+

���~L(t)���+ j~%(t)j
�
= 0

Proof: Similar to the proof of Proposition 4.1 we can show
uniform boundedness of all signals and their derivatives
with respect to time. From Barbalat’s Lemma it follows that
xe, �e, andẑ converge to zero ast goes to infinity. From (16)
we conclude that̂L�v tan�+c2vrye converges to zero too.
Using Lemma 3.3 we can conclude that alsoc2vrye + ~L _�r
converges to zero. Combining these two results, we obtain
thatL _�r � v tan� and thereforevr[tan�Lr � tan�] con-
verges to zero. As a result

lim
t!1

���(t)� �Lr (t)
�� = 0

Assume that in addition_�r(t) is persistently exciting. No-
tice that the(xe; ye)-dynamics (17a,17b) can also be seen
as a LTV subsystem with an additional disturbance that is
bounded and goes to zero ast goes to infinity:

�
_xe
_ye

�
=

�
�k _�r(t)

� _�r(t) 0

� �
xe
ye

�
| {z }

LTV subsystem

+

�
f1(t)

f2(t)

�
| {z }
disturbance

(21)

From Lemma 3.2 we know that the LTV subsystem of
(21) is globally exponentially stable and therefore, from
Lemma 3.4 that alsoye tends to zero ast tends to infinity.

Also, the (�e; ~L) dynamics can be seen as a cascade of
a LTV subsystem with an additional disturbance that is
bounded and goes to zero ast goes to infinity:"

_�e
_~L

#
=

�
� c1

L
� 1

L
_�r(t)


1 _�r(t) 0

� �
�e
~L

�
+

�
f3(t)

f4(t)

�

In the same way we can conclude that also~L tends to zero
ast tends to infinity.
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Since we have shown thatye tends to zero, also the(ẑ; ~%)
dynamics can be seen as a cascade of a LTV subsystem with
an additional disturbance that is bounded and goes to zero
ast goes to infinity:

�
_̂z
_~%

�
=

�
�k3 �c1L _�r(t)


2L _�r(t) 0

� �
ẑ

~%

�
+

�
f5(t)

f6(t)

�

Therefore, also~% tends to zero ast tends to infinity, which
concludes the proof.

Corollary 5.2 Consider the system (1) in closed loop with
the control laws (8,18) where the parameter estimatesL̂ and
%̂ are updated accoding to (20) and assume that the refer-
ence trajectory satisfies (2), Assumption 2.7, and that_�r is
persistently exciting. For the resulting closed-loop system
we have

lim
t!1

�
jx(t) � xr(t)j+ jy(t)� yr(t)j+

+j�(t)� �r(t)j+
���(t) � �Lr (t)

��� = 0

and convergence of the parameter-estimates to their true
value, i.e.

lim
t!1

����L̂(t)� L
���+

����%̂(t)� 1

L

����
�

= 0

6 Concluding remarks

In this paper we addressed the problem of adaptive state
tracking control for a four wheel mobile robot with un-
known length. This simple example clearly illustrates that
for the general state tracking problem specifying the state
trajectory to be tracked and not knowing certain parameters
can be in conflict with each other. We propose a formulation
for the adaptive tracking problem that is such that it reduces
to the tracking problem in case the parameters are known.
Not only did we formulate the problem, also a solution was
derived.
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Chapter 11

Conclusions

From a practical point of view, the problem of making a system follow a certain trajectory
is interesting. One can think of robots that have to perform a desired motion, mobile cars in
the harbor driving a prescribed trajectory, a spacecraft moving along a predetermined path,
autopilots for airplanes, and numerous other examples. One not necessarily has to think of
robots, also a factory following a predetermined production schedule can be thought of as a
tracking problem. Since the tracking control problem for arbitrary systems is too complex to
be solved in general, all we can do is restrict ourselves to classes of systems with a specific
structure. This thesis is concerned with certain nonlinear mechanical systems described by
continuous-time models.

11.1 Discussion

In Part I of this thesis we studied the tracking control problem for several non-holonomic
systems with two inputs. We introduced the cascaded design approach as a new method for
controller design. The key idea is to use one input for stabilizing a subsystem of the tracking
error dynamics. Assuming that this stabilization has been achieved, part of the remaining
dynamics can be ignored. Next, the second input can be used for stabilizing this simplified
tracking error dynamics. One of the advantages of this method is that it is not necessary to
transform the system into a certain form by means of a change of co-ordinates. As a result,
the controllers derived by means of this method are less complex expressions.

The cascaded design approach was applied successfully for several classes of mechanical
systems, including a rotating rigid body, mobile robots, chained-form systems, and an under-
actuated ship. Under a persistence of excitation condition on one of the two reference inputs
we arrived atglobally K-exponentially stable tracking error dynamics. This is a type of
uniformstability which guarantees a certain robustness to disturbances.

Backstepping is a widely used controller design method for nonlinear systems with a triangu-
lar structure. In case we compare the cascaded design to a backstepping design, we can say
that backstepping assumes a triangular structure of the system and uses this structure to arrive
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at a triangular closed-loop system in a systematic way. However, what is most important in
our eyes is not the triangular structure of the open-loop system, but the triangular structure
of the closed-loop system. Using backstepping, this triangular structure for the closed-loop
system readily follows starting from a triangular open-loop system. However, the open-loop
system not necessarily has to be in triangular form to obtain triangular closed-loop dynamics.
This is where the cascaded design approach comes into play. A triangular structure for the
open-loop system not necessarily has to be assumed beforehand. All we focus on, is a tri-
angular structure for the closed-loop system. This is exactly what the cascaded approach
does. As a result, transformation of the open-loop system for obtaining a triangular structure
suitable for backstepping is not necessary.

In all the examples studied in the first part of this thesis we were able to perform the analysis
in the original error co-ordinates, leading to a clear structure of the closed-loop dynamics and
to much simpler expressions for the control laws (in the original co-ordinates) than achieved
so far by means of backstepping. For the systems under consideration, the nonlinear tracking
control problem essentially reduced to two linear stabilization problems. As a result, the gain
tuning turned out to be not very difficult, since we could rely on linear techniques. Also the
extension to other problems is straightforward. If one, for instance, is interested in anH1
design, one simply has to solve two linear problems instead of solving partial differential
equations that come from the nonlinearH1 control problem. Notice that all analysis can be
done in the original error co-ordinates, without using state-feedback or input transformations.

In all the examples studied in the first part of this thesis, the connecting termg(t; z1; z2)
could be upper bounded by a linear function ofz1. At first glance this might seem to be a
restriction to the general applicability of the cascaded approach. This is not the case. First
of all, the usage of the linearity assumption ong(t; z1; z2) is to guarantee boundedness of the
solutions of the cascaded system. Whenever one is able to show boundedness of solutions,
no assumption ong(t; z1; z2) is needed. In case the linearity assumption ong(t; z1; z2) is not
satisfied, one way to proceed might be to use the original cascaded theorem (Theorem 2.4.3)
instead of Corollary 2.4.6. Another way to overcome the problem would be using different
co-ordinates, as is done in backstepping. Using as new co-ordinates the difference between
the actual value and the desired value of the virtual control assures a linear connecting term
in a backstepping design. For a cascaded design the problem can be overcome, similarly.

To summarize, the main contributions in Part I are:

� we introduce thecascaded design approach, which does not require the system to be
transformed into a specific structure, leading to simpler controllers than found so far;

� we present controllers for solving both the state- andoutput-feedback tracking problem
for mobile robots. These controllers yield globaluniformasymptotic stability and also
deal withinput saturations;

� we present controllers that solve both the state- andoutput-feedback tracking prob-
lem for chained-form systems with two inputs. These controllers yieldglobal uniform
asymptotic stability and partially deal withinput saturations;

� we present controllers that solve the tracking problem for under-actuated ships by
means of state-feedback. These controllers yieldglobal uniformasymptotic stability.
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In the second part of this thesis we studied three specific problems. First, we addressed the
practically important problem of global set-point stabilization of robot manipulators with PID
control. We showed that for both the state- and output-feedback problem a “start-integration
time” exists such that global asymptotic stability is guaranteed. We also presented criteria
on how to choose the start-integration time and the control gains. Finally, we showed in
simulations the potential advantages of our linear scheme in comparison to existing nonlinear
controllers.

Secondly, we addressed the visual servoing problem of planar robot manipulators under a
fixed camera configuration. That is, we considered a robot manipulator operating in the
plane, viewed from above with a camera, and of which an image is displayed at a screen.
We were able to regulate the tip of the robot manipulator to a specified point at this screen
using only position measurements. As an extra difficulty we took into account the possibility
that both the camera position and orientation are unknown, as well as certain intrinsic camera
parameters (like scale factors, focal length and center offset). In case the camera orientation
is known, we introduced a class of visual servoing controllers for both the state- and output-
feedback case. In case of unknown camera orientation, adaptive controllers were presented.

Thirdly we addressed the problem of adaptive state tracking control for nonlinear systems.
It turned out that formulating the adaptive state-feedback tracking control problem is not
straightforward, since specifying the reference state-trajectory can be in conflict with not
knowing certain parameters. We showed this difficulty by means of an illustrative example
of a four-wheel mobile car with unknown length. We formulated the adaptive state-feedback
tracking control problem in such a way that it reduced to the tracking problem in case the
parameters are known. Furthermore, we presented a general methodology for solving the
problem by means of Lyapunov techniques.

To summarize, the main contributions of Part II are:

� we showglobal asymptotic stability of linear PID controllers when delaying the inte-
gral action;

� we introduceclasses of controllersthat solve the visual servoing of planar robots under
a fixed camera position for both the state- andoutput-feedback problem. These classes
also containsaturatedcontrollers. In case of unknown camera orientation a class of
adaptive controllers is presented;

� we illustrate difficulties in formulating the adaptive state-tracking problem for non-
linear systems with unknown parameters by means of an example. For this example
a suitableproblem formulation of the adaptive state-tracking problemis given and a
solutionis presented.

11.2 Further research

One of the key properties of the backstepping design methodology is its recursive nature.
Once a system is written in a triangular form that is suitable for backstepping, a control law
can be built step by step. In a sense, the cascaded design approach can be seen as a one-step
vectorial backstepping design where part of the dynamics can be forgotten. The fact that we
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do not have a Lyapunov function for showing stability of the overall closed-loop system can
be seen as a shortcoming of the cascaded design approach (or at least of Theorem 2.4.3),
since it makes a recursive application of Theorem 2.4.3 difficult. It would be interesting to
find out whether Theorem 2.4.3 could be extended by showing the existence of a Lyapunov
function candidate satisfying Assumption A1 along trajectories of the overall closed-loop
system. In that way the cascaded design approach can be applied recursively (as in the proof
of Proposition 4.3.2).

For the systems considered in the first part of this thesis, the cascaded design approach re-
duced the nonlinear tracking control problem to two linear stabilization problems. This led
us to a clear structure and gave us a simple strategy for tuning the gains. As a result, the
from a practical point of view more interesting methods like using filtered measurements,
adding integral action or usingH1-control can be applied without any difficulties. It would
be interesting to perform this exercise and study the resulting performance and compare this
to existing results.

Another interesting question concerns the actual controller design, namely the gain-tuning.
The method we used in this thesis is simply applying optimal control to the resulting linear
systems. Notice however, that we have more freedom in choosing the control laws. For the
mobile robot for instance, we could add an (almost) arbitrary termg(t; xe; ye; �e)�e to v. As
long as the functiong can be bounded by a linear function of[xe; ye]

T the proof still follows
the same lines. In a similar way changes to the control laws for the chained-form system
or the under-actuated ship can be constructed. This extra freedom enables us to improve
performance and it is worth investigating how this freedom can be used in designing a well
performing control law.

As mentioned in the beginning of this section, one could view the cascaded design approach
as one-step vectorial backstepping. However, the cascaded design approach is more than that,
since the design methodology as proposed also turns out to be an eye-opener to recognizing
structures that had not been noticed before. However, once a cascaded design leads us to a
simple structure, instead of applying the cascaded theorem for concluding asymptotic stabil-
ity, one could also apply backstepping and redesign the control law for the input that was
used for first stabilizing a subsystem. As mentioned in Remark 4.2.6 this can be done for the
mobile robot, and leads to a weakening of the persistence of excitation condition on one of
the two reference inputs. It is worth investigating whether this idea leads to similar results for
the chained-form system and the under-actuated ship.

Another idea to weaken the persistence of excitation condition on one of the two reference
inputs could be using the concept of uniformÆ-persistence of excitation (uÆ-PE) as introduced
in (Lorı́a et al. 1999b). In that paper the stabilization problem for a chained-form system of
order3 was solved using this concept. Since the mobile car can be transformed to a chained-
form system of order3 the stabilization problem for a mobile car can be solved in a similar
way. It is worth investigating whether the concept of uÆ-PE can be successful in weakening
the PE condition for general chained-form systems and the under-actuated ship.

For all systems studied in the first part of this thesis it turned out that we could conclude global
K-exponential stability, provided that one of the reference inputs was persistently exciting.
As it happened to be, the reference input that has to be persistently exciting, also was the
first input that we used for stabilizing part of the tracking error dynamics. It is interesting to
determine whether this is purely a coincidence or that it can be explained. This observation
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might also be a third way to overcome the “problem of the PE-condition”. The main reason
why this PE-condition on the reference input is annoying, is that for the mobile robot and
the under-actuated ship it makes it impossible to follow straight lines. A PE-condition on the
other reference input would be less annoying, since that would imply only that the reference
has to “keep on moving”. As for the mobile robot this can indeed be done (i.e., first use
v to stabize thexe-dynamics, then use! for stablizing the simplified remaining dynamics,
then conclude GUAS of the overall system under a PE-condition onvr), it would be worth
investigating if this idea can be applied to the tracking problem for the under-actuated ship as
well.

In Chapter 10 it was shown, by means of an illustrative example, that the formulation of
the general adaptive (state)-tracking problem is a problem in itself. As mentioned in the
beginning of this chapter, the problem of following a prescribed trajectory is important from
a practical point of view. Unfortunately, in practice we always have to deal with the fact that
certain parameters are not known exactly. Therefore, the adaptive tracking control problem
is even more interesting to study. However, before we are able to do so, we need to have
a correct problem formulation. Obviously, arriving at a proper problem formulation is an
interesting problem in itself that deserves attention. And once we have a proper problem
formulation, solving the problem is even more interesting.
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Appendix A

Proofs

We present the proofs of Theorem 2.3.7, Theorem 2.3.8 and Proposition 6.3.1. However, first
we consider the stability of the differential equation

dm

dtm
y(t) + a1

dm�1

dtm�1
y(t) + � � �+ am�1

d
dt
y(t) + amy(t) = 0 (A.1)

For this system we can define the Hurwitz-determinants

�i =

�������������

a1 a3 a5 : : : a2i�1
1 a2 a4 : : : a2i�2
0 a1 a3 : : : a2i�3
0 1 a2 : : : a2i�4
...

...
...

...
0 0 0 : : : ai

�������������
(i = 1; : : : ;m)

where, if an elementaj appears in�i with j > i, it is assumed to be zero. It was shown by
Hurwitz (1895) that the system (A.1) is asymptotically stable if and only if the determinants
�i are all positive.

A proof of this result by means of the second method of Lyapunov is less known (see also
(Morin and Samson 1997)). If we define

b1 = �1; b2 =
�2

�1
; b3 =

�3

�1�2
; bi =

�i�3�i

�i�2�i�1
(i = 4; : : : ;m)

as was shown by Parks (1962), the system (A.1) can also be represented as

_w =

2
66666664

�b1 �b2 0 : : : 0

1 0
...

...
...

0
...

...
... 0

...
...

...
... �bm

0 : : : 0 1 0

3
77777775
w: (A.2)
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Differentiating the Lyapunov function candidate

V = b1w
2
1 + b1b2w

2
2 + � � �+ b1b2 � � � bm�1w2

m�1 + b1b2 � � � bmw2
m

(which is positive definite if and only if the determinants�i are all positive) along solutions
of (A.2) results in

_V = �b21w2
1 :

Asymptotic stability then can be shown by invoking LaSalle’s theorem (LaSalle 1960).

Inspired by the result of Parks (1962) we look for a state-transformationz = Sw, that trans-
forms the system (A.2) into

_z =

2
6666664

�a1 �a2 : : : : : : �am
1 0 : : : : : : 0

0
...

...
...

...
...

...
...

...
0 : : : 0 1 0

3
7777775
z (A.3)

To start with, we define

zm = wm:

Since _wm = wm�1, and we would like_zm = zm�1, we define

zm�1 = wm�1:

Since _wm�1 = wm�2 � bmwm, and we would like_zm�1 = zm�2, we define

zm�2 = wm�2 � bmwm:

Proceeding similarly, we define allzk and obtain an expression that looks like

zk = wk + sk;k+2wk+2 + sk;k+4wk+4 + : : : : (A.4)

By this construction of the state-transformation, we are guaranteed to meet them � 1 final
equations of (A.3). The only thing that remains to be verified is whether the equation for
_z1 holds. From the structure displayed in (A.4) we know that the matrixS is nonsingular.
Therefore, we can write

_z1 = ��1z1 � �2z2 � � � � � �nzn; �i 2 R (i = 1; : : : ;m):

The characteristic polynomial of the transformed system then becomes

�m + �1�
m�1 + � � �+ �m�1�+ �m:

Since a state-transformation does not change the characteristic polynomial and we know from
Parks (1962) that the characteristic polynomial of (A.2) equals

�m + a1�
m�1 + � � �+ am�1�+ am;
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clearly�i = ai (i = 1; : : : ;m).

Before we can prove Theorem 2.3.7 and Theorem 2.3.8 we need to remark one thing about
this transformation. When we defineT = S�1, we know that

w1 = z1 + t1;3z3 + t1;5z5 + : : :

w2 = z2 + t2;4z4 + t2;6z6 + : : : :

But also _w1 = �a1w1 � b2w2 (notice thatb1 = a1). Therefore,

_w1 = _z1 + t1;3 _z3 + t1;5 _z5 + : : :

= (�a1z1 � a2z2 � � � � � anzn) + t1;3z2 + t1;5z4 + : : :

= [�a1z1 � a3z3 � : : : ] + [(t1;3 � a2)z2 + (t1;5 � a4)z4 + : : : ]:

So obviously

w1 = z1 +
a3

a1
z3 +

a5

a1
z5 + : : : : (A.5)

Knowing this state-transformation and (A.5) we can start proving Theorems 2.3.7 and 2.3.8.

A.1 Proof of Theorem 2.3.7

Proof. We need to show global uniform exponential stability (GUES) of the system (2.12),
which is described by

_z =

2
6666664

�a1 �a2�(t) �a3 �a4�(t) : : :

�(t) 0 : : : : : : 0

0
...

...
...

...
...

...
...

...
0 : : : 0 �(t) 0

3
7777775
z: (A.6)

We can also write the system (A.6) as

_z = �(t)

2
6666664

�a1 �a2 : : : : : : �am
1 0 : : : : : : 0

0
...

...
...

...
...

...
...

...
0 : : : 0 1 0

3
7777775
z + (�(t) � 1)

2
6666664

a1z1 + a3z3 + : : :

0
...
...
0

3
7777775
:

When we apply the change of co-ordinatesz = Sw as defined before, we obtain

_w = �(t)

2
66666664

�b1 �b2 0 : : : 0

1 0
...

...
...

0
...

...
... 0

...
...

...
... �bm

0 : : : 0 1 0

3
77777775
w + (�(t) � 1)

2
66664
1 � : : : �
0

...
...

...
...

...
... �

0 : : : 0 1

3
77775

2
6666664

a1w1

0
...
...
0

3
7777775
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which (usinga1 = b1) can we rewritten as

_w =

2
66666664

�b1 �b2�(t) 0 : : : 0

�(t) 0
...

...
...

0
...

...
... 0

...
...

...
... �bm�(t)

0 : : : 0 �(t) 0

3
77777775
w: (A.7)

Consider the Lyapunov function candidate

V = b1w
2
1 + b1b2w

2
2 + � � �+ b1b2 � � � bm�1w2

m�1 + b1b2 � � � bmw2
m (A.8)

which is positive definite if and only if

�m + a1�
m�1 + � � �+ am�1�+ am

is a Hurwitz-polynomial. Differentiating (A.8) along solutions of (A.7) results in

_V = �b21w2
1

which is negative semi-definite.

It is well-known (Khalil 1996) that the origin of the system (A.7) is globally uniformly expo-
nentially stable (GUES) if the pair0

BBBBBBB@

2
66666664

�b1 �b2�(t) 0 : : : 0

�(t) 0
...

...
...

0
...

...
... 0

...
...

...
... �bm�(t)

0 : : : 0 �(t) 0

3
77777775
;
�
b1; 0; : : : ; 0

�
1
CCCCCCCA

(A.9)

is uniformly completely observable (UCO).

If �(t) is persistently exciting, it follows immediately from Corollary 2.3.4 that the pair (A.9)
is UCO, which completes the proof.
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A.2 Proof of Theorem 2.3.8

Proof. The system (2.13) can be written as

_z1 =

2
6666664

�k2 �k3� �k4 �k5� : : :

� 0 : : : : : : 0

0
...

...
...

...
...

...
...

...
0 : : : 0 � 0

3
7777775
z1

| {z }
f1(t;z1)

+

2
6666664

�k2 �k3� �k4 �k5� : : :

0 : : : : : : : : : 0
...

...
...

...
0 : : : : : : : : : 0

3
7777775

| {z }
g(t;z1;z2)

z2

_z2 =

2
666666664

0 : : : : : : 0
...

�
...

... �l5�
0

...
...

... �l4
...

... 0 �l3�
0 : : : 0 � �l2

3
777777775
z2

| {z }
f2(t;z2)

where

z1 =
�
x2;e x3;e : : : xn;e

�T
and

z2 =
�
x2;e � x̂2;e ~x3;e � x̂3;e : : : ~xn;e � x̂n;e

�T
:

Since�(t) is persistently exciting (PE) andki; li are such that the polynomials (2.14) are
Hurwitz, we know from Theorem 2.3.7 that the systems_z1 = f1(t; z1) and _z2 = f1(t; z2)
are globally uniformly exponentially stable (GUES).

Then the result follows immediately from Corollary 2.4.6, (sinceg(t; z1; z2) satisfies (2.25))
and the fact that a LTV system which is globally uniformly asymptotically stable (GUAS) is
also GUES (Theorem 2.3.9).
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A.3 Proof of Proposition 6.3.1

Before we prove Proposition 6.3.1 we first prove the following lemma:

Lemma A.3.1. Let the following conditions be given:

k1 > d22 � d11 (A.10a)

k2 =
k4(k4 + k1 + d11 � d22)
m11

m22
(d22k4 +m11k3)

(A.10b)

0 < k3 < (k1 + d11 � d22)
d22

m11
(A.10c)

k4 > 0: (A.10d)

Define� and� (� < �) by means of

�+ � =
k1 + d11

m11
(A.11a)

�� =
k3

m11
; (A.11b)

which is similar to saying that� and� are the roots of the polynomial

p(x) = m11x
2 � (k1 + d11)x+ k3: (A.12)

Then� and� are well-defined, and furthermore

0 < �� � (A.13a)

0 < d22 �m11� (A.13b)

0 < m11�� d22 (A.13c)

0 < m2
11��+ d22k4 (A.13d)

0 < k4 +m11� (A.13e)

0 < k4 +m11�: (A.13f)

Proof. First, we remark that from (A.10a) and the fact thatd22 > 0,m11 > 0 we have:

0 <
d22

m11
<
k1 + d11

m11
:

Consider the polynomial (A.12). Then obviously

p(0) = p

�
k1 + d11

m11

�
= k3 > 0

and

p

�
d22

m11

�
= m11

�
d22

m11

�2

� (k1 + d11)
d22

m11
+ k3 = (d22 � k1 � d11)

d22

m11
+ k3 < 0:
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Therefore, from the intermediate value theorem we know that a constant� exists,0 < � <
d22
m11

, such thatp(�) = 0 and also a�, d22
m11

< � < k1+d11
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, such thatp(�) = 0. As a result
we obtain that� and� are well-defined by means of (A.11). From (A.10) and
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we can conclude the inequalities (A.13).

Proof of Proposition 6.3.1.The closed-loop system (6.11, 6.12) is given by
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If we define� and� as in (A.11) and use (A.10b), the closed-loop dynamics (A.14) can be
expressed as
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Using the change of co-ordinates
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(A.15)

Differentiating the positive definite (cf. (A.13)) Lyapunov-function candidate
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along solutions of (A.15) yields
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which is negative semi-definite (cf. (A.13)).

It is well-known (Khalil 1996) that the origin of the system (A.15) is globally uniformly
exponentially stable (GUES) if the pair(A(t); C) is uniformly completely observable (UCO),
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If rr(t) is persistently exciting, it follows from Corollary 2.3.4 that the pair(A(t); C) is UCO,
which completes the proof.
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Summary

The subject of this thesis is the design of tracking controllers for certain classes of mechanical
systems. The thesis consists of two parts. In the first part an accurate mathematical model of
the mechanical system under consideration is assumed to be given. The goal is to follow a
certain specified trajectory. Therefore, a feasible reference trajectory is assumed to be given
i.e., a trajectory that can be realized for the system under consideration. The tracking error
at each time is defined as the difference between where the system is and where it should
be. The problem now is to design a controller for the system which is such that the tracking
error converges to zero, no matter where the system is initialized nor at which time-instant. A
new design methodology is presented, based on the theory of cascaded systems, i.e., systems
that can be seen as a special interconnection of two stable subsystems. This new approach
is applied to three different models. In Chapter 4 the kinematic model of a mobile car is
considered. Chapter 5 is concerned with systems in chained form. A large class of interesting
mechanical systems can be transformed to the chained form, including a mobile robot, a car
towing multiple trailers, a knife edge, a vertical rolling wheel and a rigid spacecraft with two
torque actuators. In Chapter 6 the tracking problem for an under-actuated ship is dealt with,
i.e., a ship with only two controls is considered, whereas it has three degrees of freedom. All
systems under consideration happen to have two inputs.

In the cascaded design approach, first one of the inputs is used to stabilize a subsystem of
the tracking error dynamics. Next, it is assumed for the remaining dynamics that the stabi-
lization of the first subsystem has worked out, i.e., it is assumed that for the first subsystem
the state equals the reference state and the input equals the reference input. This assump-
tion simplifies the remaining dynamics considerably. Next, the remaining input is used for
establishing asymptotic stability of the simplified remaining dynamics. Having found in this
manner control laws for the two inputs, the resulting closed-loop tracking error dynamics is
considered. Due to the design this closed-loop tracking error dynamics has a cascaded struc-
ture. By means of the theory of cascaded systems global uniform asymptotic stability of the
tracking error dynamics is shown, i.e., it is shown that the tracking error converges to zero,
no matter where the system is initialized nor at which time-instant.

This design strategy is applied to the three models mentioned above. The behavior of the
resulting controllers is illustrated by means of numerical simulations and in case of the ship
by means of experiments on a scale model of an offshore supply vessel.

In the second part of the thesis some uncertainties are taken into account, concerning the
models of the mechanical systems under consideration. First the set-point control problem
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for a rigid robot manipulator is studied in case the vector of gravitational forces is unknown.
Since compensation for this vector is needed to achieve perfect regulation, it is common
practice to use a PID controller instead of a PD-controller with gravity compensation. It is
shown that this approach leads to global asymptotic stability of the error dynamics provided
that the integral action is not activated from the beginning, but only after some period of time.

Secondly, the visual servoing problem for a rigid robot manipulator is considered. Imagine
that a rigid robot manipulator is moving in the horizontal plane and a camera is placed at
the ceiling to watch the manipulator from above. The output of this camera is displayed at
a screen. An operator determines a spot on the screen to which the tip of the manipulator
should move and a controller has to be found which makes the manipulator do so. One of the
major difficulties is that some of the camera parameters are unknown. The fact that also the
orientation angle of the camera is unknown leads to designing an adaptive controller to solve
this problem.

Thirdly, the tracking problem of Part I is considered again, but this time it is assumed that
certain system parameters are unknown. By means of an example it is shown that the formu-
lation of the adaptive tracking control problem is far from trivial. This is due to the fact that
entirely specifying the reference trajectory is in conflict with not knowing certain parameters.
For this example of a four-wheel mobile robot with unknown length a formulation of the
adaptive tracking problem is presented and also solved.

The thesis ends with conclusions and recommendations for further research.



Samenvatting

Dit proefschrift gaat over het ontwerpen van regelaars voor het volg-probleem voor bepaalde
klassen van mechanische regelsystemen. Het proefschrift bestaat uit twee delen. In het
eerste deel wordt een wiskundig model van het mechanische regelsysteem met twee ingan-
gen bekend verondersteld. Het doel is om een gespecificeerd traject te volgen, waarbij wordt
aangenomen dat dat gewenste traject daadwerkelijk door het regelsysteem te volgen is. Op
elk tijdstip wordt de volgfout gedefinieerd als het verschil tussen waar het regelsysteem is
en waar het zou moeten zijn (gezien het gewenste traject). Het probleem is nu om voor
het regelsysteem een regelaar te ontwerpen die er voor zorgt dat de volgfout naar nul con-
vergeert, ongeacht waar of op welk tijdstip het regelsysteem wordt ge¨ınitialiseerd. Er wordt
een nieuwe ontwerpmethode gepresenteerd die gebaseerd is op de theorie van cascade syste-
men, dat wil zeggen, systemen die gezien kunnen worden als een bijzondere verbinding van
twee stabiele systemen. Deze nieuwe aanpak wordt toegepast op drie verschillende modellen.
In hoofdstuk 4 wordt het kinematische model van een mobiele robot beschouwd. Hoofdstuk 5
gaat over regelsystemen in “chained form”. Een grote klasse van interessante mechanische
regelsystemen kan worden getransformeerd naar de “chained form”, waaronder een robot
karretje, een wagen die een aantal opleggers trekt, een mesblad, een verticaal rollend wiel en
een ruimteschip met twee aandrijfmogelijkheden. In hoofdstuk 6 wordt het volg-probleem
behandeld voor een schip met slechts twee stuurmiddelen, terwijl het drie vrijheidsgraden
heeft.

In de cascade ontwerpaanpak wordt eerst een van de ingangen gebruikt om een deelsys-
teem van de volgfout-dynamica te stabilizeren. Daarna wordt voor de resterende dynamica
aangenomen dat de stabilisatie van het eerste deelsysteem gelukt is. Dat betekent dat veron-
dersteld wordt dat voor het eerste deelsysteem de toestand gelijk is aan de referentietoestand
en de ingang gelijk is aan de referentie-ingang. Deze aanname vereenvoudigt de resterende
dynamica aanzienlijk. Vervolgens wordt de ingang die nog over is gebruikt om asymptoti-
sche stabiliteit van de vereenvoudigde resterende dynamica te bewerkstelligen. Nu er op deze
manier regelwetten voor de twee ingangen gevonden zijn, wordt de resulterende volgfout-
dynamica in gesloten lus bekeken. Dankzij de ontwerpaanpak heeft de volgfout-dynamica
een cascade structuur. Met behulp van de theorie van cascade systemen wordt vervolgens
globale uniforme asymptotische stabiliteit van de volgfout-dynamica aangetoond, wat wil
zeggen dat de volgfout naar nul convergeert, ongeacht waar of op welk tijdstip het regelsys-
teem ge¨ınitialiseerd wordt.

Deze ontwerpaanpak wordt toegepast op de drie eerder genoemde modellen. Het gedrag van
de resulterende regelaars wordt ge¨ıllustreerd met behulp van numerieke simulaties danwel,
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in geval van het schip, met behulp van experimenten op een schaalmodel van een zeewaardig
bevoorradingsschip.

In het tweede deel van het proefschrift wordt rekening gehouden met een aantal onzekerhe-
den in de modellen van de mechanische regelsystemen. Als eerste wordt gekeken naar het
probleem om een stijve robotarm naar een vast punt te sturen waarbij de zwaartekrachtsvector
onbekend verondersteld wordt. Aangezien deze vector gecompenseerd moet worden om per-
fecte positionering te krijgen is het gebruikelijk om een PID-regelaar te gebruiken in plaats
van een PD-regelaar met compensatie voor de zwaartekracht. Er wordt aangetoond dat deze
aanpak leidt tot globale asymptotische stabiliteit van de foutdynamica, onder de voorwaarde
dat de integrerende actie niet van het begin af aan, maar pas na enige tijd wordt geactiveerd.

Als tweede wordt het ‘visual servoing’ probleem voor stijve robotarmen bekeken. Neem aan
dat een stijve robotarm in een horizontaal vlak beweegt en dat een camera aan het plafond
de robotarm van boven registreert. Op een beeldscherm wordt weergegeven wat die camera
ziet. Het doel is om een regelaar te ontwerpen die er voor zorgt dat de robotarm zich beweegt
naar de plek die door iemand op het scherm is aangewezen. Een van de problemen die hierbij
een rol speelt, is dat enkele van de parameters van de camera niet bekend zijn. Het feit dat
bovendien de orientatiehoek van de camera onbekend is, heeft er toe geleid een adaptieve
regelaar te ontwerpen om dit probleem op te lossen.

Als derde wordt het volg-probleem van deel I opnieuw bekeken, maar deze keer wordt
aangenomen dat enkele parameters van het regelsysteem onbekend zijn. Door middel van
een voorbeeld wordt aangetoond dat het formuleren van een adaptief volg-probleem verre
van triviaal is. Dit komt doordat het volledig specificeren van het referentie-traject en het
niet kennen van enkele parameters met elkaar in conflict is. Voor dit voorbeeld van een
vier-wielige mobiele robot met onbekende lengte wordt het adaptieve volg-probleem zowel
geformuleerd als opgelost.

Het proefschrift wordt afgesloten met conclusies en aanbevelingen voor verder onderzoek.
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