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Preface

How to start a preface to a thesis that should give an overview of what | have been doing for
almost four years? That is not an easy question to answer. Paradoxically, by writing down
this question | also found an answer to it.

If one comes to think about it, this preface is full of paradoxes. It is funny to realize that
this probably is the first page that people read (except from the title, and for Dutch readers
also the poem, | presume), whereas it is one of the last pages | wrote. | could elaborate more
on these paradoxes, but that would make this first page so philosophical and paradoxical that
even this first page will not be read.

At a time like this, as a period of my life is about to finish, | can not avoid looking back at it,
and looking forward too. While typing this sentence, my thoughts went out to several people.
These include Henk, Guido, Anders, Kristin,nm& Lena, my committee, colleagues, par-
ents and not least of all Wieke (thinking about periods of my life). They all are people
who, amongst others, deserve credit for their contributions (in one way or the other) to this
thesis.

First of all | would like to thank my supervisor and promotor Henk Nijmeijer. During the last
five years we have come to know each other quite well. | am grateful for the opportunity of
working with him, for the possibilities of visiting several colleagues, and for making me put
things in the right perspective. | am really looking forward to our collaboration in Eindhoven
in the near future.

I would like to thank Guido Blankenstein for being more than just a colleague. | have ben-
efited from our (lively) discussions and his willingness to listen to me when | tried to settle
my thoughts. Furthermore, | enjoyed the moments we spent together outside of office and his
special sense of humor.

I would like to express my gratitude to Anders Robertsson, not only for our working together
and his hospitality during my visit to Lund, but especially for all the playing on words in
English during our conversations, e-mails and phone calls. In addition | am indebted to
Kristin Pettersen, Antonio La&, Elena Panteley, Romeo Ortega, Zhong-Ping Jiang, Janusz
Jakubiak and Rafael Kelly, as they all contributed to this thesis.

| am grateful to the members of my promotion committee for thorough reading my manu-
script: Prof. Huibert Kwakernaak, Prof. Henk Nijmeijer, Prof. Claude Samson of Sophia An-
tipolis (France), Prof. Koos Rooda of Eindhoven, and Prof. Ben Jonker, Prof. Arun Bagchi,
and Prof. Arjan van der Schaft of Twente. | would also like to thank Prof. Guy Campion of
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Louvain-la-Neuve (Belgium) for his feedback during the meetings of my advisory committee.

I would like to take the opportunity to thank all my (former) colleagues at the Faculty of
Mathematical Sciences in Twente, and especially those of the Systems, Signals and Control
group for having provided me with such a creative and friendly atmosphere to work in. Spe-
cial thanks also go to the Systems Engineering group in Eindhoven (my current colleagues)
for giving me the opportunity to finish my thesis quietly and showing me a glimpse of the
challenges | will face in the near future.

A special word of thanks goes to Henk Ernst Blok, Paul Huijnen, Kristin Pettersen, and Phil
Chimento who sacrificed themselves for going through (parts of) a draft version of this thesis.
They all contributed to this thesis with their valuable comments.

I would finally like to thank all my friends, my beloved family, and all the people whose name
| did not mention explicitly. A special word of thanks goes to my fiemdVieke Fikse for all
her support and help.

Erjen Lefeber
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Chapter 1

Introduction

Nowadays, control systems are inevitable. They appear almost everywhere: in our homes (in
e.g., radio, television, video, CD-player), in several types of vehicles (in e.g., automobiles,
airplanes, spacecrafts, ships), in industry (e.g., robots, process control), in telecommunica-
tions, in biomedical engineering, and in numerous other places and situations.

Besides the growing usage of control systems, the requirements for a control system increase
considerably, resulting in more, and more complex control systems. In order to be able to
design more complex control systems for a larger variety of systems, a good understanding
of control systems is crucial. In mathematical control theory the basic principles underlying
the analysis and design of control systems are studied.

Nonlinear control is an important area in control, as virtually all physical systems are nonlin-
ear in nature. In case a system does not deviate too much from the nominal set of operating
conditions, often linear models can be used for describing the system and designing con-
trollers. However, when the required operation range is large, a linear(ized) model usually is
inadequate or inaccurate. Then nonlinear control comes into play. Nonlinear controllers are
capable of handling the nonlinearities directly in large operating ranges. And even when the
operation range is small enough, linearization does not always work, as controllable systems
exist, like a car, whose linearization around any equilibrium point is uncontrollable. As a
result nonlinear control theory has to be used for these systems.

In nonlinear control theory a large variety of approaches and mathematical tools for analysis
exists. The main reason for this variety is that no tool or methodology is universally appli-
cable in nonlinear systems analysis. As a result, systematic approaches and mathematical
tools are only available for certain classes of nonlinear systems. This thesis is also concerned
with the control of special classes of nonlinear systems.

The thesis consists of two parts. In the first part a new design approach, the cascaded ap-
proach, is presented. The main advantages of this new approach are that the expressions for
the resulting control laws are not complex and that transforming the system is not necessary:
all analysis can be done in the original co-ordinates. The cascaded design approach aims at
arriving at a specific structure for the closed-loop system. It turns out that this may simplify
the controller design, as part of the nonlinear dynamics can be forgotten. The tracking prob-

5



6 Chapter 1. Introduction

lem is first studied for mobile robots, then for the class of so called chained-form systems
(including cars towing multiple trailers and a rigid spacecraft with two torque actuators) and
finally for an under-actuated ship. The applicability of the method is illustrated by means of
simulations. In case of the under-actuated ship, experiments on a scale model of an offshore
supply vessel have been performed.

In the second part of this thesis three specific problems are considered. First, the regulation
problem for a rigid robot manipulator under a constant disturbance is considered. It is shown
that the common practice of using a PID-controller is guaranteed to work globally in case the
integral action is turned on only after some time. Secondly the visual servoing problem for
a rigid robot manipulator is considered. That is, a robot manipulator is considered operating
in the plane, viewed on top with a camera. An image of the robot manipulator is displayed at
a screen. The goal is to regulate the tip of the robot manipulator to a specified point at this
screen using only position measurements. Extra difficulties are that both the camera position
and orientation are assumed to be unknown, as well as certain intrinsic camera parameters
(like scale factors, focal length and center offset). The problem is solved by using an adaptive
controller. Thirdly the tracking control problem for nonlinear systems is considered in the
presence of unknown parameters, i.e., the adaptive tracking control problem is considered. It
turns out that finding a suitable problem formulation is a problem in itself, as not knowing
certain parameters and specifying a reference trajectory are in conflict with each other. This
conflictis illustrated by means of an example, for which an adaptive tracking control problem
is not only formulated, but also solved.

1.1 Formulation of the tracking control problem

In this thesis the tracking control problem for nonlinear systems is considered. An accurate
mathematical model is assumed to be given for the system under consideration, like a mobile
robot, a car towing multiple trailers, a rigid spacecraft, a ship, or a rigid robot manipulator;
which is of the form:

z = f(t,z,u) (1.1a)
y = h(t,z,u). (1.1b)

Herex € R"™ denotes the state of the systeme R denotes the input by means of which
the system can be controlled, and: R* denotes the output of the system which represents
the measurements.

Furthermore, a feasible reference state trajecto(y) is assumed to be given for the system

to track. Feasible means that once being on the reference trajectory it is possible to stay on
that trajectory. This means that also a reference inp(tl) is assumed to exist, which is such

that

Ty = f(taxr;ur)~ (1.2)

The problem of generating such a feasible reference trajectory for a system is a challenging
problem, known as the motion planning problem. Although motion planning (including ob-
stacle avoidance) is an interesting problem, this thesis is not concerned with it and a reference
stater,.(t) as well as a reference input(¢) which satisfy (1.2) are assumed to be given.
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Once a reference state trajectary(t) and a reference input.(¢) are given, also the resulting
reference outpuy,.(¢) can be defined by means of

Yr = h(ta Lr, ur)'

An often studied problem is the problem of output tracking, that is the problem of finding a
control law for the input: such that as tends to infinityy(¢) converges t@, (¢). This is not

the problem this thesis deals with. For systems like a mobile robot or a ship, the measured
output typically is the position. Tracking of the position might seem an interesting problem,
but it is not all what is really of interest. In general, more is desired. When the only focus
is on controlling the position, it might happen that the mobile robot or ship turns around and
follows the reference trajectory backwards.

This is one of the reasons for insisting on state-tracking, that is, finding a control law for
the inputu which is such that as tends to infinityz(¢) converges tac,.(¢). Two major

state trajectory tracking problems can be distinguished, namely the state-feedback problem
as well as the output-feedback problem. In case of the first problem the entire state can be
used for feedback, whereas for the latter only the output can be used. To be more precise, the
following two problems can be distinguished:

Problem 1.1.1 (State-feedback state-tracking problem)Consider the system (1.1). As-
sume that a feasible reference trajectory, u,.) is given (i.e., a trajectory satisfying (1.2)).
Find an appropriate control law

u=u(t, Ty, Up, T) (1.3)
such that for the resulting closed-loop system (1.1, 1.3)
lim [la(t) — z.(1)]| = 0.

Problem 1.1.2 (Output-feedback state-tracking problem).Consider the system (1.1). As-
sume that a feasible reference trajectory, u..) is given (i.e., a trajectory satisfying (1.2)).
Find an appropriate dynamic control law

u = U(t,mr,ur,y,z) (143-)
z :g(t,xr,ur,y,z) (1.4b)
such that for the resulting closed-loop system (1.1, 1.4)

Jim [l2(8) — . (1)) = 0.

Remark 1.1.3Notice that the assumption of tracking a feasible trajectory is the same as
requiring the zero tracking error to be an equilibrium. Therefore, the tracking problem can
also (actually: better) be formulated as finding an appropriate control law that renders the
zero tracking error equilibrium asymptotically stable.

In the problem formulations as presented, no constraint on the size of the input is given,
whereas in practice the input that can be supplied to the system is limited, i.e., also the
constraint

lu(t)]| < um Vi >0 (1.5
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has to be met, wherg"® is a given constant. In that case the state-tracking problem under
input constraints can be formulated in a similar way, i.e., like the state-tracking control prob-
lem, with the additional constraint (1.5). Clearly, for obtaining a solvable problem it has to
be assumed that the reference satisfies the input constraints, which results in the additional
assumption that

u™ > sup [lu,(t)|]-
>0

These are the control problems studied for several types of systems in this thesis.

1.2 Non-holonomic systems

Except for the rigid robot manipulator, all systems studied in this thesis have so-calted
holonomic constraintsWhat does this mean? To make this more clear, consider the simple
model

.’i’l = Ur2

. (1.6)
Ty = —UT]
where(z1, z2) is the state and is the input.
Notice that model (1.6) contains a constraint on the velocities:
121 + X222 = 0. 1.7)

This constraint is a so-called holonomic constraint, since it can be integrated to obtain

1 2 1 2
ST+ 5T = constant

This teaches us that model (1.6) can be reduced. The change of co-ordinates

) 2
r =] +x5

T
¢ = arctan (—1>
T2

b=u r =r(0).

leads to the “new model”

As x? + 22 is a conserved quantity, the model (1.6) which seems to be a second order model,
turns out to be only a first order model.

Things become different when considering the model
T =up
.’i’z = Uy (18)

T3 = T1Uz — TaUg
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where(x1, x2, x3) is the state anflu1, u») is the input. Model (1.8) also contains a constraint
on the velocities, namely

.’L'l.ii’z - .’L’z.’i’l - .’i’g =0. (19)

However, contrary to (1.7) the constraint (1.9) can not be integrated, i.e., the constraint (1.9)
can not be written as time derivative of some function of the state. The constraint (1.9) is
called a non-holonomic constraint.

It turns out that it is really necessary to use three variables for modeling this system, which
means that the constraint (1.9) is inherently part of the dynamics. As a result the system
(1.8) fails to meet the conditions of Brockett (1983, Theorem 1) that are necessary conditions
for the existence of a continuous static state-feedback law, i.e., a control law of the form
u = u(z), that asymptotically stabilizes the system (1.8).

Since in this thesis the tracking problem for non-holonomic systems is dealt with and stabi-
lization is a specific case of tracking, in one way or the other this difficulty should be taken
into account. As it turns out, conditions on the reference inplitave to be imposed in order

to circumvent this problem.

1.3 Outline of the thesis

This thesis consists of two parts, preceded by a chapter with preliminaries.

Chapter 2 provides an overview of notions and results that are used throughout the thesis.
This chapter is included for making the thesis more or less self-contained. Section 2.4 is fun-
damental for Part I. The main contributions of Chapter 2 are Theorem 2.3.7, Theorem 2.3.8
and Lemma 2.4.5.

Part |

In the first part a cascaded design approach to the tracking problem for nonlinear systems
is presented. This approach is illustrated by means of several examples: mobile robots in
Chapter 4, general chained-form systems in Chapter 5 and an under-actuated ship in Chap-
ter 6. The applicability of the method is illustrated by means of simulations. In case of the
under-actuated ship also experiments have been performed. This first part is a composition
of the papers

e J. Jakubiak, E. Lefeber, K. Ton; and H. Nijmeijer, “Observer based tracking con-
trollers for a mobile car,” 2000, Submitted to the 39th Conference on Decision and
Control, Sydney, Australia;

e Z.-P.Jiang, E. Lefeber, and H. Nijmeijer, “Stabilization and tracking of a nonholonomic
mobile robot with saturating actuators,”oceedings of CONTROLQ’98, Third Por-
tuguese Conference on Automatic Contxal. 1, Coimbra, Portugal, 1998, pp. 315—
320;
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Z.-P. Jiang, E. Lefeber, and H. Nijmeijer, “Saturated stabilization and tracking of a
nonholonomic mobile robot,” 1999, SubmittedSgstems and Control Letters

e E. Lefeber, K. Y. Pettersen, and H. Nijmeijer, “Tracking control of an under-actuated
ship,” 2000a, in preparation;

e E. Lefeber, A. Robertsson, and H. Nijmeijer, “Linear controllers for tracking chained-
form systems,” irStability and Stabilization of Nonlinear Systerds Aeyels, F. Lam-
nabhi-Lagarrigue, and A. J. van der Schaft, Eds., no. 246 in Lecture Notes in Control
and Information Sciences, pp. 183-199, London, United Kingdom: Springer-Verlag,
1999a;

e E. Lefeber, A. Robertsson, and H. Nijmeijer, “Output feedback tracking of nonholo-
nomic systems in chained form,” Proceedings of the 5th European Control Confer-
ence Karlsruhe, Germany, 1999b, paper 772;

e E. Lefeber, A. Robertsson, and H. Nijmeijer, “Linear controllers for exponential track-
ing of systems in chained formijiternational Journal on Robust and Nonlinear Con-
trol, vol. 10, no. 4, pp. 243-264, 2000b;

e E. Panteley, E. Lefeber, A. L@, and H. Nijmeijer, “Exponential tracking control of
a mobile car using a cascaded approach,Pioceedings of the IFAC Workshop on
Motion Contro| Grenoble, France, 1998, pp. 221-226,

and some additional unpublished material.

The main contribution of this part is the introduction of the cascaded design approach. New

and simple time-varying state-feedback controllers are presented that achieve global and uni-
form tracking results for tracking mobile robots, chained-form systems and under-actuated

ships. The state- and output-feedback control problems are considered, also under (partial)
input saturation. No transformations are needed; all analysis is done in the original error

co-ordinates.

Part I

In the second part solutions to three specific problems are presented. This part consists of
three papers, respectively

e A. Loria, E. Lefeber, and H. Nijmeijer, “Global asymptotic stability of robot manipu-
lators with linear PID and PD control,” 1999a, Submitted t8tability and Control:
Theory and Applications

e E. Lefeber, R. Kelly, R. Ortega, and H. Nijmeijer, “Adaptive and filtered visual servoing
of planar robots,” irProceedings of the Fourth IFAC Symposium on Nonlinear Control
Systems Design (NOLCOS'98)l. 2, Enschede, The Netherlands, 1998, pp. 563-568;

e E. Lefeber and H. Nijmeijer, “Adaptive tracking control of honholonomic systems:
an example,” inrProceedings of the 38th IEEE Conference on Decision and Control
Phoenix, Arizona, USA, 1999, pp. 2094-2099.
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The contributions of this part consist of

e Globalasymptotic stability of linear PID controllers is shown by delaying the integral
action;

e Classes of controllers are introduced that solve the visual servoing of planar robots
under a fixed camera position for both the state- and output-feedback problem. These
classes also contain saturated controllers. In case of unknown camera orientation a
class of adaptive controllers is presented;

¢ Difficulties in formulating the adaptive state-tracking problem for nonlinear systems
with unknown parameters are illustrated by means of an example. For this example
a suitable problem formulation of the adaptive state-tracking problem is given and a
solution is presented.

Chapter 11 contains the conclusions of this thesis and some recommendations for further
research.

Appendix A contains the proofs of some theorems presented in this thesis.

Appendix B contains a backstepping control law for tracking an under-actuated ship. This
expression which was too long to be incorporated in the text of Chapter 6.
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Chapter 2

Preliminaries

In this chapter we recall a few notions and results that we use throughout this thesis. First, we
consider some fundamental mathematical definitions. Next the concept of Lyapunov stability
and some lemmas useful for showing stability are given. We review some basic notions
for linear time-varying systems, introduce some crucial theorems, present results on (time-
varying) cascaded systems, and briefly illustrate the method of backstepping.

2.1 Mathematical preliminaries

Definition 2.1.1. A norm ||z|| of ann-dimensional vectat = (z1,...,z,)’ € R* isareal
valued function with the properties

e ||z|| > 0forall z € R", with ||z|| = 0 if and only if z = 0;
e llz +yll < llzll + llyll, forall z,y € R™;

e |laz|| = |af||z||, for all « € R andz € R™.

Some commonly used norms are

1
A(|x1|p+-~-+|xn|p)P 1<p< o

B
[

and

A
‘max |z
i=1,...,n

B
[

Definition 2.1.2. We denote a sphere of raditdy B,, i.e.,

B, 2 {z e R"|||z|| < r}.

13



14 Chapter 2. Preliminaries

Definition 2.1.3. For functions of timer : Ry — R", we define the, norm

lell, 2 ([ ||sc<¢>||pdT)1i

for p € [1,00) and say that € £, when||z[|, exists (i.e., when|z||, is finite). TheL
norm is defined as

2]l £ sup [lz(t)]|
t>0

and we say that € £, when||z||  exists.

Definition 2.1.4. A function f : R* — R™ is said to becontinuous at a pointz if given an
e > 0 a constand > 0 exists such that

le —yll <0 =[If(x) = Fly)ll <e z,y € R". (2.1)

Definition 2.1.5. A function f : R* — R™ is said to becontinuous on a setS if it is
continuous at every point if.

Definition 2.1.6. A function f : R* — R™ is said to begiecewise continuous on a sef if
it is continuous orf, except for a finite number of points.

Definition 2.1.7. A function f : R* — R is said to bauniformly continuous on a setS
if given ane > 0 a constand > 0 exists (depending only o¢) such that (2.1) holds for all
x,y €S.

Notice that uniform continuity is defined on a set. Furthermore, for uniform continuity the
samed “works” for all points of the set. As a result, uniform continuity implies continuity,
but not necessarily vice versa. Notice that the funcfign) = ¢® is continuous orR, but

not uniformly continuous orR. However, the functiorf (z) = e is uniformly continuous

on any compact se&f C R.

Often uniform continuity of a functiorf : R — R can be verified by means of the following
lemma.

Lemma 2.1.8. Consider a differentiable functiofi : R — R. If a constantd/ € R exists
such that

df

E(:v) <M

— )

sup
z€ER

then is uniformly continuous off.
Definition 2.1.9. We denote the class aftimes continuously differentiable functions 6¢.

Remark 2.1.10From the fact that

1 1
sine =x — E:n3 + O(z*) and cosz =1-— 5;102 + O(z*)
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we can conclude that

lim 222 — g and lim L7657 _
z—=0 I z—0 xT
As a result the functions
! sinz - for g £ 0
= ds = x 2.2
h(@) /0 cos(as)ds {1 forz =0 22)
and
1 l—coszx for T ;é 0
. - i ds = x 2.3
f(w) /0 sin(zs)ds {0 forz = 0 (2:3)

are continuous.

For simplicity of notation we use the expressio%'w'\;sz and H% throughout this thesis,
whereas it would be more precise to use (2.2) and (2.3) respectively.

The same holds true for similar expressions that at first glance seem not to be defined for
xz = 0.

Definition 2.1.11. A continuous functior : [0,a) — [0, 00) is said to belong telassk

(a € K) ifitis strictly increasing andv(0) = 0.

Definition 2.1.12. A continuous functiord : [0,a) x [0,00) — [0, 00) is said to belong to
classKCL (5 € KL) if for each fixeds the mappingi(r, s) belongs to clask& with respect to
r and if for each fixed- the mapping3(r, s) is decreasing with respect toandj3(r, s) — 0
ass — o0o.

Definition 2.1.13. A saturation function with saturation level e is aC' functiono, : R —
[—e, €] that satisfies

zoe(x) >0 Ve #0
and

do.
dz

(0) > 0.

2.2 Lyapunov stability

Consider a non-autonomous system described by
i = f(t,x) (2.4)

wheref : R, x D — R" is piecewise continuous dR x D and locally Lipschitz inz on
Ry x D,andD C R" is a domain that contains the origin= 0. We assume that the origin
is an equilibrium point for (2.4) which is expressed by

f(t,0) =0, vt > 0.

For studying the stability of the origin we introduce the following notions (see e.g., (Khalil
1996)).
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Definition 2.2.1. The equilibrium point: = 0 of (2.4) is said to bglocally) stable (in the
sense of Lyapunov)f a positive constant > 0 exists such that for allo, z(to)) € Ry x B,
a functiona € K exists such that

lz(®)]] < alllz(o)ll) Vt > to > 0,Vz(ty) € By (2.5)
If the bound (2.5) holds for alltg, z(t9)) € Ry x R", then the origin iglobally stable
Definition 2.2.2. The equilibrium pointz = 0 of (2.4) is said to be
e (locally) asymptotically stable if a constantr > 0 exists such that for all pairs
(to,x(to)) € Ry x B, afunctiong € KL exists such that
lz@®l < B(llz(to)ll , ¢ — to) Vt >ty > 0,Vz(to) € By; (2.6)
e semi-globally asymptotically stableif for each constant > 0 and for all pairs
(to,z(to)) € Ry x B, afunctiong € KL exists such that (2.6) holds;

e globally asymptotically stable (GAS)if a functions € KL exists such that for all
pairs(to, z(to)) € Ry x R™ (2.6) holds.

Definition 2.2.3. The equilibrium point: = 0 of (2.4) is said to bglocally) exponentially
stableif it is (locally) asymptotically stable and (2.6) is satisfied with

B(r,s) = kre "? k>0,y>0.
In a similar way we can define the equilibrium point= 0 of (2.4) to besemi-globally
exponentially stableor globally exponentially stable (GES)

For linear time-invariant systernis= Az it is well-known that asymptotic stability is equiva-
lentto GES and robustness with respect to perturbations is guaranteed, i.e., under a uniformly
bounded additional perturbatioi, t) solutions of the system = Az + ¢ remain bounded.
Unfortunately this is in general not true for non-autonomous systems.

Example 2.2.4 (see (Panteley, Loria and Teel 1999)onsider the system (2.4) with

__1 if > L
f(t,m)z{ e o) L2 1

where
-1 ifz<0
sgn(z) =<0 ifz=0.
1 ifz>0

Then for eachr > 0 andty > 0 there exist constants> 0 andy > 0 such that for alt > ¢,
and|z(to)| < r

|z (t)] < k| (to)| e o) Vt > tg > 0. 2.7)

However, always a bounded (arbitrarily small) additive perturbationz) and a constant
to > 0 exist such that the trajectories of the perturbed system f(¢,z) + &(t,x) are
unbounded.
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More details concerning the proof of the claims made in this example can be found in
(Panteley et al. 1999). One of the reasons for this negative result is that in (2.7) the con-
stantsk and~ are allowed to depend ap, i.e., for each value of; different constantg and

~v may be chosen. Therefore, we introduce the notion of uniform stability.

Definition 2.2.5. The equilibrium pointz = 0 of (2.4) is said to beainiformly stable if a
positive constant > 0 and anx € K exist, both independent &, such that

le(®)ll < alllz(to)) Vi > to > 0,Va(to) € B,. 2.8)

If the bound (2.8) holds for alltg, z(t9)) € Ry x R™, then the origin iglobally uniformly
stable

Definition 2.2.6. The equilibrium pointz = 0 of (2.4) is said to be

¢ (locally) uniformly asymptotically stable if a constant > 0 and a functiors € KL
exist, both independent &f, such that

llz(®)I < B(|z(to)l ,t — to) Vt > to > 0,Vz(to) € By; (2.9)

e semi-globally uniformly asymptotically stableif for each constant > 0 and for all
(to,z(to)) € Ry x B, afunctiong € KL exists such that (2.9) holds;

¢ globally uniformly asymptotically stable (GUAS) if a function € KL exists such
that for all (tg, z(to)) € Ry x R™ (2.9) holds.

Definition 2.2.7. The equilibrium pointz: = 0 of (2.4) is said to bélocally) uniformly ex-
ponentially stable/semi-globally uniformly exponentially stabldglobally uniformly ex-
ponentially stable (GUES)if it is (locally) uniformly asymptotically stable/semi-globally
uniformly asymptotically stable/globally uniformly asymptotically stable respectively and
(2.9) is satisfied with

B(r,s) = kre™"® k>0,y>0.
Having these definitions of uniform stability we are now able to formulate the following
robustness result for uniformly asymptotically stable systems:

Lemma 2.2.8 ((Khalil 1996, Lemma 5.3)).Letz = 0 be a uniformly asymptotically stable
equilibrium point of the nominal systein= f(¢,x) wheref : R, x B, — R" is continu-
ously differentiable, and the Jacobig#.] is bounded or,., uniformly in¢. Then one can
determine constantd > 0 and R > 0 such that for all perturbations(¢, ) that satisfy the
uniform bound|d(¢, z)|| < § < A and all initial conditions||z(to)|| < R, the solutionz(¢)
of the perturbed systein= f(t,z) + §(¢, ) satisfies

(@O < Bl (o)l . —to) Vio <t <t
and

lz()]] < p(0) vt >t
for somes € KL and some finite tim& , wherep(d) is a classk function ofd.

Furthermore, ifz = 0 is a globally uniformly exponentially stable equilibrium point, we can
allow for arbitrarily large 6 by choosingk > 0 large enough.
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This implies that uniform asymptotic stability gives rise to some robustness that is not guar-
anteed by asymptotic stability. This explains why in this thesis we do not aim for asymptotic
stability, but for uniform asymptotic stability instead.

Notice that for autonomous systenmis= f(x) we may drop the word “uniform” as the
solution depends only on— ¢y.

From Lemma 2.2.8 it is also clear why exponential stability is a most favorable property.
Unfortunately, global uniform exponential stability can not always be achieved, which could
be an explanation for all the different notions of exponential stability that are available in
literature. However, Example 2.2.4 clearly shows that exponential convergence in itself does
not guarantee robustness; one needs uniformity. A notion that is equivalent to having both
global uniform asymptotic stability and local uniform exponential stability (GUAS+LUES)

is the following.

Definition 2.2.9 ((Sgrdalen and Egeland 1995, Definition 2))The equilibrium pointz =
0 of (2.4) is said to belobally K-exponentially stableif a functionx € K and a constant
~ > 0 exist such that for alltg, (o)) € Ry x R™ we have

2]l < r(llz(to)[)e ") Vt > to > 0.

A useful tool for showing asymptotic stability of a certain signal is:
Lemma 2.2.10 (see (Barélat 1959)). Let¢ : R, — R be a uniformly continuous function.
Suppose thdim; . f(f ¢(T)dr exists and is finite. Then
Jim, 018) = 0
Corollary 2.2.11. If f € Lo, f € Loo, andf € L, for somep € [1, 00), then
tlggo F(t) =0,

An extension of Baralat's Lemma to function that are not uniformly continuous (but can
be written as the sum of a uniformly continuous function and a piecewise continuous function
that decays to zero) was presented in (Micaelli and Samson 1993):

Lemma 2.2.12 ((Micaelli and Samson 1993, Lemma 1)Let f : Ry — R be any differ-
entiable function. Iff (¢) converges to zero @s— oo and its derivative satisfies

f@) = fo(t) +n(t) t>0

wheref; is a uniformly continuous function angdt) tends to zero as — oo, thenf(t) and
fo(t) tend to zero ag — oo.

2.3 Linear time-varying systems

Consider the linear time-varying (LTV) system

&= A(t)z + B(t)u

I (2.10)
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wherez € R*, v € R™, y € RF, andA(t), B(t), C(t) are matrices of appropriate di-
mensions whose elements are piecewise continuous function®(Let) denote the state-
transition matrix for the system = A(t)z. We recall two definitions from linear control
theory (see e.g., (Kailath 1980, Rugh 1996)).

Definition 2.3.1. The pair(A(t), B(t)) is uniformly completely controllable (UCC) if con-
stantsd, €q, 2 > 0 exist such that for alt > 0:

t40
al, < / ®(t,7)B(1)BT (1)@ (t,7)dr < eo1,,.
t

Definition 2.3.2. The pair(A(t), C(t)) is uniformly completely observable (UCO)if con-
stantsd, €;, €2 > 0 exist such that for alt > 0:

t
eﬂﬁg/)@T@t—&CWﬂC&WﬁJ—émrgqh.
t—0

A very helpful theorem for showing UCC or UCO is

Theorem 2.3.3 ((Kern 1982, Theorem 2))Consider the linear time-varying systéh10)
Suppose thatl(¢) and B(t) are bounded and that(¢) is Lipschitz, i.e., constan® and L
exist such that

1A < K forallt >0
IB(#)] < K forallt >0
|A(t) — A(#")|| < L|t — '] forall ¢,¢ > 0.

Then the syster{2.10)is uniformly completely controllable if a constafit > 0 and ans
witht — 6. < s < ¢ exist such that the matrix functidii (¢ — .., ¢) defined by

t1
W (to,t1) = / eA(s)(tl_T)B(T)BT(T)eAT(s)(“_T)dT
to
satisfies
0<ail, <W(t—o.,t) forallt >0
whereq; (6.) is a constant.
Corollary 2.3.4. Consider the system

& = A(¢(t))z + Bu

2.11
Y= Ca (2.11)

where A(¢) is continuousA(0) = 0, ¢ : R — R continuous. Assume that for all# 0
the pair (A(s), B) is controllable (respectively the paftd(s), C') is observable). 1f(t) is
bounded, Lipschitz and constaits> 0 ande > 0 exist such that

Vt>0,3s:t— 6. <s < tsuchthat|p(s)| > e,

then the systerf?2.11)is uniformly completely controllable (respectively observable).
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The condition imposed ow(t) in Corollary 2.3.4 plays an important role, not only in this
thesis, but also in identification and adaptive control systems. It is known as the “persistence
of excitation condition”.

Definition 2.3.5. A continuous functionp : R, — R is said to bepersistently exciting
(PE) if all of the following conditions hold:

e aconstanf > 0 exists such thap(t)| < K forall ¢t > 0,
e aconstan > 0 exists such thaip(t) — ¢(t")| < L |t — t'| forall t,¢ > 0, and
e constant®,. > 0 ande > 0 exist such that

Vt >0,3s:t— 0. < s < tsuchthat|p(s)| > e.

Remark 2.3.6Notice that in the common definition of persistence of excitation usually the
first two assumptions op(t) are made implicitly. The third condition is in general formulated
for ¢ : R — R™, assuming the existence of positive constanis., andd such that for all
t>0

t+o

al, < (1)¢" (r)dr < ex1,.
t

Furthermore, notice that the third condition ¢(t) as in Definition 2.3.5 can be interpreted

as follows: assume that we plot the grapHdg(ft)| and look at this plot through a window of
width 6. > 0. Then, no matter where we put this window on the graph, always a time instant
s exists wherég(s)| is at least > 0.

The following are some useful results.

Theorem 2.3.7.The system

—ki —koop(t) —ks —ksop(t)

o(t) 0
i=10 oz (2.12)
T .

is globally uniformly exponentially stable (GUESY)ift) is persistently exciting and the
(: = 1,...,n) are such that the polynomial

DGR T Nt R D Y

is Hurwitz (i.e., all its roots have negative real parts).

Proof. See Appendix A. O
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Theorem 2.3.8. The system

ki —keop(t) —ks —kad(t) ... ki ked(t) ks Kkad(t) ... 7
(1) 0 . 0o 0 ... ... .. 0
. .
0 0 e) 0 0 0
1o 0 0 ... ... 0 N
o(t) ; —l4¢(t)
: " : ; " " 0 —la()
0 0 0 ... 0 o0 1 |
(2.13)

is globally uniformly exponentially stable (GUESift) is persistently exciting and thg, I;
(i =1,...,n) are such that the polynomials

AN A b Ry A kg (2.14a)
and
N A L A+, (2.14b)
are Hurwitz.
Proof. See Appendix A. O

Theorem 2.3.9 ((loannou and Sun 1996, Theorem 3.4.6 v)The linear time-varying sys-
tem (2.10) is globally uniformly exponentially stable (GUES) if and only if it is globally
uniformly asymptotically stable (GUAS).

Proposition 2.3.10. Consider the system
&y = —0o(z1) + ¢(t) 2
B2 = —P(t)7

whereo, is a saturation function with saturation levelas defined in Definition 2.1.13. If
¢(t) is persistently exciting (PE), then the syst@rl5)is globally K-exponentially stable.

(2.15)

2.4 Cascaded systems

Consider a systerh = f(t, z) that can be written as

z21 = fi(t,21) + g(t, 21, 22) 22 (2.16a)
Z2 = falt, 22) (2.16b)
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wherez; € R, 2, € R™, fi(t,21) is continuously differentiable ifi¢, z1) and f2(t, z2),
g(t, z1, z2) are continuous in their arguments, and locally Lipschitzdrand (z;, z2) re-
spectively.

Notice that ifz, = 0 (2.16a) reduces to
z1 = fi(t, z1).
Therefore, we can view (2.16a) as the system
Xy z = fi(t, 21) (2.17)
that is perturbed by the output of the system
¥y Z2 = fo(t, 22). (2.18)

Assume that the systenis; and ¥, are asymptotically stable, i.e., for (2.17) we know
lim;,, 21(t) = 0 and for (2.18) we havéim,_,, z2(t) = 0. It is obvious that in that

case also for (2.16b),(¢) tends to zero. In that case the dynamics (2.16a) reduces to the
dynamics (2.17). It seems plausible that therefore also (2.16a) and as a result the cascaded
system (2.16) become asymptotically stable.

Unfortunately, this is not true in general as can be seen from the following example.
Example 2.4.1. Consider the system
21 = —2z1+ Z%ZQ (2.19a)
29 = —7Y29 v>0 (2.19b)
which can be seen as the system

2= —21 (220&)
that is perturbed by the output of the system

Zy = —7YZ2 v > 0. (2.20b)

Both (2.20a) and (2.20b) are globally exponentially stable (GES). One would expect the
system (2.19) to be asymptotically stable. However, solving the differential equations (2.19)
yields

_ 221 (0)
alt) = 21(0)22(0)e=7t 4 [2 — 21(0)22(0)]et
25(t) = 22(0)e " (2.21b)

(2.21a)

Notice that ifz1 (0)22(0) > 2 the denominator of (2.21a) becomes zero at
tese= — In | ——22227 )
T 2y <z1(0)z2(0) -2

so the solution o (¢) goes to infinity in finite time. One could consider increasing the gain
~ to makez,(t) converge to zero faster and have the dynamics (2.19a) converge to (2.20a)
faster. Unfortunately, as a result the solutiorzpft) goes to infinity even quicker!
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However, under certain conditions it is possible to conclude asymptotic stability of (2.16)
when bothX; andX, are asymptotically stable:

Lemma 2.4.2 ((Panteley and Loria 1999, Lemma 1))If the system$§2.17)and (2.18)are
globally uniformly asymptotically stable (GUAS) and solutions of the cascaded sigsteh
are globally uniformly bounded, then the syst@ri6)is globally uniformly asymptotically
stable (GUAS).

The question that remains is when solutions of (2.16) are globally uniformly bounded. To
answer that question, we can use the following:

Theorem 2.4.3 ((Panteley and Loria 1999, Theorems 1, 2, 4)fonsider the following as-
sumptions

Al. The system§2.17)and (2.18) are both globally uniformly asymptotically stable
(GUAS) and we know explicitly @ Lyapunov function candidaté(t, z;), a;, as €
Koo, a4 € K and a positivesemidefinite functiod? (z;) such that

ar(|[z1l]) < V(t, 21) < aa(][z1]]) (2.22a)

ov. oV

E + B_Zlfl (t,Zl) S —W(Zl) (222b)
‘ S—Z ‘ < ay(||z1]])- (2.22c)

A2. For each fixed- a continuous function : Ry — R, exists witHim,_,, A(s) =0
and such that
‘ ov

55,9t 2, 2) || < Al )W (21)
21
with vV andW as in Assumption Al.

A3. Continuous functiong, : R, — Ry andas : R — Ry exist such that

llg(t, 21, z2) || < B2 (l|22[])exs ([|21]]) (2.23)
and a continuous non-decreasing functiofn: Ry — R, and a constant > 0 exist
such that

as(s) > au (a7 () as (a7 ' (5))
and

/ & _ o (2.24)
a aﬁ(s)

with aq, ay @s in Assumption Al.

A4. For eachr > 0, constants\ > 0 andn > 0 exist such that for alt > 0 and all
22| <

< AW (z1) Vilzill > 7.

3_V (t )
azlg 3 %1, 22
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A5. A functiong € K exists such that the solutian(t) of (2.18)satisfies

[ Iz ld < sl

to

Then we can conclude

e If Assumptions Al and A2 hold, then the cascaded sy&@el)is globally uniformly
asymptotically stable (GUAS).

e If Assumptions Al, A3 and A4 hold, then the cascaded sy&d)is globally uni-
formly asymptotically stable (GUAS).

e If Assumptions Al, A3 and A5 hold, then the cascaded sy&édm®)is globally uni-
formly asymptotically stable (GUAS).

Corollary 2.4.4 (see (Panteley and Loria 1998))lf Assumption Al is satisfied with

2
a1 (||z1]]) = e ||zl

ag([[z1]]) = eallzll,
continuous functionk; : Ry — R andk, : Ry — R exist such that
lg(t, 21, 22) || < K ([|22]]) + R (llz2 ) {1211 (2.25)

and Assumption A5 is satisfied, then the cascaded sy&t&6)is globally uniformly asymp-
totically stable (GUAS).

Proof. We have that (2.23) is satisfied with

01 (l|z21) = max(ky (||z2[]), k2([l=2[))
as(llz1]) = 1+ [zl -

Then we have

s (a9 as (o (9) = 25 (14— v5)

NG NG
so that we can take
A G
a(s) = Vet s
If we takea > ¢; in (2.24) we have that Assumption A3 is satisfied. O

Lemma 2.4.5 (see (Panteley, Lefeber, Loa'and Nijmeijer 1998)). Assume that both sub-
systemg2.17)and (2.18)are globallyK-exponentially stable, we know explicitlyC4 Lya-
punov function candidate (¢, z, ) that satisfieg2.22)with a; (||21]]) = ¢1 ||21]], a2 € Koo,
as(||z1]]) = c4]|z1]] and positive semi-definifé” and thatg(t, z1, z2) satisfieg2.25) Then
the cascaded systef®.16)is globally -exponentially stable.
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Corollary 2.4.6. Assume thaf2.17)is globally uniformly exponentially stable (GUES), that
(2.18)is globally K-exponentially stable and tha(t, 21, z2) satisfieg2.25) Then the cas-
caded syster(2.16)is globally K-exponentially stable.

Proof. This follows immediately from Lemma 2.4.5, since the existence of a suitable Lya-
punov function candidate is guaranteed from converse Lyapunov theory (see (Khalil 1996,
Theorem 3.12)). O

2.5 Backstepping

A commonly used method of nonlinear controller design is backstepping. We illustrate this
method by means of a simple example considering the special case of integrator backstepping.
For a more detailed explanation the reader is referred to (Marino and Tomei 199%, Krsti’
Kanellakopoulos and Kokotowil995).

Example 2.5.1. Consider the second order system
& =cosx—ad+¢& (2.26a)
E=u (2.26b)
where[z, £]T € R? is the state and € R is the input. We want to design a state-feedback

controller to render the equilibrium poifit, £]7 = [0, —1]7 globally asymptotically stable
(GAS).

If £ were the input, then (2.26a) can easily be stabilized by meafisof-c;z — cosz. A

Lyapunov function would b& (z) = a2

Unfortunately¢ is not the control but a state variable. Nevertheless, we could prescribe its
desired value

fdes= —c1 — cos T = a(x).
Next, we define: to be the difference betweérand its desired value:
z=E§—Cdes=& —ax) =+ 1z + cosa.

We can now write the system (2.26) in the new co-ordinates):

. 3

r=—-Ccr—x +2z

' , (2.27)

Z=u+ (¢ —sinz)(—c1z — 2° + 2).
To obtain a Lyapunov function candidate we simply augment the Lyapunov function with a
quadratic term ir:

1 1 1
Vo(z, &) =V (z) + 57:2 = 51:2 + 5(5 + ¢y + cosz)?.
The derivative of/, along the solutions of (2.27) becomes

Vo(z,2,u) = —c12? — 2t + 2 (z+u+ (c —sinz)(—c1z — 2° + 2)).
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The simplest way to arrive at a negative defifiteis to choose
u=—cyz—a— (c; —sinz)(—crx — 2° + 2)

which in the original co-ordinatds, £]” becomes

u=—(c1 + )¢ — (14 crea)x — (¢1 + ¢2) cosx + ey — x3sinx 4 Esing + sinx cos .

(2.28)

Usually¢ is called avirtual control, a(z) astabilizing functiorandz the correspondingrror
variable

From this example it is not difficult to see that the more general class of “triangular” nonlinear
systems

&= f(z) +g(x)&
& = filz, &) + gi1(z, &)é
& = fo(@,61,6) + ga2(w,61, &)

én—l = fa—1(®, &1, 6n1) + gn—1(2, 61, -+, 6n1)én
én - fn(mafla"'afn) +gn($,£1,---,fn)u

can be stabilized in a similar way. First consideras a virtual input to stabilize the first
subsystem, define the error variable consider, as a virtual input to stabilize the, z,]”
subsystem, etc. Proceeding step by step along these lines one finally arrives at a control law
for u.

One of the advantages of backstepping is that it provides a constructive systematic method
to arrive at globally stabilizing control laws. Unfortunately, one usually obtains complex
expressions (in the original co-ordinates) for the control law, as already can be seen from
(2.28).
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Chapter 3

Introduction to Part |

3.1 Cascaded design

In recent years recursive design methods for global stabilization of nonlinear systems have
been developed. For applying these methods the nonlinear system has to have (or should
be transformed into) a certain triangular form. Two major design techniques can be distin-
guished: backstepping for lower triangular systems (Koditschek 1987, Byrnes and Isidori
1989, Tsinias 1989, Marino and Tomei 1995, Krsti¢ et al. 1995) and forwarding for upper
triangular systems (Mazenc and Praly 1994, Jankovi¢, Sepulchre and Kakbg96).

One of the advantages of these methods is that they provide a systematic way of recursively
designing feedback laws. Furthermore, associated Lyapunov functions for showing global
stabilization are derived. However, a disadvantage is that the resulting control laws usually
are complex expressions like in Example 2.5.1.

Our goal is to arrive at less complex expressions and to gain more insight in the control laws.
This is why we follow a different approach. We use the results on cascaded systems (Ortega
1991, Mazenc and Praly 1996, Jankovic et al. 1996), or to be more precise the result for time-
varying systems as initially presented by Panteley andalL{d©98) and further developed in
(Panteley and Lo& 1999).

Roughly speaking, we can summarize Theorem 2.4.3 by saying that under certain conditions
the stability of the system

z21 = fi(t,21) + g(t, 21, 22) 22 (3.1a)

Z2 = falt, 22) (3.1b)
can be concluded from the stability of the systems= fi(t,z1) andz, = fa(t, 22). This
implies that in the analysis we can simply “forget” about the tgfmz;, 22)z-> since (under
certain conditions) it does not play a crucial role.

Example 3.1.1. Consider the second order system of Example 2.5.1 after the change of co-
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ordinates, i.e., consider the system
t=—cz—2°+2 (3.2a)
Z=u+(c; —sinz)(—c1x — z* + 2). (3.2b)
The backstepping approach resulted into the control law
u=—cyz—a— (c; —sinz)(—crx — 2° + 2) (3.3)
which results in the globally asymptotically stable (GAS) closed-loop system
P=—cizx—12°+2
Z=—T —C2z.
We could also have taken a slightly different approach before applying the final step in the
backstepping design to arrive at (3.3). Notice thatfoe 0 the system (3.2a) is globally
asymptotically stable (GAS). This is not surprising, sinces precisely the difference be-
tween the virtual control and its desired value that would have stabilized-thdbsystem.

As a result we can also view the system (3.2) as the (by means of the desired virtual control
stabilized) system

¥ i=—cz—2°
that is perturbed by the outputbof the system
Yo s =u+(c; —sinx)(—c1x — z° + 2). (3.4)

As aresult, if we are able to render (3.4) globally asymptotically stable we can claim global
asymptotic stability of the overall system from the theory on cascaded systems.

It is clear that the control law
u=—cz — (1 —sinz)(—ciz — z° + 2) (3.5

renders the system (3.4) globally exponentially stable (GES). With this control law we arrive
at the overall closed-loop system

t=—cz—2> + =z

Z = —Cy2

which according to Lemma 2.4.5 is globally asymptotically stable (GAS).

Notice that a slight difference exists between the control laws (3.3) and (3.5). It turns out that
the “g(t, z1, 22) zo-part” of the subsystem (3.2a) is left out (the te#m in (3.2a) results in

the extra termt-zz in the derivative of the Lyapunov function, which is accounted for by an
additional—z in the control law).

Although the difference is not remarkable, the main lesson that can be learned from Ex-
ample 3.1.1 is not that we are able to leave out the temrin the control law, but that by
recognizing a cascaded structure while designing a controller one might reduce the complex-
ity of the controller.
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3.2 An introductory example: tracking of a rotating rigid
body

Example 3.1.1 gives rise to the question how to recognize a cascaded structure while design-
ing a control law and how to guarantee that the closed-loop control system can be written
in the form (3.1). One possible answer has been given there: follow a backstepping design
and notice before applying the final step that one has a globally asymptotically stable (GAS)
subsystem together with a corresponding Lyapunov function. Therefore, it might suffice to
stabilize only the difference between the virtual control and its desired value, without taking
into account the way this error enters the remaining dynamics. Clearly, also other directions
can be taken. Instead of starting from a systémand designing., we can also start with
designing®s.

To make this more clear, we consider as an introductory example the tracking problem for a
rotating rigid body, for instance a spacecraft. For reasons of simplicity, we consider not the
entire model, but only the dynamics of the velocities. Then the dynamics for a rotating rigid
body with two controls can be expressed as:

I, -1
i = 2w +uy
1
I;—1T
Oy = 2L wgwn +uy
I
. L -1
W3 = W1 W:
3 1-3 1w2
wherew; (i = 1,...,3) are the angular velocities arfd > I, > 0 andI3 > 0 are the

principal moments of inertia.

Notice that we assumi # I in order to be able to contral; by means ofi; andus. Then
the assumptiod; > I, can be made without loss of generality.

Assume that a feasible reference trajectory, u,.) is given, i.e., a trajectory satisfying

. I - I3

Wi,r = T w2 W3 + Ul p
1

. I -1

W2 r = T w3, rWi,r + Uz, r
2

. L -1

= 2,

w3 T W1,rW2

3

When we define the tracking-error = w — w, we obtain the tracking error dynamics

. I, — 1

Wi,e = 2 7 2 (Waws — wo pws p) + U — Up,p (3.72)
1

, Ii—1

W, = 3 L L ((JJ3UJ1 — wg,rwlm) + Uz — u2 (37b)

, I — I

Gge = 2 (Wiws — w1 pwa ). (3.7¢)

’ 1'3
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We are interested in obtaining a closed-loop system of the form (3.1). That is what we focus
on in the controller design. To start with, we look for a way to obtain in closed loop a
subsystenk,, i.e., a subsystem (3.1b). In that light it is good to remark that we can use one
input for stabilization of a subsystem of the control system (3.7). If we for instance take

I, - I
L

Uy = Uy — (wawz — wa yws r) — k1w e k1 >0, (3.8)

then the subsystem (3.7a) is rendered globally uniformly exponentially stable (GUES). In the
closed-loop system this stabilized subsystem can be considered as the Systes, the
system (3.1b). Now we still have one input left that should be chosen such that the overall
closed-loop system is rendered asymptotically stable.

We aim for a closed-loop system of the form (3.1). Besides, for asymptotic stability of the
system (3.1) it is necessary that the part

Z = fi(t,z1) (3.9)

is asymptotically stable. This should is something that be guaranteed by the controller design.
From Theorem 2.4.3 we furthermore know that it might be sufficient too! As a result, we can
conclude that it might suffice in the controller design for the remaining input to render the
part (3.9) asymptotically stable and “forget” about e, z1, 22) 22 part.

So how to proceed? Notice that it is fairly easy to arrive from (3.1a) at (3.9). It is mainly
a matter of substituting: = 0 in (3.1a). This is also the way to proceed in the controller
design. In the first step we designed a control law for one of the two inputs in such a way that
in closed loop a subsystem was stabilized. Before we proceed with the controller design we
assume that the stabilization of this subsystem worked out.

For the example of the rotating body this boils down to substituting = 0 in the remaining
dynamics, which results into the linear system

. Is—I,
Wae| _ 0 I wi,r w2 e 1 _
[@3@] - [hl By 0 ] [W&e] i {0 iz~ e (340

In general this assumption (i.e., the substitutigr= 0) simplifies the remaining dynamics
considerably, since part of it can be forgotten. What we are left with is the part of the closed-
loop system that is described by (3.9) and the problem has reduced to finding a control law
for the second input that is such that this remaining part becomes globally uniformly asymp-
totically stable (GUAS).

For the rotating body this can be guaranteed by a proper choice of the remainingdnput
From Theorem 2.3.7 we know that the control law

Uz = Uz, — kows,e — k3wi pw3 e (3.11)

with k&, > 0 andks > 131 L. makes that the closed-loop system (3.10, 3.11) is globally
uniformly asymptotically stable (GUAS), provided that, is persistently exciting.
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In that case the closed-loop system (3.7, 3.8, 3.11) can be written as

wZ,e _ _k2 - (kB - 131_11) Wi,r W2 e %(W&E + WS,T)
; | n-r : + 2L Wi,e
W3,e 1[3 20.]1,10 0 W3,e Iz (w27e + w27r)
Filtyzn) 9(t,21,22)
(3.12a)
Wie = —kiwie (3.12b)
———

f2 (t722)

which has a clear cascaded structure. That is, we can clearly recognize the sjstems
fi(t,z1) andzy = fo(t, 22), as well as the “connecting termg(¢, z1, z2).

We now have found an overall closed-loop system with a cascaded structure, but does this
enable us to conclude asymptotic stability of the overall closed-loop system? Fortunately
the answer is: yes. Since the systeins= f,(t,21) andz, = f>(t, z2) both are globally
uniformly exponentially stable (GUES), it follows from Corollary 2.4.6 that we can conclude
global K-exponential stability of the system (3.12) once we have #fatz;, z2) satisfies

(2.25). This follows immediately when we assume that beth andws . are bounded.

We can summarize this result as follows.

Proposition 3.2.1. Consider the tracking error dynami€3.7)in closed loop with the control
laws (3.8, 3.11) If w, is bounded and; , is persistently exciting (PE), then the resulting
closed-loop systel8.12)is globally C-exponentially stable.

Remark 3.2.2Instead of first using:; to render the subsystem (3.7a) GUES and then

to stabilize the remaining dynamics, we can also firstwst render the subsystem (3.7b)
GUES and then use, to stabilize the dynamics that remain then. This is similar to inter-
changing the indiceg); and(-) in both (3.8) and (3.11).

The example of tracking the kinematics of a rotating body learned us that another way of
obtaining a closed-loop system of the form (3.1) for a system with two inputs is the following:

e use one input for stabilizing a subsystem of the dynamics. In the overall closed-loop
system this is the system (3.1b);

e assume that the stabilization of has worked out (as guaranteed by the first step of
this procedure), i.e., substitute = 0 in the remaining system;

e use the other input to stabilize the simplified remaining system;

e apply Theorem 2.4.3 to conclude asymptotic stability of the overall closed-loop dy-
namics.

This is the approach that we follow in this part of the thesis, i.e., in the next three chapters.
We study three different examples of systems with two inputs that can be stabilized using this
procedure.
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Chapter 4

Tracking of a mobile robot

4.1 Introduction

In this chapter we study the tracking problem for a wheeled mobile robot of the unicycle type,
shown in Figure 4.1. It is assumed that the masses and inertias of the wheels are negligible

Figure 4.1: A two-wheel mobile robot.

and that both the forward velocityand angular velocity can be controlled independently
by motors. Letz, y) denote the co-ordinates of the center of mass,éatieg angle between
the heading direction and theaxis. We assume that the wheels do not slide, which results
in the following equations

T =wvcosb
¥ =vsinf (4.2)
6=w

wherev andw are considered as inputs.

35
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Notice that the no-slip condition imposes the non-holonomic constraint
sinf — g cosfh = 0.

As a result, the system (4.1) fails to meet Brockett’s necessary condition for feedback sta-
bilization (Brockett 1983). This implies that no smooth (or even continuous) time-invariant
static state-feedback law= u(z) exists which makes a specified equilibrium of the closed-
loop locally asymptotically stable. Consequently either discontinuous or time-varying (or
both) controllers are needed for the stabilization problem, which explains the interest of
many researchers in this simple model. For an overview we refer to the survey paper of
Kolmanovsky and McClamroch (1995) and references cited therein.

Although the stabilization problem for wheeled mobile robots is now well understood, the
tracking problem has received less attention. As a matter of fact, it is not clear that the
current stabilization methodologies can be extended easily to tracking problems.

In (Kanayama, Kimura, Miyazaki and Noguchi 1990, Murray, Walsh and Sastry 1992, Mi-
caelli and Samson 1993, Walsh, Tilbury, Sastry, Murray and Laumond 1994, Fierro and
Lewis 1995) a linearization-based tracking control scheme was derived. The idea of input-
output linearization was used by Oelen and van Amerongen (1994). Fliess, Levine, Martin
and Rouchon (1995) dealt with the trajectory stabilization problem by means of a flathess
approach. All these papers solve the local tracking problem.

The first global tracking control law that we are aware of was proposed by Samson and
Ait-Abderrahim (1991). Another global tracking result was derived by Jiang and Nijmeijer
(1997) using integrator backstepping.

Assume that feasible reference dynamies, ., 6,,v,,w,)T is given, i.e., dynamics that
satisfies

T, = v, cos b,
Ur = Uy Sin G,

0. = w,.

For solving the tracking control problem the following global change of co-ordinates was
proposed by Kanayama et al. (1990) (cf. Figure 4.2):

Te cosf# sinf Of [z, —x
Ye| = | —sin@ cosf O |y-—vy]| - (4.2)
0 0 0 1| 1(6.-—6

This global change of co-ordinates frdm. — z, y, — y]7 to [z, y.]T makes that the error-
variables become independent from the choice of the inertial co-ordinate frame; the errors
are considered in a frame attached to the mobile robot. In these new co-ordinates the tracking
error dynamics becomes:

Te = wWyYe — v + v, (t) cos b
Ye = —WTe + Ur(t) sinf. (43)
6. = w,(t) — w.
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Figure 4.2: The new error co-ordinates.

The tracking control problem boils down to finding appropriate control laws &ordw such
that the tracking errofz., y.,6.)” converges to zero.

This is the problem studied in this chapter. Subsequently we study in Section 4.2 the state-
feedback problem, in Section 4.3 the output-feedback problem, and in Section 4.4 the state-
feedback problem under input saturation. The performance of the derived controllers is il-

lustrated by means of simulations in Section 4.5. We conclude this chapter with some final

remarks in Section 4.6.

4.2 State-feedback

In this section we study the state-feedback tracking control problem for a mobile robot. As
mentioned in the introduction, we are aware of two global tracking results. First, we recover
these two results that both achieve global asymptotic stability (GAS) of the tracking error
dynamics. For reasons of robustness we would like to be able to conclude gtafoaim
asymptotic stability (GUAS) (cf. Example 2.2.4). By means of a cascaded design approach
we derive a controller that achieves gloliakexponential stability.

4.2.1 Previous results

We first summarize the available global tracking results.
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Proposition 4.2.1 (Samson and Ait-Abderrahim (1991), Lyapunov based)Consider the
tracking error dynamic$4.3)in closed loop with the control law

kq sinf, kg
w=w(t) + k_20 + — T vr(t)ye 5. k—2xe (4.4a)
v = vn(t) + ksksze + (2ksks + 0,8 20 =1 4 koo,
O (4.4b)
k ky sinf, k '
(1= k)ge(wn(t) + 0 + on(tye—g— — 1)
s 8. ke

wherek; > 0, ks > 0, ks > 0, ks > k7, andk, andkg are arbitrary constants. If,.(¢) and
w,(t) are bounded and either.(¢) or w,.(t) does not converge to zero, then the closed-loop
systen(4.3, 4.4)is globally asymptotically stable (GAS).

Proposition 4.2.2 (Jiang and Nijmeijer (1997), backstepping based)Consider the track-
ing error dynamicg4.3)in closed loop with the control law

sin @,

w = wp(t) + ki1ks0e + klvr(t)yee— (4.5a)
) ,sind, 9
v = vp(t) cosbe + ksze — ko, (t)ye — k1k20,(t)y 5 + k2 kok3y 0.
sin? 6, .
— kikokskyyefe — 2k1 kov, (1) %y, + 3kTkokyv, (t)2.ye sin b,
ks vn (Don (Dete S0 — by ko (052 5202 — s on (1)
Oe O (4.5b)

+ k2 kqv,(t)y? cos B, — kov, (t)wy(t) sin B, — ki kakqv, (t), sin 6,

A A "
+ 2k kakaeon ()0 + kawr (1) e + kikokawed? + 2k kov, () 2oy Slr;z

> 20.8in0, cosf, — sin> 6,
+ k%kZ’UT (t)zyz 93
e

wherek; > 0, ko > 0, ks > 0, ky > 0. If v.(¢), 0.(t), w.(t) and &,.(t) are bounded
and eitherv,.(t) or w,.(t) does not converge to zero, then the closed-loop sy&tedn4.5)is
globally asymptotically stable (GAS).

Remark 4.2.3Jiang and Nijmeijer (1997) remarked that by means of Lyapunov theory the
control law

w = wp(t) + v () Slz be 1 10, e >0 (4.6a)
v = v,(t) cosb, + coze ca >0 (4.6b)

can be shown to yield GAS of the closed-loop system (4.3, 4.6), provided,ftaandw; (t)
are uniformly continuous and bounded, and eithégt) or w,.(t) does not converge to zero.
This boils down to the controller (4.4) where we talke= 1, ko = 1, k3 = ¢, ks = 0,
ks = i—f ks = 0. However, the assumption an(¢) andw,(t) is slightly weaker (uniform
continuous and bounded, instead of differentiable with bounded derivative).
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4.2.2 A cascaded design

In this section we derive a controller for the tracking control problem for a mobile robot. For
that we use the cascaded systems based approach sketched in Section 3.2, to achieve globally
uniformly asymptotically stable (GUAS) tracking error dynamics.

Recall that the tracking error dynamics for a mobile robot can be described by

Te = wye — v + vp(t) cos b, (4.7a)
Je = —wxe + v, (t) sin b, (4.7b)
0o = w,(t) —w (4.7¢)

wherez, andy,. are position errord, is the orientation error and.(¢) andw,(t) are the
forward and angular velocity of the reference trajectory to be tracked. As inputs we have the
forward velocityv and the angular velocity.

As pointed out in Section 3.2 we first use one input for stabilization of a subsystem. By
means of the input the dynamics (4.7c) can easily be stabilized. The control law

w = wp(t) + k16, k1 >0 (4.8)

results into the globally uniformly exponentially stable (GUES) subsystem

O = —k10. ki > 0. 4.9
We can think of (4.9) as the syster (cf. Section 2.4).
The remaining dynamics is then given by

Te = wr(t)ye + k10eye — v + v, (t) cos b

4.10
Ue = —wr(t)xe — k10exe + v,(t) sin b,. ( )

We proceed by assuming that the stabilizatio® ohas been established. What we do is to
“forget” about theg(t, z1, 22)22 part of the dynamics (3.1a) and focus on rendering (3.9)
globally uniformly asymptotically stable (GUAS). The next step therefore is substituting
6. (t) = 0 in the remaining dynamics (4.10), which results into

[zj N [—w?«(t) wro(t)} BZ] + H [vr(£) — 0] (4.11)

which simply is a linear time-varying system. From Theorem 2.3.7 we know tha{) is
persistently exciting (PE), then the control law

v =0,(t) + koxe — k3w, (t)ye ko > 0,k3 > —1 (4.12)

renders the resulting closed-loop system (4.11, 4.12) globally uniformly exponentially stable
(GUES).

As a result we obtain the following.
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Proposition 4.2.4. Consider the tracking error dynami€4.7)in closed loop with the control
law

w = wr(t) + k16, k1 >0 (4133)
v = 0p(t) + kawe — k3w (t)ye ko > 0,k3 > —1. (4.13b)

If v,.(t) is bounded and,.(t) is persistently exciting (PE) then the closed-loop sysim,
4.13)is globally K-exponentially stable.

Proof. Due to the design we obtain a cascaded structure for the closed-loop system:

b e |

~~

—kize + vr(t)% ¢

fl(t721) g(t,;722)
fe = —k16, .
H,—/
fa(t,z2)
Notice that the system$, = fi(t,21) andzs = fa(t, z2) are globally uniformly expo-
nentially stable (GUES). Sinc&=7=—% and #4‘= are bounded, the boundednesspft)

guarantees that the assumptlorg(pt] 21, z2) Is met. Applying Corollary 2.4.6 completes the
proof. O

Remark 4.2.5This result was originally presented by Panteley et al. (1998), whete 0
was used.

When we compare the result of Proposition 4.2.4 with the results as presented in Propositions
4.2.1 and 4.2.2, a difference in complexity can be noticed in (4.4) and (4.5) versus (4.13).
Furthermore, the controllers (4.4) and (4.5) were only shown to yield globally asymptotically
stable (GAS) closed-loop tracking error dynamics, whereas for (4.13) we were able to show
the more desirable property of global uniform asymptotic stability (GUAShe price we

pay is that (4.13) makes it impossible to track a reference for whj¢h) tends to zero but

v,(t) does not, which is something that can be dealt with using (4.4) or (4.5).

Notice that due to the cascaded design approach we were able to reduce the problem of
stabilizing the nonlinear tracking error dynamics (4.7) to the problem of stabilizing the linear
systems

B = wp(t) —w (4.14)

and

Be] N [—w?«(t) wro(t)] Ee] + H [vr(£) = v]. (4.15)

So, a sense we reduced the nonlinear problem into two easy-to-solve linear problems.

IMost likely the control laws (4.4) and (4.5) also yield GUAS of the resulting closed-loop tracking error dy-
namics.
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This observation can be very helpful in finding answers to questions that come from a more
practical point of view. In practice we also have to deal with disturbances due to errors in
the model or due to imperfect state measurements. Instead of solving the problem for a third
order nonlinear system, it suffices to solve the problem for a first order and a second order
linear system.

Assume for instance that a constant disturbance is perturbing the system (4.7). For design pur-
poses we can simply assume that this constant disturbance is perturbing the systems (4.14)
and (4.15). Therefore, the robust controller design for the nonlinear system (4.7) under con-
stant disturbances simply reduces to the robust controller design for the linear system (4.14)
and the linear time-varying system (4.15). Both can easily be solved by adding integral ac-
tion. Similar reasoning can be used in case of more general additive disturbances. Then one
can for instance usl ., control techniques for arriving at robust controllers for the two linear
systems, instead of going through a nonlinfag design.

In case we have noisy measurements, it is common practice to filter the measurements and use
the filtered state for feedback. Since the tracking error dynamics are nonlinear, this approach
is in general not guaranteed to work. However, for linear systems this approach can be applied
successfully. Therefore, we simply design filters such that the linear systems (4.14) and (4.15)
are rendered asymptotically stable. Corollary 2.4.6 then guarakt@ponential stability

of the nonlinear tracking error dynamics.

Remark 4.2.6 Not only can the cascaded design reduce the nonlinear controller design prob-
lem for the system (4.7) into two linear ones, it also provides an eye-opener to recognizing a
simpler structure for backstepping. From the cascaded design we obtairkgd=#dr the 3,
subsystem

Te = —kowe + wr(t)ye

i = (b, (4.16)

which can be seen as the subsystem (4.7a, 4.7b) stabilized by means of the iaput
v, (t) cos b, + ko, and the virtual contrad. = 0. We can show global asymptotic stability
(GAS) of the system (4.16) by means of the Lyapunov function candidate

1. 1.
Vzixi-i-iyf

and some additional standard Lyapunov techniques. If we now ‘step back’ the virtual control
f. to the true inputv, we obtain the control law

w=w(t) + vr(t)yesug;oe + k10, ki >0
v = v, (t) cos B, + kaxe ks >0

which is exactly the controller (4.6). Therefore, backstepping not necessarily has to lead to
complex expressions for control laws as (4.5), but can also result in more simple expressions
as (4.6). The only difficulty is to recognize the simpler structure for backstepping. This
structure became clear from the cascaded controller design.

Remark 4.2.7 The requirement that,. has to be persistently exciting (PE)is a serious practi-
cal limitation, since it makes it impossible to follow straight lines, while this is the first thing
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one would like to do in practice. One way is to overcome this difficultie is sketched in the
previous remark. An other idea is using the idea of uniférpersistence of excitation as
introduced by Loria, Panteley and Teel (1999b). This weakened version of PE makes it not
only possible to deal with tracking of straight lines, but also with stabilization. By using this
concept, global uniform asymptotic stability (GUAS) can be shown.

4.3 Dynamic output-feedback

In this section we study the dynamic output-feedback tracking control problem for a mobile
robot. That is, we study the problem of stabilizing the tracking error dynamics (4.7) where
we are only allowed to use the measured output for designing the control lawsafuat

w. With the cascaded design from the previous section in mind, the control laws derived
in the previous section can easily be extended. In case we are able to measure only one of
the state-components we end up with an unobservable system, which makes it impossible to
reconstruct the state from the measurements. Therefore, we consider in the following sections
the cases where we measure two of the state components.

4.3.1 Unmeasuredr,

First, we assume that we are unable to measurbut that we can measuge andd.. In that
case the available output is
U1 Ye
= ) 4.17
) = 7] @1

From a cascaded design point of view, we know that we only have to stabilize the systems

O = wr(t) = w (4.18a)
y2 = b (4.18b)
and
[ﬂ N [—w?(t) wro(t)} B] + H [vr(£) — 0] (4.19a)
L=t (4.19b)

It is clear that we can still use the control law (4.8) for stabilizing (4.18). The only problem
is to stabilize (4.19).

However, from Theorem 2.3.8 we know that the dynamic output-feedback

v = 0p(t) + kade — kaw,(t)ge (4.20a)
B] - {—w(:(t) wro(t)] [ﬂ + H [vr(t) — v] + {_12;‘17’(”] [yi —91]  (4.20b)

gi=[0 1] [x} (4.20c)
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with k3 > 0, k3 > —1,1; > 0, andl> > —1 renders the closed-loop system (4.18, 4.20)
globally uniformly exponentially stable (GUES).

As a result we obtain:

Proposition 4.3.1. Consider the tracking error dynamig4.7) with output(4.17)in closed
loop with the control law$4.8, 4.20) Assume thab,.(t) is persistently exciting (PE) and that
v,-(t) is bounded. Then the resulting closed-loop system is gloka#yponentially stable.

Proof. We can see the closed-loop system (4.7, 4.17, 4.8, 4.20) as a cascaded system, i.e., a
system of the form (3.1) where

~ ~ 1T
21 = [xe Ye Te —Te Ye — ye]
Z2 = 95
[ —k‘z (k‘g + 1)wr(t) kz —kgwr(t)
) 0 0 0
htz)=| 7 0 0 (b +Dwn(®)]| ™
0 0 —u(t) 1

fa(t, z2) = —k122

_klye + Ur(t) cosgeefl
—ky e + v, (1) 25l
k1ye + v () —Cosg:_l

|~k + v, (1) snfe

g(t, z1,22) =

From Theorem 2.3.8 we know that the systeém= f, (¢, z1) is globally uniformly exponen-
tially stable (GUES). Itis also clear that the systém= £ (t, z2) is GUES. The boundedness
of v,.(t) guarantees that the assumptiongdn z;, z2) is met. Applying Corollary 2.4.6 com-
pletes the proof. O

Notice that (4.20b, 4.20c) is a full order observer for the system (4.19), i.e., even though we
can measurg, we also have generated an estimateyfont is also possible to useraduced
orderobserver, i.e., to reconstruct only the unknown signal

In order to find a reduced observer for the system (4.19) we try to estimate some linear
combination of the measured and the unknown signals. To be precise, we define a new
variablez as

z=x, — b(t)y

whereb(t) is a function still to be determined in order to guarantee asymptotic stability of
the reduced order observer. Differentiatingith respect to time along the dynamics (4.19)
yields

z2 = wp(t)ye + [v,(t) — v] — dZ—(tt)ye + b(t)w, ()2,
= b(t)w, (t)(ze — b(t)ye) + b(t)*w, () ye + w,(t)ye + [v,(t) — v] — dl;—(tt)ye

db(t)

= b(t)w,(t)z + (b(t)2wr(t) + wp(t) — T) Ye + [vr(t) — v].
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In case we define the reduced order observer dynamics as

z = b(t)w,(t)2 + (b(t)Zw,,(t) + w,(t) — dl;—(tt)> Ye + [vr(t) — V]

we obtain for the observation-errgr= z — z
Z = b(t)w,(t)Z. (4.21)

If we now takeb(t) = —lw,(t) with [ a positive constant and we furthermore assume that
wr(t) is persistently exciting (PE), we are able to conclude global uniform exponential sta-
bility (GUES) of (4.21).

We can combine this reduced observer with the controller (4.12):

Proposition 4.3.2. Consider the tracking error dynami¢4.7) with output(4.17)in closed-
loop with the control law

w = wr(t) + k16, k1 >0 (4228.)
v = Ur(t) + koZe — kgwr(t)ye ko >0,k3 > —1 (422b)

wherez, is generated by the reduced order observer
Te =2 — lwr(t)ye >0 (4.23a)
2 = o, (£)%2 + [Pwr (02 + wi(t) + 10 (D)]ye + [v:(t) — ). (4.23b)

If v,.(t) is bounded andy,.(t) is persistently exciting (PE), then the closed-loop sygiem,
4.22, 4.23)s globally £-exponentially stable.

Proof. We can view the closed-loop system (4.7, 4.22, 4.23) as a cascaded system, i.e., a
system of the form (3.1) where

21 = [-Te Ye Te — -'i'e]T

Z9 = 96
i —ko (kg + 1)wr(t) ko
fl (t,Zl) = _wr(t) 0 0 zZ1
0 0 o (t)?

fa(t, z2) = —kozo
_ klye +Ur(t)cosg:71

sin 6.

g(t,ZhZQ) = —kixe + U’"(t)T
rge 00 (1) 2L 41 (8) (—hu + v, (1) 2522

To be able to apply Corollary 2.4.6 we need to verify global uniform exponential stability
(GUES) of the system, = f; (¢, 21), which can also be expressed as

{x] _ { ks (k3+1)wr(t)] [w} N [’ﬂ?] % (4.24a)

ye —Wr (t) 0 Ye 0
~ \ ,

Ji(t,z1) g(t,z1,22)

52 = —lwr(t)zfg. (424b)
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Sincew,(t) is persistently exciting (PE), we have the existence of constantse, > 0
such that for alk > 0:

t+6
g1 < / w?(r)dT < g9.
t

Therefore, the subsystem (4.24b) is GUES. Furthermore, the gérm;, z») is bounded

and according to Theorem 2.3.7 the systam= f,(t, z,) is GUES. From Corollary 2.4.6

we can conclude that the system= fi (¢, z1) is globally uniformly asymptotically stable
(GUAS). Since it is a linear time-varying system Theorem 2.3.9 enables us to conclude that
21 = fi(t,z1) is GUES. Since also the system = f»(t, 22) is GUES and boundedness of
bothwv,(t) andw, (t) (cf. Definition 2.3.5) guarantees that the conditiory¢h 21, z») is met,
Corollary 2.4.6 yields the desired result. O

4.3.2 Unmeasured,,

In case we assume that we are unable to measuyi®it we can measute. andf., we have

the outputs
Bﬂ = [‘H . (4.25)

Since we can repeat the reasoning of the previous section, we summarize this analysis in the
following two propositions.

Proposition 4.3.3. Consider the tracking error dynamig4.7) with output(4.25)in closed
loop with the control law

w=w,(t) + k16, k1 >0
v = Ur(t) + kol — k‘gwr(t)ge ko > 0, ks > —1

wherez, andy. are generated by the full order observer

gl [ 0 w(®)] [2] , [N I, )
gjj N [—wr(t) 0 } Lje] + {0} [v:(t) — v] + |:12Wr(t):| [y1 — 91
g1 =1[1 0] Fe]

wherel; > 0,1, > —1. Assume thaw,(t) is persistently exciting (PE) and that(t) is
bounded. Then the resulting closed-loop system is glokakyxponentially stable.

Proposition 4.3.4. Consider the tracking error dynamig¢g.7) with output(4.25)in closed-
loop with the control law

w = wp(t) + k16, ki >0 (4.26a)
v =0,(t) + koze — k3w, (t)7e ko > 0,k3 > —1 (4.26b)

wherey. is generated by the reduced order observer
Yo = 2 + lw,(t)z, >0 (4.27a)
2= —lw.(t)%2 — [Pw, () + w,(t) + 1o, (D)]xe + lw,(8)[v — v, (1)) (4.27b)
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If v,.(t) is bounded andy,(t) is persistently exciting (PE), then the closed-loop system,
4.26, 4.27)s globally £-exponentially stable.

4.4 Saturated control

All control laws mentioned in this chapter have one thing in common: the larger the errors,
the larger the control. In practice, however, the input is constrained: the mobile car has
a maximum forward and angular velocity. Therefore, it is interesting to take these input
constraints into account when designing control laws. In this section we study the global
tracking control problem for a mobile robot under input saturation, i.e., in the controller
design we take into account the constraints

[v(t)] < o™ Vi>0 (4.28a)

lw(t)] < WM Vi > 0. (4.28Db)

We would like to design controllers such that they never result into a forward and/or angular
velocity exceeding the limits of the mobile car.

In order to be able to do so, we assume that once we are exactly on the desired trajectory we
can stay on it. This means that the reference forward and angular velocity should not exceed
the limits:

igg lop(t)] < 0™ (4.29a)
i;lg) |y (8)] < w™ (4.29Db)

Under these feasibility conditions we look for controllerséandw that always meet (4.28)
and still guarantee global uniform asymptotic stability of the tracking error dynamics.

4.4.1 A Lyapunov design

Our first approach is a Lyapunov design similar to the one which results in the (unsaturated)
control law (4.6). Inspired by Remark 4.2.6 and (Jiang and Praly 1992) we consider the
Lyapunov function candidate

1
gag €1 > 0. (4.30)
1

1
V= ilog(l—kxg +92) +
Differentiatingl” along the solutions of (4.7) yields

T, v-(t)ye sinb,
V=—-—0or——(— t 0
1+x§+y§( v vr(t) cos e)+1+x§+y§ 0.

0. + lOe(wr(t) - w)
€1

€10 (t)ye sinb, >
- - —w].
1+22+y2 6,

14 a2 +y?

(—v + vp(t) cosb,) + ;06 (wr(t) +
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Choosing

€10, (t)y. sinf.
1+224+y2 6,
v =v,(t) cosb, + oe, () (4.31b)

w=uw.(t) + +0c,(0e) (4.31a)

with o a saturation function as defined in Definition 2.1.13 and- 0, e3 > 0, results in

. TeOeq(Te) 1
=——"—= - —f.0.,(0) <0.

v 1+22+y2 €@ Ter(Be) <0

As a result, using (4.30) we can conclude that the trajectdiig&), y.(t),0.(t)) are uni-

formly bounded. If we furthermore assume thatt) andw, (¢) are uniformly continuous,

we obtain that alsa:. (t), y.(t) andé.(t) are uniformly continuous. It follows by a direct

application of Barblat's Lemma (Lemma 2.2.10) that

: Le (t)063 (er (t)) l
t—oo 1+ x.(1)% + 9y ()2 €

Oc(t)oe, (0e(t)) = 0
which, in turn, implies that

Tim (2 (£)] + [0, (8)]) = 0.
In order to show thag, (¢) goes to zero as— oo we use Lemma 2.2.12 with

f(t) =0

_eavp(t)ye (sinf,
olt) = 2 (B0 1) 1000

which enables us to conclude that
li €1
im . 5 U
t—oo 1+ 2, (t)? + y.(t)? "

()ye(t) = 0.
As aresult also

Jm v, )y, () = 0. (4.32)

Next, we apply Lemma 2.2.12 with
ft) = .

[ evp(t)ye sinb.
o) = ({20 060 ) e~ 7 (22)

in order to conclude that
Jim w. ()y. () = 0. (4.33)

As a result from (4.32) and (4.33) we have thatt) tends to zero as tends to infinity,
provided that eithew,(t) or w,(t) does not converge to zero.

We can summarize this result as follows.
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Proposition 4.4.1 (see (Jiang, Lefeber and Nijmeijer 1999))Consider the tracking error
dynamicg4.7)in closed loop with the control la4.31) If v,.(¢) andw,.(t) are uniformly
continuous and bounded, and eithg(t) or w,.(t) does not converge to zero, then the closed-
loop systen{4.7, 4.31)is GAS. Furthermore, given the constraifds28)and the feasibility
condition(4.29)it is always possible to choosg, ¢, €3 such that the constrain{g.28)are
satisfied.

4.4.2 A cascaded design

As mentioned in Section 4.2 the cascaded approach learned us that for the tracking problem
of a mobile robot, stabilization of the nonlinear tracking error dynamics (4.7) in a sense boils
down to the separate stabilization of the linear systems (4.14) and (4.15).

The same holds true for the saturated controller design problem. Once we are able to find con-
trollers for the systems (4.14) and (4.15) that meet the constraints (4.28), the same saturated
controllers render the tracking error dynamics asymptotically stable too.

So also the nonlinear tracking problem under input constraints reduces to two separated linear
problems. For linear systems globally asymptotically stabilizing saturated controllers and
several anti-windup controllers are available in literature and can be used.

A saturated controller for the system (4.14) is given by
w=w.(t) + oc (6e) (4.34)
which results in the globalljC-exponentially stable closed-loop dynamics

6. = —o., (6.). (4.35)

For stabilizing (4.15) we can use
v =0p(t) + 0, (Te) (4.36)
which results into

To = —0c,(Te) + wp(t)ye
Jo = —wn (). (4.37)

From Proposition 2.3.10 we know thatif (¢) is persistently exciting (PE), the system (4.37)
is globally -exponentially stable. As a result we obtain the following.

Proposition 4.4.2. Consider the tracking error dynami¢4.7)in closed loop with the control
laws (4.34, 4.36). Assume that.(t) is persistently exciting (PE) and that(t) is bounded.
Then the resulting closed-loop system is glob&lgxponentially stable.
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Proof. We can write the closed-loop system (4.7, 4.34, 4.36) as a system in cascade:

. . ~
Fe| _ [oe(@e) +wr)ye] Frge 200 4o, (1) cosbeml

J a —Ww (t).’L’ _ Oeq (9) sin 0
Ye r e k‘l.’L'e 0 +vr(t)_0

f1(t,z1)
6, = —0e,(6e) -
—_———
f2(t,z2)

Almost all conditions of Lemma 2.4.5 are satisfied, since both (4.35) and (4.37) are globally
K-exponentially stable andl(¢, 21, z2) satisfies (2.25). We only need to find the Lyapunov
function candidate of Assumption Al for the system (4.37) satisfying the required properties.
For that we can take

e

g(t,z1,22)

1. 1.
Vzixi-i-iyf

whose time-derivative along solutions of (4.37) is
V = —z.0,(z.) <0.

Applying Lemma 2.4.5 completes the proof. O

4.5 Simulations

This section is to illustrate that the cascaded approach as presented in this chapter can be
easily extended. The simple non-holonomic example of a knife-edge moving on the plane was
studied by Bloch, Reyhanoglu and McClamroch (1992).4.et/. denote the co-ordinates of

the center of mass of the knife-edge on the plane antldenote the heading angle measured
from thex-axis. Since the velocity of the center of mass is always perpendicular to the runner,
there is a non-holonomic constraint of the form

Tesing — y.cosp = 0.

The controls are the pushing foregin the direction of the heading angle and the steering
torquer, about the vertical axis through the center of mass. The d’Alembert’s formulation
of the knife-edge dynamics provide

. A T
Te = —s1n¢+—1cos¢
m m

A
o = ——cos ¢ + T—lsinqﬁ
m m
. _ 2
¢= T,
T sin ¢ = g, cos ¢
wherem is the mass of the knife-edgg, is the moment of inertia of the knife-edge, akts
the scalar constraint multiplier. When we define the variables

(4.38)

v = &.COS P + Y. sin ¢

w=¢
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the dynamics (4.38) can also be expressed as

Lo =V COSP

Ye =vsing
o
¢ m (4.39)
v =—
m
LT
=7

which is simply the model of a mobile robot and two additional integrators.

Kolmanovsky and McClamroch (1996) studied the problem of making the knife-edge (4.38)
follow the reference dynamics

Zer(t) =sint
Ye,r(t) = —cost
or(t) =t
Zer(t) = cost
Yer(t) = —sint

This trajectory corresponds to the center of mass of the knife-edge moving along a circular
path of unit radius with uniform angular rate.

Kolmanovsky and McClamroch (1996) solved this problem by defining the change of co-
ordinates
0 = —x.sin ¢ + y. cos ¢
T1 =T, COSP+ ycsing

Ty = —d.Sin ¢ + o cos d — d(x. sin ¢ — ye cos @)

T3 =0

Ty =¢

u = :n—l + ;—j(—xc Sin @ + ye cos ¢) — (e cos ¢ + ye sin ¢)
_TZ

=

and the tracking errors

2 ™
1
>

IS

0 —
T —
u—

IS
I
':>

The following hybrid controller was proposed

iy (t) = =& — &2 + Up (s 1) KT <t<(k+1)T (4.40a)
Uiz (t) = —&3 — &4 + Ua(a;1) KT <t<(k+1)T (4.40b)
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whereT = 27, and for a scalar parameter

Ur(ast) = ;a sin(2t) — acos(2t) + acost

Us(a;t) = |afsint + a.

Let#* = A(kT). Then the parameter* is updated via the following scheme:

af = ok~ if a*=10% > 0o0rp* =0
af =~ |ak 1|sgn (6%) if o*~19* < 0andd* # 0

where the values = v = 0.8 were proposed.
Starting from the initial condition

[2.00) 3.(0) 6(0) &:(0) (0) 0] =[1 1 1 05 05 05" (4.41)
the resulting performance is depicted in Figure 4.3, where we assumedhtiratl and

1. = 1. Notice that it takes almo&t0 seconds for the knife-edge to converge to the reference
trajectory.

position error [rad]

0 20 40 60 80 100 120 140 160 180 200
time [s]
T T

=)
S
S
@
g
=]
j=2]
c -
5
L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
time [s]

controls
o
:

0 20 40 60 80 100 120 140 160 180 200
time [s]

Figure 4.3: Tracking error and inputs for cascade controller (4.40).
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Jiang and Nijmeijer (1999b) solved the same tracking problem by defining the global change
of co-ordinates and preliminary feedback

T =¢
Lo = L. COSP + Y. Sin @

T3 = T.Sin ¢ — y. cos ¢

564:(].5
Ty = &, COS P + Y. sin ¢ + ¢.>(—mc sin ¢ + y. cos @)
T2
v = —
=T
T . 5 .
vy = —1 + I—2( T, 5in ¢ + y. cos @) — ¢*(x. cos ¢ + y, sin ¢)

and correspondingly the tracking errats= = — x4. The following controller was proposed

v = —2U; — 23 + 2205 — zlzgmg + 2109 — 224, (4.42a)
Uy = —2Uo — 229 — 2x5 + 2375 (442b)
where
w1 = x4 — lz1x5 + 223
U :.’L'5+222+21
and

21 = T3e — T2ele
22 = T2e

23 = Tie

Starting from the same initial condition (4.41) the resulting performance is depicted in Fig-
ure 4.4.

We can also use the cascaded approach presented in this chapter for solving the tracking
problem. Starting from the model (4.39) and using the change of co-ordinates (4.2) solving
the tracking problem boils down to stabilizing the linear time-invariant£ 1) systems:

Te 0 1 1| = 0
ye =(-1 0 O Ye + 10 [7-1,7‘ — Tl]
De 0 0 0] [ve 1

and

2] -

b ol 5]+ 2]
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position error [rad]

controls

o 1 2 3 4 5 6 7 8 9 10

angular error [rad]

0 1 2 3 4 5 6 7 8 9 10

T -z

Y=Yr

time [s]
T

time [s]
T

T
3
)

0 1 2 3 4 5 6 7 8 9 10

time [s]

Figure 4.4: Tracking error and inputs for backstepping controller (4.42).
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where we defined, = v, — v andw, = w, — w. Both systems can easily be stabilized by
using linear controllers. For tuning these controllers we defined the costs

Ji = /Ooo (1) + ye (1) +ve (t)” + 0.01(r1  (t) — (1)) *dt
Ty = /oo 0 (1) + 0.1(7a,,(t) — mo(t))*dt
0

and used optimal control to minimize these costs. As a result we obtained as controllers for
the tracking control problem

7 =11, + 44705z, — 0.0012y, + 4.3521v, (4.43a)
Ty = 7o, + 10.00006, + 10.9545w, (4.43b)

Starting also from the initial condition (4.41) the resulting performance is depicted in Fig-
ure 4.5. Notice that the resulting performance is comparable with the backstepping based

T T T T T T T T T
_ 2k Tz ||
5 .
@ ~i R
g of BEESESS
@
5
S -2 - -
(%)
o
Q
4 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
time [s]
T T T T T T T T
= 1
o
g
S oL
5 0
k<
3
[=)]
g1r .
| | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
time [s]
T T T T T T T T T
771
5 B
K]
[
L
o
-5 I I | | | | | | | il
0 1 2 3 4 5 6 7 8 9 10
time [s]

Figure 4.5: Tracking error and inputs for cascade controller (4.43).

controller of Jiang and Nijmeijer (1999b).

For comparison reasons we also considered the following quantities

Jr = /0 [-'L'c(t) - xc,r(t)]z + [yc(t) - ycvr(t)]zdt
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and

200
Jr :/0 [T1(8)]° + [m=(¢)]dt

whereJ,. can be thought of as an error measure &nds a measure of the control effort. For
the three different controllers we considered we obtained the following values:

Jr Jr
hybrid controller (4.40)| 103.558| 63.789
backstepping controller (4.42) 3.752| 8.796
cascade controller (4.43) 3.341| 4.566

4.6 Concluding remarks

In this chapter we considered the tracking control problem for the kinematic model of a mo-
bile robot. We solved this problem using state-feedback, output-feedback, and under input
saturation. All results yield globallyC-exponentially stable closed-loop tracking error dy-
namics under a persistence of excitation condition on the reference angular velocity.

This persistence of excitation condition on the reference angular velocity makes that tracking
of a straight line and stabilization is not possible with the “cascaded controllers” that have
been derived. However, this problem can be overcome by weakening the persistence of exci-
tation (PE) condition by assuming a so-called uniféHpersistence of excitation {tPE), as
recently introduced by Loria et al. (1999b). In that case global uniform asymptotic stability
(GUAS) can be shown.

We arrived at the results by means of the cascaded design approach as explained in Sec-
tion 3.2. This approach revealed a nice structure in the tracking error dynamics, which makes
that the nonlinear tracking problem can be reduced tolim&ar problems. This is the case

for both the state- and output-feedback problem, as well as the control problem under input
saturation and other interesting problems like incorporating robustness against uncertainties.

This simple structure is also maintained when we consider so called dynamic extensions of
the model, when additional integrators are added. This was illustrated by means of simula-
tions using the example of a knife-edge.
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Chapter 5

Tracking of non-holonomic
systems in chained form

5.1 Introduction

In this chapter we consider the tracking problem for a special class of non-holonomic sys-
tems, namely systems in chained form. Many mechanical systems with non-holonomic con-
straints can be locally or globally converted to the chained form under co-ordinate change
and preliminary feedback, see (Murray and Sastry 1993).

Chained-form systems of ordemwith two inputs can be expressed as

T1 =u
Ty = Us
&5 = wous (5.1)

Tp = Tp_1U1
wherez = (z1,...,z,)7 is the state, and; andu, are two inputs.

Consider the kinematic model of a mobile robot that we studied in the previous chapter:

T =wvcosb
y = vsinf (5.2)
6 =w.

When we define the global change of co-ordinates

.271:9
Ty = xcosf + ysinb

r3 = xsinf — ycosh

57
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and apply the preliminary feedback

W = up

V= U + wWr3

whereu; andusy are new inputs, then the system (5.2) is transformed to

Zbl = U1
Zbg = U3
T3 = Tauy

which is a chained-form system of ordewith two inputs.

It is well-known that many mechanical systems with non-holonomic constraints can be lo-

cally or globally converted to the chained form under co-ordinate change and preliminary

feedback. Interesting examples of such mechanical systems include not only the mobile
robot, but also cars towing several trailers, the knife edge, a vertical rolling wheel and a rigid

spacecraft with two torque actuators (see e.g., (Murray and Sastry 1993, Kolmanovsky and
McClamroch 1995) or Section 3.2).

As for the mobile robot, the system (5.1) fails to meet Brockett’'s necessary condition for
smooth feedback stabilization, which implies that no smooth (or even continuous) time-
invariant static state-feedbaek = u(z) exists that renders a specified equilibrium of the
closed-loop locally asymptotically stable. For this reason the stabilization problem has re-
ceived a lot of attention (see e.g., (Pomet 1992, Murray and Sastry 1993, Canudas de Wit,
Berghuis and Nijmeijer 1994, Samson 1995, Sgrdalen and Egeland 1995, Teel, Murray and
Walsh 1995, Jiang 1996)).

However, the tracking problem for systems in chained form has received little attention. Most
of the global tracking results we are aware of, are on the tracking control of a mobile robot,
which is a chained-form system of ord&rand dealt with in the previous chapter). An-
other global result for a chained-form system of or@ds given by Escobar, Ortega and
Reyhanoglu (1998), where they introduced a field-oriented control approach for the track-
ing of the non-holonomic integrator. We are not aware of any global results for general
chained-form systems of order Jiang and Nijmeijer (1999b) derived semi-global tracking
controllers for general chained-form systems by means of backstepping and they achieved
global tracking results for some special cases.

In this chapter we solve the global tracking problem for general chained-form systems by
means of a cascaded systems based approach. We first apply in Section 5.2 the idea explained
in Section 3.2 to the tracking error dynamics. This results in a similar design separation
principle as in the previous chapter for the mobile robot. That is, we reduce the problem

of designing stabilizing controllers for the nonlinear tracking error dynamics to two linear
controller design problems. With this knowledge we tackle in Section 5.3 the state-feedback
tracking problem and in Section 5.4 the output-feedback tracking problem. In Section 5.5 we
deal with both these tracking control problems under input saturation for a special class of
reference trajectories. The effectiveness of the derived controllers is illustrated in Section 5.6
by means of simulations. Section 5.7 contains some concluding remarks for this chapter.
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5.2 The search for a cascaded structure

For studying the tracking control problem for systems in chained form, assume we are given
areference trajectoryr”, ul')” satisfying

T1p = Ui,

,
T2y = U2,r

T3,r = T2,rUl,r

Tn,r = Tn—1,rUL p-

We define the tracking erraf, = « — x, and obtain as the tracking error dynamics

Tle = UL — ULyp =Ur — Uiy
T2e = U2 — Ua,p = Uz — U2,y
T3, = Toll — T2 UL, =T U1y + (T2, + T2,0) (W1 — U ,p) (5.3)

Tn,e = Tp—1U1 — Tp—1,,ULyr = Tpn—1,eUL,r + (-’anl,e + -Z’nfl,r)(ul - qu)-

The tracking control problem boils down to finding appropriate control laws fosnd u.

such that the tracking erraf, converges to zero. For that we like to use the cascaded design
approach as proposed in Section 3.2. We look for a control law for one of the two inputs
which is such that a subsystem of (5.3) is asymptotically stabilized in closed loop. Preferably,
this subsystem has to be such that the remaining dynamics reduces considerably in case we
assume that the stabilization of this subsystem has been established.

Notice that either the;; . dynamics or ther; . dynamics can be easily rendered asymptot-
ically stable by choosing an appropriate control law dgror u-, respectively. As the next
step is to assume that the stabilization has been established, we could decide4darse
stabilizing thez, . dynamics, but this does not look too promising. On the other hand, if we
decide to use,; for stabilizing thez, . dynamics, the assumption that this stabilization has
worked out simplifies almost all equations in (5.3). Therefore, we decide to firat;ufse
stabilizing ther; . dynamics.

Next, we assume that the stabilizationagf. has been established, that is, we substitute
z1,.(t) = 0in the remaining dynamics. Notice that as a result alge) — u; ,-(t) = 0. After
this substitution the remaining dynamics becomes

E2,e = Uz — Uz, (1)

i37e = T2,eU1,r (t)

ime - xnfl,eulﬂ‘(t)
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which is the same as the linear time-varying system

i’Z,e 0 0 T2 1
i'?;,e qu(t) 0 [N [N 0 T3e 0

: = 0 + [UQ _'U/Q’r(t)]. (54)
Ene 0 oo 0w () 0] [z 0

All we need to do is to find a feedback controller for that stabilizes the system (5.4) and
hope that all conditions for applying the cascaded theorem (Theorem 2.4.3) are met. No-
tice from Corollary 2.3.4 that ifi; ,.(¢) is persistently exciting the system (5.4) is uniformly
completely controllable.

To summarize: instead of solving the problem of finding stabilizing control laws for the
nonlinear tracking error dynamics (5.3) we might as well look at the two separate problems
of finding a stabilizing control law for the linear system

E1,e = U1 — ug,(2) (5.5)

and finding one for the linear time-varying system

Sbg’e 0 0 T2e 1
i'?;,e qu(t) 0 [N [N 0 T3e 0

= 0 : Sl 4| [ue —uen(®)]. (5.6)
Ene 0 oo 0w () 0] |z 0

When we do so, the stabilized system (5.6) plays the role of the sySteim Section 2.4

and (5.5) the role of the systeRy. Then we can use Theorem 2.4.3 to conclude asymptotic
stability of the entire nonlinear tracking error dynamics. So instead of solving a nonlinear
control problem, we have to solve two linear ones.

5.3 State-feedback

In this section we study the state-feedback tracking control problem for chained-form sys-
tems. As derived in the previous section from a cascaded systems point of views the problem
of stabilizing (5.3) reduces to stabilizing the linear systems (5.5) and (5.6).

Clearly, the system (5.5) can easily be stabilized. A possible control law figr
up = uy () — k121, k1 >0 (5.7)
since then the resulting closed-loop system

iLe - _klml,e kl >0
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is globally uniformly exponentially stable (GUES).

For stabilizing (5.6) we can use the result of Theorem 2.3.7, providedithdt) is persist-
ently exciting (PE).

We can combine both results and solve the global state-feedback tracking control problem.

Proposition 5.3.1. Consider the chained-form tracking error dynam{&s3). Assume that
uy (t) is persistently exciting (PE) and that ,., z3 ., . . ., T,—1 - are bounded.

Then the control law

uy =y (t) — k12 e (5.8a)
Uz = U (1) — koo e — kauy r()@3,e — kaxa e — ksuy p(t) 5, —--- (5.8b)

renders the closed-loop systém3, 5.8)globally K-exponentially stable, provided thiag >
0 andk; (i = 2,...,n) are such that the polynomial

)\nfl + k2)\n72 + e 4 k;n_l)\ + kn

is Hurwitz.

Proof. Due to the design, we can recognize a cascaded structure in the closed-loop system
(5.3,5.8):

T2 e —ko —k3u1,,«(t) —ka —ksul,,«(t) T2 e
T3,e w1, (t) 0 0 T3, —k1 (22, c4T2.0)
. . . . —ki(z3,e+x3,)
= 0 .. . : : + Tie
. : : - - : : k(@1 et Tao1,r
e 0 0 w.(t) O Tne 1(@n-1, nr)l)

e

f1(t,z1) g(t,z1,22)

Tie=—k1T1..
———
.fZ(t7Z2)

From Theorem 2.3.7 we know that the systeém= fi (¢, z1) is globally uniformly exponen-
tially stable (GUES). Also the system = f»(¢,22) is GUES. Sincers -, ..., zy_1,, are
bounded we have thgtt, z, z2) satisfies (2.25). As a result, Corollary 2.4.6 completes the
proof. O

Remark 5.3.2 Notice that the only property of the system= f, (¢, z;) that we need in this
proof, is the fact that it is globally uniformly exponentially stable (GUES). This is something
that (according to Theorem 2.3.7) is guaranteed by the choice for thednpiiowever,
under the assumption that ,(¢) is persistently exciting (which yields uniform complete
controllability according to Corollary 2.3.4), more control laws fqrare available in litera-
ture that also guarantee GUES. In case we replaceith any of these, the proof still holds.
Therefore, several other choices foycan be made. For instance, one might consider

e a ‘standard’ linear control law (Rugh 1996) which involves using the state-transition
matrix of the system (5.6) (see (Lefeber, Robertsson and Nijmeijer 1999a));
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e a less complicated control law (which also needs the state-transition matrix of the
system (5.6)) as presented by Chen (1997) (see (Lefeber, Robertsson and Nijmeijer
1999b));

e a pole-placement based control law, like for instance the one presenteddSgk/alid

Olgac (1995) (which requires, ,. € C"~2 and the signalg’glt—"“(t), e, d"d;:’,‘;’“ () to
be available),

or any other control law one prefers that guarantees GUES of the system (5.6).

Remark 5.3.3As pointed out by Samson (1995), it is possible to normalize the system’s
equations in terms of the advancement velogity,.(t)|, in order to replace time by the
distance gone by the reference vehicle. This “time normalization” makes the solutions “ge-
ometrically” unaffected by velocity changes, yielding convergence in terms of this distance,
instead of time. In practice this has the advantage that the damping rate does not change with
different values ofi; ,(t).

Remark 5.3.4The mobile robot we studied in the previous chapter is also a chained-form
system. It would be interesting to compare the results of the previous chapter with the result
derived here. It would be most reasonable to compare both results in the original error co-
ordinates, i.e., in the variables andy. as defined by (4.2). In case we translate the result of
this chapter using the original error co-ordinates, we obtain

w:wr+k10e k1>0
v =vp + kawe — (k3 — 1)ye + f(0e,t) k2, ks >0

wheref (6., t) is a quite complicated expression that satisfigs ) = 0. In case we interpret
f(0,t) as a part of the connecting term(t, z1, z2) 22" we can decide to forget about it. When
we do so, we regain exactly the control law (4.13).

The conclusion that we are allowed to leave out the tg(f¢), however, can only be drawn

with the cascaded structure of the mobile robot in mind. Therefore, the work of the previous
chapter can not be considered redundant. Furthermore, this makes clear that one should avoid
changing co-ordinates in order to be able to apply a standard control design technique, since
it can lead to unnecessary complicated controllers. One of the advantages of the cascaded
control design approach is that all analysis can be done in the original co-ordinates.

5.4 Dynamic output-feedback

In this section we study the dynamic output-feedback tracking control problem for chained-
form systems. That is, we study the problem of stabilizing the tracking error dynamics (5.3)
where we are only allowed to use the measured output for designing the control laws for
andus.

Notice that for the system (5.1) we are unable to reconstruct the variaplesd z,,, no
matter what output we have. Furthermore, in case we are able to measusge anlyz,,, the
system (5.1) is locally observable at ang R™ (see e.g., (Astolfi 1995)).
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This is why we assume to haye , z,,]7 available as an output for the chained-form system
(see (Astolfi 1995, Jiang and Nijmeijer 1999a)), since in a sense it represents the least amount
of components of the state vector that is required for being able to control the system (5.1).

In light of Section 5.2 it is clear that the problem can be reduced to the problem of finding
stabilizing dynamic output-feedback laws for the systems

Ty =ur —u1,,(t) (5.9a)
Y1 =T1,.e (5.9b)
and
j72,e 0 0 T2e 1
.2'7375 ulm(t) 0 . . 0 T3e 0
=1 0 : ol | [ue —uen ()] (5.10a)
Ene 0 0w, (t) 0Of [Zne 0
T2
y2:[0 ... 0 1] D (5.10Db)
-Tn7e
For stabilizing (5.9) we can use
uy = ulyr(t) — klee kl >0 (511)

since then the resulting closed-loop system becomes

iLe - _klml,e kl >0

which is globally uniformly exponentially stable (GUES).

For stabilizing (5.10) by means of output-feedback we need both uniform complete controlla-
bility and uniform complete observability of the system (5.10). For this it sufficesstha()

is persistently exciting. Uniform complete controllability follows from Corollary 2.3.4 as
mentioned in the previous section. Uniform complete observability follows from duality. For
stabilizing (5.10) we can use Theorem 2.3.8.

By combining both results we obtain a solution for the dynamic output-feedback tracking
control problem.

Proposition 5.4.1. Consider the chained-form tracking error dynam{&s3). Assume that
uy -(t) is persistently exciting (PE) and that ,, 3, ..., z,_1,, are bounded.

Then the control law

uy = uy () — k171 (5.12a)
Up = U, (t) — kafoe — kg ()23, — kala,e — kstir - (8)T5,e — -+ (5.12b)
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wherez is generated from the observer

E:Z,e o ... .. 0 T2,e 1
#3.e ur(t) 0 ... .. 0 #3.0 0 .
— o : : : Isus (1) R
= 0 .o : : + | | [ua—ua.(t)]+ I [Zn,e—Fn,e]
. . : : I3u,»(t)
o : .o .o : : I
Ene 0 .. 0 ui.(t)0 e 0

(5.13)

renders the closed-loop systdt3, 5.12, 5.13plobally K-exponentially stable, provided
thatk, > 0andk;,[; (i = 2,...,n) are such that the polynomials

AV o N T2k A+ R,
and
N A2 b A+,

are Hurwitz.

Proof. We can see the closed-loop system (5.3, 5.12, 5.13) as a cascaded system, i.e., a
system of the form (3.1) where

~ ~ T
zZ1 = |:.’L'27e e Tne T2 .- -Tn,e]
22 = T1.e
[ —ko —k3u1,r(t) —ka —ksul,r(t) ko kgul,r(t) ka4 k5u1,,,(t) T
w1, (t) 0 0 0 0
0
0 0 w.,.(t) 0 0 0
filt,z1) = 0 0 0 O : 1
Do (t) " : —lsu1,r(t)
0 . —la
: : : . 0 —lgu1,-(t)
0 0 0 0 ul,r(t) —l2

fa(t, z2) = k122

0
—ki(z2,e+w2,,)

_ 7k1(m"*1..€+zn71,7‘)
g(t,z1,22) = 0
—ki(z2,e+w2,,)

L _kl(wn—l,.e+wn—1,r) J

andz; . = ;. — & (i = 2,...,n). From Theorem 2.3.8 we know that the systém=
fi(t, z1) is globally uniformly exponentially stable (GUES). Also the system= fa(t, z2)
is GUES. Sincers,, ...,x,—1,, are bounded(t,z;, z2) satisfies (2.25). Application of
Corollary 2.4.6 completes the proof. O
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5.5 Saturated control

In a similar way as in the previous sections, we can study the tracking problem for a systemin
chained form under input saturation. That is, we can study the problem of designing tracking
controllers in such a way that we are always guaranteed to meet the constraints

s ()] < up™ (5.14a)
Jus ()] < u™. (5.14b)

Obviously, we need to assume that once we are on the reference trajectory we can stay on
the trajectory, that is, for the reference trajectory the condition (5.14) is met. Therefore, we
assume that the reference trajectory that we would like to track satisfies

sup |ug,-(t)] < u"™
t>0
sup |uz,-(t)| < ud®.

t>0
Instead of the nonlinear tracking control problem under input constraints, we only have to
address the two linear problems of stabilizing the subsystems (5.5) and (5.6) under the input

constraints (5.14).

As can easily be seen, stabilizing (5.5) while meeting (5.14a) is not difficult. We can modify
the control laws (5.7) and (5.11) into

U = U1, (t) — oc(21,e) (5.15)

whereo, is a saturation function as defined in Definition 2.1.13 and

e < ul™ —sup|uy (1) .

t>0
Then the resulting closed-loag . dynamics becomes
Sbl,e = _Ue(xl,e)
which is globallyX-exponentially stable.

Assume that we have a control law fey for the system (5.6) which is such that for the result-
ing closed-loop system Assumption Al of Theorem 2.4.3 is satisfied. Then Corollary 2.4.4
tells us that we have global uniform asymptotic stability of the tracking error dynamics (5.3)
in closed loop with this control law fou, and (5.15). In addition, if.» guarantees local
uniform exponential stability (LUES) we can conclude glokaéxponential stability of the
closed-loop tracking error dynamics (cf. Lemma 2.4.5).

Therefore, the only problem that remains, is to find a control lavufothat in closed loop

with (5.6) results in a globally uniformly asymptotically stable (GUAS) system (most prefer-
able globally/C-exponentially stable), while meeting (5.14b). As far as we know, no result
on stabilizing linear time-varying systems by means of saturated state or output-feedback is
known (yet).

For linear time-invariant systems we have the results of Sussmann, Sontag and Yang (1994),
which deals with the stabilization under input constraints, both by using state-feedback and
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output-feedback. For linear time-invariant systems we can also think of using anti-windup
controllers, like for example the one proposed by Kapoor, Teel and Daoutidis (1998).

As a result, the tracking problem under input constraints (5.14) for chained-form systems
(under both state- and output-feedback) can (yet) only be solved for a special class of refer-
ence trajectories, namely those reference trajectories for whigft) is a non-zero constant.
However, as soon as we have a result on the stabilization of linear time-varying systems un-
der input saturation, we also have a solution to the general tracking problem for chained-form
systems.

5.6 Simulations

In this section we apply the proposed state-feedback design for the tracking control of a
well-known benchmark problem: a towing car with a single trailer, see e.g., (Murray and
Sastry 1993, Samson 1995, Jiang and Nijmeijer 1999b).

The state configuration of the articulated vehicle consists of the position of tHe cat.),
the steering anglé, and the orientation&, respectivelyd,; of the car and the trailer with
respect to thex-axis, see Figure 5.1 The rear wheels of the car and the trailer are aligned

y

Ye frmmmmmmmmmmmmmme e o

L

Figure 5.1: Kinematic model of a car with a single trailer, where the controls are the forward
velocity v and the steering velocity of the tow car.

with the chassis and are not allowed to slip sideways. The two input signals are the driving
velocity of the front wheelsy, and the steering velocity.
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The kinematic equations of motion for the vehicle can be described by

T. =vcosby
e = vsinfy
¢=w

fo = %tangb

. [
91 = d_l sm(00 — 01)

(5.16)

wherel is the wheelbase of the tow car aiidis the distance from the wheels of the trailer
to the rear wheels of the car.

Although the system (5.16) is not in chained form, it can locally be transformed into the
chained form (5.1) via a change of co-ordinates and preliminary state-feedback (Murray and
Sastry 1993):

1 = Te
sin 91 sin2 (00 — 01) tan ¢ sin(00 — 01)
Ty = _
2 d? cos? 6 cos® 0; Idy cos? B cosby  d? cos By cos? 6,
sin(é’o — 01)
3= —"———
di cos B cos? 6,
x4 = tanb, (5.17)
1 + SiIl 01
— . —di log [ 7L
%5 = ye = dilog < cos 6 >
" cosby

w = P1(p,00,01)ur + B2(0, 00,01 )us

where
B = _3sin90 sin?¢  4sindcoso _ 3sin ¢ cos ¢ _ 7l cos® ¢ sin(6o — 0,)
L= 1 cos? By dy cos 6y d; cos By d? cos 0 o
61 cos? O cos? ¢ 121 cos® @ cos® ¢ .
_ 2008700 COST D i By — ) + 08 D0 COST D by — 8
d? cos? 6, sin(fo —61) + d3 cos 6, sin(6o — 61)
61 cos? Ay sin gy cos® ¢

6l . 9
+ d_% sin Ay cos” ¢ — & cos? by

Ba = ld; cos® B cos By cos? .

This change of co-ordinates and preliminary feedback, results into the chained-form system

.’i’l = Uy
Ty = u2
5&3 = T2U1
Ty = 23Uy

.’i‘5 = T4U7.
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(Jiang and Nijmeijer 1999b) studied for this system the problem of tracking the straight line
[:Uw Yer Or bor O1p vr wr]:[t 0 0 0 01 0.] (5.18)
In chained-form co-ordinates the reference (5.18) can be expressed as
[;ELT Tay T3, Tar Tsy Uiy uzr]:[t 0 0 0 0 1 0].

Starting from the initial condition
2. (0)=[1 05 05 05 05]"
it was shown by Jiang and Nijmeijer (1999b) that their backstepping based controller

U = Uy, + (—05331,6 —U2,T2 Tl e — U2,pThrTle T+ U2 pT3 e + U2 rT5e
— 20422, 03, X7, — 20403, T4 p T o — BUL T3, TT , — AUL 2 To T, T,
— UL T T o — U T elne + Calln,p 1 e T e + CoTa pT1 T2
+ 20473701 ,0T3,0 + OUL T2 pT1,003,c + 4U1 T4 T1 T30 — U2 pT1,0Tdc
+ 2¢4w2 p W10 Tae + 2C4T4 0 T1 e Tae + 2C4T3 731 e T5,e + AUL T2 X1 eTs e
20Uy, B, T o T — C4T2,eT3,e — C4T2,eT5,c — BUL T3, — 2C4T3,e T e
— duy T3 05,0 — 204y 05,0 — UL pTE , — 204T3 0T T2 e
— 6uy, 2 r T (T2 — AUt pTa T (T2 e — 20480, 07 (T3 e
— 2045”4,7*37%,6;373& — 204173,,,3:1,62374,6 — 4u1,,,3172,,,;1:%’6334,e (5.19a)
— 201 T4 p T G Tae + CaT1 T3, + OULpT1 T2 e T3, + BCATL o2 T e
+ 4,012,605, + 204:61,3563,6 + AUy pT1 T3 6Ta,e + 2C4T1 T3, T5,e
+ 2041 0] o + 20y p T oLy L5 e — BULpTT LE5 o — 20407 (T2 o T3 e
- 4u17rwiew27ex4,e - 20456%’8563,3:64,3 - ulmwiewie) / ()\
+622,T3,,T1,e + 203, T4,rT1,e — 2T2,p T2, — T3,T3,c — DT, Ta e
- 21’3,7-.1’5’6 + 61’3’7-1'1,61'2’6 + 61’2’7-1'1,61'3’6 + 21’4’7-1'1,61'3’6
+ 203,21 e Tae — 205, — D cTae — T3, — 2T3,0%5,¢ + 61 T 0T3,c
+ 2371,8373,6374,6)

Uy = U2 + 204373,7'371,3 + 3“1,7'372,7"371,6 + UL pTarT1e — C4T2,e — 3'“/1,1"373,3

(5.19b)

— 204740 — UL pT5e + UL pTL T2 e + 2C4T1 T30 + UL, T eTa e

where\ = 5, ¢4 = 2, ¢5 = 2 behaved as shown in Figure 5.2.

This behavior was compared to that of the control law (5.8). For tuning the gains we con-
sidered the two linear subsystems that result from the cascaded analysis. Both can be ex-
pressed as a standard linear time-invariant system of the foem Az + Bu. We used
optimal control to arrive at the control law= — Kz for which the costs

/0 e + ()] dt
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Figure 5.2: Tracking errors and inputs for backstepping controller (5.19).
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are minimized, where we took the constarguch that similar control effort is needed as by
Jiang and Nijmeijer (1999b). The control law we used was

Uy = ulm(t) — 3.1623&71,8 (5203)
Uy = s p(t) — 2.07702,0 — 2.107023,. — 1.196924 . — 031625, (5.20b)

The resulting behavior is presented in Figure 5.3.
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Figure 5.3: Tracking errors and inputs for cascade controller (5.20).

We see from this simulation that the cascaded control law (5.20) not only looks more ap-
pealing than (5.19) but also obtains better convergence and is much easier to tune. Notice
that due to the local nature of the change of co-ordinates and preliminary feedback (5.17) the
control laws (5.20) and (5.19) are only global respectively semi-global in the chained-form
co-ordinates, but local in the original co-ordinates.

5.7 Concluding remarks

In this chapter we studied the tracking problem for a special class of non-holonomic systems,
namely the class of chained-form systems. This class contains several interesting examples
of mechanical systems with non-holonomic constraints.
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Using a cascaded systems approach we solved both the state- and output-feedback tracking
problems globally for this class of systems. We also solved the saturated tracking problem
(both under state- and output-feedback) for only a special class of reference trajectories,
namely those with constant ,.(¢). All results assume a persistence of excitation condition

onuy ,(t).

We like to emphasize that the fact that the kinematic model of a mobile car is contained in the
class of chained-form systems does not make the results in the previous chapter redundant.
On the contrary: a cascaded approach to the model of the mobile robot in the original co-
ordinates leads to less complicated expressions for the controller. This is also what should
be kept in mind when designing controllers for general systems that can be transformed into
chained form: apply the approach in the original co-ordinates! Besides, the change of co-
ordinates that brings the system in chained form is not global in general. Fortunately, very
oftenz,; andwu; are natural co-ordinates of the system (as for the mobile robot). Then the
cascaded approach used in this chapter can easily be applied to the system in original co-
ordinates. That is, first stabilize the tracking error dynamics that corresponds tosing

the input that corresponds tq. Then assume that this stabilization has worked out (which
boils down to substituting; . = 0 andu;, = uy ,-(¢) in the remaining dynamics). Using the
remaining input, this system can be stabilized, provideddhatt) is persistently exciting.

Next, Theorem 2.4.3 guarantees global uniform asymptotic stability of the cascaded system
under some additional boundedness assumptions on the reference trajectory.

As mentioned in the previous chapter a persistence of excitation (PE) condition on the ref-
erence inputs; (t) might not be required. Loria et al. (1999b) used the weaker notion of
ud-PE to study the stabilization problem for chained-form systems of &xdet is worth
investigating whether weakening the PE conditiorugn to a WPE condition can be done

for general chained-form systems of oraetoo.

Furthermore, a uniform global stabilization result for linear time-varying systems under in-
put saturation (and for the system (5.6) in particular) would extend the class of reference
trajectories we can track under input saturation.

For the mobile robot the cascaded design was an eye-opener to recognize a simpler structure
for backstepping. Since for the mobile robot this enabled us to weaken the assumption on the
reference trajectory, it is worth trying the same for chained-form systems. That is, we can
start from the nonlinear tracking error dynamics (5.3) with the inpws in Proposition 5.3.1

and the virtual controk, . = 0 and “step back” the virtual control to obtain an expression

for the inputu; .
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Chapter 6

Tracking control of an
under-actuated ship

6.1 Introduction

In this chapter we study the tracking problem for an under-actuated ship. For a conven-
tional ship it is common to consider the motionsarge(forward),sway(sideways) angtaw
(heading), see Figure 6.1. Often, we have surge and sway control forces and yaw control

Figure 6.1: Definition of state variables in surge, sway, heave, roll, pitch and yaw for a marine
vessel.

moment available for steering the ship. However, this assumption is not valid for all ships.
It is very well possible that ships are either equipped with two independent aft thrusters or
with one main aft thruster and a rudder, but are without any bow or side thrusters, like for
instance many supply vessels. As a result, we have no sway control force. Therefore, we

73
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assume to have only surge control force and yaw control moment available. Since we need
to control three degrees of freedom and have only two inputs available we are dealing with
an under-actuated problem.

For modeling the ship we follow Fossen (1994). We neglect the dynamics associated with
the motion in heave, roll and pitch and a slowly-varying bias term due to wind, currents, and
wave drift forces. Furthermore we assume that the inertia, added mass and damping matrices
are diagonal. In that case the ship dynamics can be described by (see e.g., (Fossen 1994)):

; d 1

U= @vr -+ —u (6.1a)
mi1 mi1 miy
d

b=, 222, (6.1b)

ma2 ma22

— d 1
j— L 983 — (6.1c)
ms3s ms3s ms3s

& =wucosy —vsiny (6.1d)
Y = usiny + vcosy (6.1e)
Yp=r (6.1f)

whereu, v andr are the velocities in surge, sway and yaw respectivelyaand ) denote

the position and orientation of the ship in the earth-fixed frame. The paramejers 0 are

given by the ship inertia and added mass effects. The paranikiess0 are given by the
hydrodynamic damping. The available controls are the surge fgrcand the yaw moment

uz. The ship model (6.1) is neither static feedback linearizable, nor can it be transformed
into chained form. It was shown by Pettersen and Egeland (1996) that no continuous or
discontinuous static state-feedback law exists which makes the origin asymptotically stable.

The stabilization problem for an under-actuated ship has been studied in (Wichlund, Sgrdalen
and Egeland 1995, Pettersen and Egeland 1996, Reyhanoglu 1996, Pettersen and Nijmeijer
1998). Tracking control of ships has mainly been based on linear models, giving local results,
and steering only two degrees of freedom. (Godhavn 1996) investigated output-tracking con-
trol based on a nonlinear model of the ship, and a controller providing global exponential
stability (GES) of the desired trajectory was developed. As only the position variables are
controlled, typically the ship may turn around and the desired position trajectory is followed
backwards. That is why we focus on state-tracking instead of output-tracking.

The first complete state-tracking controller based on a nonlinear model was developed by
Pettersen and Nijmeijer (1998) and yields global practical stability. Pettersen and Nijmeijer

(2000) achieved semi-global asymptotic stability by means of backstepping, inspired by the
results of Jiang and Nijmeijer (1999b). We are not aware of any global tracking results for

the tracking control of an under-actuated ship in literature.

In this chapter we present a global solution to the tracking problem for an under-actuated
ship. In Section 6.2 we derive the tracking error dynamics considered in (Pettersen and
Nijmeijer 2000) and also more natural error dynamics. In Section 6.3 we solve the state-
feedback tracking control problem. The controller derived in Section 6.3 is implemented for

tracking control of a scale model of an offshore supply vessel. The experimental results are
presented in Section 6.4. Some conclusions are drawn in Section 6.5.
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6.2 The tracking error dynamics

Assume that a feasible reference trajectory, v,., vy, T, yr, ¥r, u1 r, u2,)* is given, i.e., a

trajectory satisfying

(%

0,

P

&

Mmoo diq 1
—Uplp — —Up + — U1
mi1 mi1 mi1
mi1 dao
— Ul — —— Uy
ma2 ma2
mip — Ma2 ds3 1
UV — —— Ty + ——Uy,y
ms33 ms33 ms33

= U, COS Y, — Uy SIN Y,

Ur = Up SN Y, + v, COS Y,y
Yy =1

Notice that a drawback exists in considering the error co-ordinates, andy — y.., since

these position errors depend on the choice of the inertial frame. This problem is solved by
defining the change of co-ordinates as proposed by Pettersen and Egeland (1996) which boils
down to considering the dynamics in a frame with an earth-fixed origin having-thad

y-axis always oriented along the ship surge- and sway-axis:

z1 = xcosy + ysiny
Zy = —xsiny + ycosy
Z3:1ﬁ.

(6.2)

(6.3)

The reference variables ., z; , andzs , are defined correspondingly. Next, we define the

tracking errors

Ue = U — Uy
Ve =V — Up
Te =T —1Tp

Zl,e = 21 — Z1,r

22, = 22 — 22,1

Z3,e = %23 — Z3,r-

In this way, we obtain the tracking error dynamics

. mo: d
e = —2 (veTe + Ve () + v,170) — —tp + —— (ug — uy,,)
mi1 mi1 mi1

. m d:
Ve = _ (uere + uerr(t) + urre) - = Ve

moo ma2
. mip —m d
Te = u(ueve + Uy + Upve) — ﬁre + —(u2 —us2 )

mss3 m33 ms3

21,8 = Ue + 22,eTe + ZQ,err(t) + Z2 pTe

22,e = Ve — Z1,eTe —

23, = Te-

21,eTr (t) — Z1,rTe

(6.4a)
(6.4b)
(6.4c¢)
(6.4d)
(6.4e)

(6.41)

(6.5a)
(6.5b)

(6.5¢)

(6.5d)
(6.5€)
(6.5f)
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Like Pettersen and Nijmeijer (2000) we study the problem of stabilizing the tracking error
dynamics (6.5).

As mentioned, the change of co-ordinates (6.3) boils down to considering the dynamics in
a frame with an earth fixed origin having the andy-axis always oriented along the ship
surge- and sway-axis. This is done for both the ship and the reference. Therefore, a physical
interpretation of the error co-ordinates (6.4d, 6.4e, 6.4f) is less clear. More natural error co-
ordinates would be to consider the position errors x,. andy — y,. in a frame attached to

the body of the ship (as for the mobile robot). This leads to the error co-ordinates

Te costy siny O| [z —x,
Ye| = |—siny cosy Of |y—uy,|. (6.6)
Ve 0 0 1] [ -9
When using the error co-ordinates (6.4a, 6.4b, 6.4c, 6.6) the tracking error dynamics becomes
mMos
Ue = ﬁ(vere + vere(t) + vpre) — iuE + —(u1 —ui )
miy miy miy
. d
Ve = —@(uere + uery (t) + upre) — 2 v,
mas ma2
. - d 1
Fe = w(ueve + Uy + UpV) — —ry + ——(ug — Us2,r) (6.7)
ms3s ms3s ms3s

i’e = U — U COS ¢e — Ur sin ¢e + reye + rr(t)ye

ye =V —vVprCOS ¢e + u, sin ¢e —Tele — Tr(t)me
the = Te.

Therefore, we could as well study the problem of stabilizing the tracking error dynamics (6.7).
However, for comparison reasons we focus in Section 6.3 on stabilizing (6.5). Stabilizing
(6.7) can be dealt with in a similar way.

6.3 State-feedback: a cascaded approach

We want to use the cascaded design approach for solving the state-feedback tracking problem.
For that, we follow the ideas presented in Section 3.2 and look for a control law for one of
the two inputs, which is such that in closed loop a subsystem is asymptotically stabilized.

By defining the preliminary feedback
Uy = Ugpr — (M1 — Maz)(Uv — Upv,) + dszre + M3V (6.8)
wherev is a new input, the subsystem (6.5c, 6.5f) reduces to the linear system

Te =V
. (6.9)
23,e = Te
which can easily be stabilized by choosing a suitable control law,ffor example

V= —CiTe — C223,¢ ci1,c9 > 0. (6.10)
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Next, we assume that the stabilization of (6.9) has been established, that is, we substitute
ro = 0andzz . = 01in (6.5a, 6.5b, 6.5d, 6.5e). This results in

. m d
Ue = ﬁverr(t) — iuE + —(u1 —ui )
mi1 miy mi1
R mi1 das
U = ———Uery(t) — —,
ma2 ma3

Zl,e = Ue + 2276Tr(t)

22,6 = Ve — ZLerr(t)

which is just a linear time-varying system:

W] [ o oEmne 0 07(w] [

Ve | _ |-mipp) —d2 g 0 || v 0

. - + [u1 — U1 r]-
Z1,e 1 0 0 ro ()| [Z1,e 0 ’
Z9.e 0 1 —r,(t) 0 22.e 0

(6.11)

All that remains to be done, is to find a feedback controllernfothat stabilizes the system
(6.11). It follows from Corollary 2.3.4 that the system (6.11) is uniformly completely con-
trollable (UCC) if the reference yaw velocity.(t) is persistently exciting. Notice that this
condition is similar to that of the mobile robot studied in Chapter 4, where also the reference
angular velocity had to be persistently exciting. As a result, if the reference yaw velocity
r.(t) is persistently exciting, we can use any of the control laws available in literature for
stabilizing linear time-varying systems, as mentioned in Remark 5.3.2.

In addition to these results we arrived at the following.
Proposition 6.3.1. Consider the syste(.11)in closed loop with the control law
U = Uy — kiue + kary (t)Ue — k321,e + k4rr(t)z'27e (612)

wherek; (i = 1,...,4) satisfy

k1 > doy — d11 (6.13a)
ky(ky + k1 + diy — da2)

ko = 6.13b

? it (d2oka + maiks) ( )
da2

0< ks < (k‘1 + di — dzz)— (613C)
miy

ks > 0. (6.13d)

If .(t) is persistently exciting (PE) then the closed-loop syqhl, 6.12)s globally uni-
formly exponentially stable (GUES).

Proof. See Appendix A. O

Combining the controllers (6.8, 6.10) and (6.12) we are now able to formulate the cascaded
systems based solution to the tracking control problem:



78

Chapter 6. Tracking control of an under-actuated ship

Proposition 6.3.2. Consider the ship tracking error dynami.5) in closed loop with the

control law

U = U1, — k1te + korp (t)ve — kgz1,e + kary ()22,

U2 = U2, — (mll - m22)(ueve + Ve + Ur'Ue) — ksre — k623,e

where

kq

ky =

0< ks

(6.14a)
(6.14b)

> day — di1
_ ka(ka 4+ k1 + di1 — dao)
(daoks + ma1ks)

mi1
m22

d
< (kv + di1 — dzz)mii

>0
> —ds3
> 0.

k4
ks
ke

If u,, vr, 21, and z» , are bounded and,(t) is persistently exciting (PE), then the closed-
loop systent6.5, 6.14)is globally -exponentially stable.

Proof. Due to the design, the closed-loop system (6.5, 6.14) has a cascaded structure:

A [ ki+din  katmas k3 kg m
- Sh ) o 0] T 222 (0. 40,) 0
3 mi1y 22 — 11
Vel =T ® T 0 0 ve | | T (et O 1T ]
Z1,e 1 0 0 () Z1,e 22,etz2,» 0
Z2,c L 0 1 —r(t) 0 Z2,e —(z1,e+21,,) 01

- -~ _ ~

J1(t,z1) g(t,21,22)

n ] [_dastks _ _ke
.Te = m33 mss Te .
Zgye_ L 1 0 23,e

- -~ _

fa(t,z2)

From Proposition 6.3.1 we know that the systém= f, (¢, z;) is globally uniformly ex-
ponentially stable (GUES) and from standard linear control that the system f (¢, z2)
is GUES. Furthermore, due to the fact that v,, 21, andz, , are boundedy(t, z1, 22)
satisfies (2.25). Applying Corollary 2.4.6 provides the desired result. O

Remark 6.3.3As pointed out in Remark 5.3.2 the control law (6.14) is not the only control
law that results in globalC-exponential stability. Any control law for; that renders the
system (6.11) globally uniformly exponentially stable works also.

Notice that the stabilization of the “more natural” tracking error dynamics (6.7) follows along
the same lines. Using the control law (6.8, 6.10), i.e.,

k6 "/}e

results in the globally uniformly exponentially stable closed-loop (sub)system

Te _dsztks _ ke T
e el

Uz = U,y — (m11 — mzz)(uv — UT’UT) — k5T6 - k’5 > —d33, k‘ﬁ >0 (615)
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Substitution ofr. = 0 andy, = 0 in (6.7) yields the linear time-varying system:

e —m a0 0] fue o
Ve —Mugp (3  —d2 0 0 Ve 0
. = m m + _ -
e 1 0 0 | |z o | [~
ye 0 1 —Tr(t) 0 Ye 0

which is identical to (6.11). For stabilizing this system we can use the control law
U = Uy, — ke + kyr(t)ve — kaxe + karp (t)ye (6.16)
wherek; (i = 1,...,4) satisfy (6.13).

Corollary 6.3.4. Assume that,.(t) is persistently exciting and that. andv, are bounded,
then we have that the control Iai#.15, 6.16)yenders the closed-loop tracking error dynamics
(6.7)globally K-exponentially stable.

6.4 Experimental results

To support our claims we performed some experiments at the Guidance, Navigation and Con-
trol Laboratory located at the Department of Engineering Cybernetics, NTNU, Trondheim,
Norway. In the experiments we used Cybership I, which 1s:870 scale model of an off-
shore supply vessel. The model ship has a length.5f m, and a mass of7.6 kg and

is equipped with four azimuth-controlled thrusters (i.e., thrusters where the direction of the
propeller force can be controlled). The maximum force from one thruster is approximately
0.9 N. The vessel moves in-by-6 meter pool with a depth of aboQt25 meters.

Three spheres are mounted on the model of the vessel that can be identified by infra red
cameras (for the simulation of a global positioning system (GPS)). Three infra red cameras
are mounted in such a way that (almost always) one or two cameras can see the boat. From
each camera the positions of the spheres are transfered via a serial lidBPA@E signal
processor (DSP). From these positions the ship position and orientation can be calculated. A
nonlinear passive observer of Fossen and Strand (1999) is used to estimate the unmeasured
states. The estimates for position and velocities generated by this observer are used for feed-
back in the control law. No theoretical guarantee for a stable controller observer combination
can be given (yet), as for nonlinear systems no separation principle exists. However, in the
experiments it turned out to work satisfactory.

The control law and position estimates are implemented on a Pentium 166 MHz PC which
is connected with the DSP viadSPACE bus. By usingSimulink® blocks, the software is
compiled and then downloaded into the DSP. The DSP sends the thruster commands to the
ship via a radio-transmitter. The sampling frequency used in the experimeni \Was

The reference trajectory to be tracked was similar to that in (Pettersen and Nijmeijer 2000),
namely a circle with a radius df meter using a constant surge velocity0d5 m/s. From
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Figure 6.2: Guidance, Navigation and Control Laboratory.
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the initial reference state

u,(0) = 0.05 m/s
v-(0) =0mls
r-(0) = 0.05 rad/s
z,(0) =4.75m
yr(0) =3.5m
1, (0) = 7 rad
and the requirement
u,-(t) = 0.05 m/s Vvt >0
r.(t) = 0.05 rad/s Vvt >0

the reference trajectofy,., v, 7., =, y, ¥,]T can be generated, since it has to satisfy (6.2).

As did Pettersen and Nijmeijer (2000) we chose in the experiments not to cancel or compen-
sate for the damping terms (i.e., assufipe = ds3 = 0), since these are restoring terms, and
due to possible parameter uncertainties cancellations could result in destabilizing terms.

In the experiments we compare the control law (6.14) that we obtained by a cascaded design
with the control of Pettersen and Nijmeijer (2000) that was derived by means of backstepping.
This backstepping-based controller is given by

2 2
_mnkzur23,e _ mllkzuez3,e + my1 kadv, + m11k2du623,e

u; =
I'r Tr cry T
m11k2durz3,e k
- + M11722,e23,e + M11YZ3,e22,0 — M11K1Ue — M117Y21 e
r
2
m11a1k222,e
— M11G1Ue — M22VpTr — MM22VrTe — 1M22VeTy — M22VeTe — 7”
r
2
mi1a1k323,e21,r
+miraik123,e22, + Mi1a1k122 023, — ———————
cry
m11a1k2d2’3,e2’1,r + m11a1k2d«21,ez3,e
cry cry (6.17a)

+mycar kazs . +mycar ka2 ez3,. — miraiki2,e

2
+muictar,uezs,e +

m11a1/€2d22,e
— M1 k17r23,021,r + Miicar,Ve — mi1kirp21 6236 —
;

2
5 k mllalkzzl,ez&e
+ mqic aryrUrz3.e + myicar, 223,e%1,r — T
r

mi1kadzy e n mi1kadzs c23 ¢ n mi1kadzs c2o r

- m11k17“r22,e -
c c c

2 2 2 2
m11k222,ez3,e m11k223,ez2,r m11k27}e +m11/€22’1,e

c c cry c

Uz = fkl,kz,al,ag,ag,a,)\,'y (ue; Ve, TeyZ1,e5 22,65 23,e5 t) (617b)

Wherefi, ks.a1,a0,as,0.0,7 (Ues Ve, ey Z1,e, 22,65 23,6, t) IS @ COMplex expression of 2782 terms
over a little less complex expression of 64 terms. For sake of not being incomplete, the
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control law forus is contained in Appendix B. The controller gains are giverkby= 0.45,
ks = 0.25,a1 = 0.5, a2 = 2, a3 = 15, « = 0.75, v = 0.005, and\ = 50. These gains were
found by trial and error, using a computer model of the ship.

For tuning the gains of (6.14) we prefer a more systematic approach. However, for compari-
son we first look for a set of control parameters for (6.14) more or less corresponding to the
parameters of Pettersen and Nijmeijer (2000) for (6.17).

First we define the auxiliary signals

UL = UL — Uiy (6.18a)

)

and

V2 = Uz — U2 + (M1 — Ma2)(UeVe + Vplle + UpVe) (6.18b)
and substituting for; andus the control laws (6.14) we obtain
v1 = —kite + kot (£)ve — kzz1,e + karr(t) 22,6
and

vy = —ksrr(t) — kezze

where for the experiment,.(t) = 0.05. This is a linear controller. Therefore, the first
approach for tuning the controller (6.14) is to consider a first order Taylor approximation of
the auxiliary signals (6.18) where we takgandu» as in (6.17). This results in

U1 &~ —18.05u, + 3.90v, — 4.6321 , + 2.3125 . — 0.177,
+(0.15 4 2.312; 4 + 4.6322,4) 23,

Uy & —60.007, — 2.4023 . + 0.01u, + 1.6v, + 0.00321 . — 0.00522 ¢
— (0.00521 4 + 0.0032.4) 23,

(6.19a)
(6.19b)

In the cascaded analysis we first usedor stabilizing the(r., 23 .)? dynamics and while
designing in the second stagewe assume that. = z3 . = 0. Therefore, we leave out the

r. andzs . terms of (6.19a) and neglect the small terms in (6.19b), as well as the term with
ve.. This leads us to the control law

up = ug,, — 18.05u, + 3.90v, — 4.6321  + 2.3125 ¢ (6.20a)
Uz = Usp — (M11 — M22) (UeVe + Vplte + Upve) — 60.00r, — 2.4023 . (6.20b)

The second approach for tuning the controller (6.14) is to consider the two linear subsystems
(6.9) and (6.11) that resulted from the cascaded analysis. Both can be expressed as a standard
linear time-invariant system of the forin= Az + Bu. We use optimal control to arrive at

the control lawu = — Kz for which the costs

/OO z(t)TQx(t) + u(t)” Ru(t)dt
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are minimized. For) we choose a diagonal matrix with entrigs = % (i=1,...,4),
whereAz; is the maximum error we can toleratein For R we take the inverse of maximum
allowed input. This results in the choice

10 0 0 O
0 5 0 0
@= 0 0 20 O f=11
0 0 0 10
for the system (6.11) and
50 0
o[ 2]

for the system (6.9). In this way we obtain for the control law:

Uy = ur,, — 10.28u, + 9.2v, — 4.442y o + 2.7425 . (6.21a)
Uz = Uz, — (M1 — Moz)(UeVe + Vptte + Upve) — 9.02r, — 6.7425 . (6.21b)

To summarize: we have three different control laws available, namely the backstepping-
controller (6.17) as proposed in (Pettersen and Nijmeijer 2000), its cascaded-systems-based
linearization (6.20) and the linear optimal control based cascaded controller (6.21).

We did experiments with all three controllers. The resulting performance of the cascaded
controller (6.20), which was based on a linearization of the backstepping controller, is shown

in Figure 6.3. In the first two graphs we compare the actual position of the ship with its desired
position. The third graph contains the error in orientation. The fourth and fifth graph depict
the controls applied to the ship. The bottom graph depicts the camera status. The reason for
showing this is that the infrared cameras from time to time loose track of the ship. As long as
the camera status equals zero we have position measurements from the camera-system, but
as soon as the camera status is non-zero we no longer get correct position measurements. In
Figure 6.3 we can see that for instance after ali@Qtseconds we had a temporary failure

of the camera-system. This explains the sudden change in the orientatiofcamad in the
controlu; .

The resulting performance of the backstepping controller (6.17) is presented in Figure 6.4.

The resulting performance of the cascaded controller (6.21), of which the gains were chosen
by means of optimal control theory, is presented in Figure 6.5.

When we compare the backstepping controller (6.17) with the cascaded controller (6.21)
the tracking of the reference positions(t) andy,.(t) is comparable. However, the angular
tracking error is considerably less for the cascaded controller.

From the fact that the presented controllers can be applied successfully in experiments, we
might conclude that they possess some robustness with respect to modeling errors and with
respect to disturbances due to currents and wave drift forces.

To illustrate this robustness even more, we performed one experiment using the “optimal
gains” in which the author was wearing boots and walking through the pool, trying to create
as much waves as possible and disturbing the ship as much as he could. The results are
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Figure 6.3: Cascade controller (6.20) with gains based on linearization of the backstepping
controller.
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Figure 6.4: Backstepping controller (6.17).
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Figure 6.5: Cascade controller (6.21) with gains based on optimal control.
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Figure 6.6: Cascade controller (6.21) under disturbance of author walking through the pool.
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depicted in Figure 6.6. It can be noticed that due to the heavy waves, the camera system
had much more difficulties in keeping track of the ship. Nevertheless a reasonable tracking
performance was achieved.

6.5 Concluding remarks

In this chapter we studied the tracking problem for an under-actuated ship that has only surge
control force and yaw control moment, which is a common situation for many supply vessels.

By means of a cascaded approach we developed a global tracking controller for this tracking
problem. The resulting control law has a much simpler structure than the backstepping based
controller that was available in literature and which guarantees semi-global tracking. The
cascaded approach reduced the problem of stabilizing the nonlinear tracking error dynamics
to two separated problems of stabilizing linear systems. This insight simplified the gain-
tuning a lot, since optimal control could be used to arrive at suitable gains.

A disadvantage of both the backstepping and the cascade controller is the demand that the
reference angular velocity does not tend to zero. As in the previous chapters, the cascaded
approach leads us to a simpler structure for backstepping (cf. Remark 4.2.6). Starting from
this we might be able to weaken this condition that the angular velocity of the reference
should not tend to zero. Another possibility might be to consider the ideé-BE.

The controllers presented in this chapter also proved to work reasonably well in experiments.
This implies a certain robustness against modeling errors and disturbances due to currents and
wave drift forces. In an attempt to get better robustness results, the cascaded approach might
be helpful. Disturbances due to currents and wave drift forces are in general modeled by a
constant force acting on the ship. The cascaded approach learned us that instead of looking
at the nonlinear tracking error dynamics, we could as well consider two linear systems. Ob-
taining asymptotic stability of a linear system under a constant disturbance is a well-known
problem that can be solved by using integral control. Therefore, adding integral control to
the cascaded controller adds robustness against constant disturbances.
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Chapter 7

Introduction to Part Il

The second part of this thesis consists of three papers. All three deal with the tracking control
of nonlinear mechanical systems, but each focuses on different aspects than those discussed
so far in the first part of the thesis. Specifically, Chapter 8 and Chapter 9 deal with tracking

of fully-actuated rigid robots, whereas Chapter 10 treats a new adaptive control problem for
an under-actuated system. In what follows we briefly describe the subject of the three papers
and finally give a short discussion on a number of relevant similarities in these papers.

7.1 Paper I: Global asymptotic stability of robot manipula-
tors with linear PID and PI 2D control

This paper deals with the control of a special nonlinear mechanical system, namely a fully-
actuated rigid robot manipulator. The tracking problem considered is to move the manipulator
to a desired fixed point. This particular tracking problem also goes under the name set-point
control or is called the regulation problem. Takegaki and Arimoto (1981) showed that a PD
plus gravity compensation controller can globally asymptotically stabilize a rigid robot ma-
nipulator to any desired fixed point. One of the drawbacks of this approach is that the vector
of gravitational forces is assumed to be known accurately. Whenever the gravitational vector
is not known exactly and an estimate is used, the position error converges to a bounded steady
state error. Common practice is to use PID control to overcome this problem. However, only
local (or at best semi-global) asymptotic stability of this scheme has been proven so far (see
e.g., (Kelly 1995)).

Based on the ideas presented by Lefeber (1996) and applied to the bounded tracking control
of chaotic systems in (Lefeber and Nijmeijer 1996, Lefeber and Nijmeijer 1997a, Lefeber and
Nijmeijer 1997b) we combine a PD controller with a PID controller. First we apply the global
PD controller, which leads to a steady state error. Then we switch to the PID controller by
activating the integral action, which results in asymptotic stability. Using this hybrid linear
controller we are able to shoglobal asymptotic stability.
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7.2 Paper Il: Adaptive and filtered visual servoing of pla-
nar robots

This paper also deals with the regulation problem for rigid robot manipulators, but now with
time visual servoing (under a fixed camera configuration). In fixed-camera robotic systems,
a vision system fixed in the world co-ordinate frame captures images of the robot and its
environment. The objective is to move the robot in such a way that its end-effector reaches a
desired target.

Among the existing approaches to solve this problem, it has been recognized that the “image-
based” scheme possesses some degree of robustness against camera miscalibrations (Mi-
yazaki and Masutani 1990, Lei and Ghosh 1993, Hager, Chang and Morse 1995). In this
approach, the vision system provides an image position error, measured directly on the image
plane as the visual distance between the target and end-effector positions. This error is used
to drive the controller. Kelly and Marquez (1995) introduced a model of the vision system
incorporating a perspective projection based on thin lens geometric optics and they derived
a control law to solve the problem. Asymptotic stability of the resulting closed-loop system
was shown under the assumption that the orientation of the camera is known. No intrinsic
camera parameters were assumed to be known and neither the robot’s inverse kinematics nor
the inverse Jacobian was used. Kelly (1996) showed robustness of this controller in face of
unknown radial lens distortions and uncertainty in the camera orientation.

In this paper we extend the controllers proposed in (Kelly and Marquez 1995, Kelly 1996) to

a class of visual servoing controllers which also includes the controllers reported in (Miya-
zaki and Masutani 1990, Lei and Ghosh 1993, Coste-Maniéere, Couvignou and Khosla 1995,
Kelly 1996, Kelly, Shirkey and Spong 1996). Our class of controllers also corgainsated
controllers, which enables us to deal with constraints on the inputs. Furthermore, we extend
in this paper the results of (Kelly and Marquez 1995, Kelly 1996) to the cases where velocity
measurements are not available and the camera orientation parameter is unknown. The latter
problem involves a nonlinear parameterized adaptive system for which special analysis and
synthesis tools have to be developed, since this problem is almost unexplored in adaptive
control.

7.3 Paper lll: Adaptive tracking control of non-holonomic
systems: an example

As in the previous paper, this third paper also studies a control problem where certain param-
eters are unknown. In the first part of this thesis we studied the tracking problem for nonlinear
mechanical systems with non-holonomic constraints. We assumed all system parameters to
be known exactly and no disturbances to be present. In case some system parameters are not
known exactly, things change considerably. This paper deals with the adaptive state-tracking
problem for the kinematic model of a four-wheel mobile robot with unknown length. The ex-
ample illustrates that the formulation of the adaptive state-tracking problem is far from trivial.

At first glance this might look surprising since adaptive tracking problems have been studied
throughoutin literature. However, for all these problems feasibility of the reference trajectory
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is not an issue, since it turns out to be a priori guaranteed. Most results in adaptive control
deal either with the adaptive stabilization problem or the adaptitputtracking problem.

The adaptive stabilization problem usually is studied for systems without drift which can be
stabilized to an arbitrary point, no matter what value the unknown parameters have. In case
of the adaptive output tracking problem, one has as many inputs to the system as outputs. As
a result an arbitrary signal can be specified for the output. This output can be tracked for any
parameter.

As mentioned in Section 1.1, we insist on a state-tracking problem instead of an output-
tracking problem. Usually it is undesirable in the tracking problem for a mobile robot or
ship that the system turns around and follows the reference trajectory backwards. Therefore,
output-tracking does not suffice and state-tracking is what we are looking for. We like to
extend the results of the first part of this thesis to the case where certain system parameters are
unknown. We illustrate in this paper that not knowing certain parameters, like in this example
the length of the vehicle, and specifying a feasible reference trajectory is in conflict with each
other. The question then arises how to formulate the adaptive state-tracking problem. One of
the necessary conditions in formulating the adaptive state-tracking problem is that in case the
parameters are known it reduces to the state-tracking problem (as formulated in Section 1.1).

By means of the kinematic vehicle model we illustrate in this paper the above mentioned
conflict. We propose a natural formulation for the adaptive state-tracking problem and present
a general methodology for solving this problem.

7.4 Discussion

This thesis is concerned with the tracking of nonlinear mechanical systems. In the first part
we focussed on tracking of under-actuated systems and developed a new approach which
can lead to simple controllers. However, all analysis is done on the known model, which is
assumed to be accurate, whereas in practice all kinds of uncertainties play a role. That is why
in this second part we shift attention to some of the uncertainties that are of interest when
studying tracking of nonlinear mechanical systems.

To start with, in Chapter 8 and Chapter 9 we deal with uncertainties for fully-actuated sys-
tems. In Chapter 10 we return to the under-actuated problem studied in Part |, but this time in
the presence of parametric uncertainties. The fully-actuated system studied in Chapter 8 and
Chapter 9 is a rigid robot manipulator. In Chapter 8 we assume that the vector of gravitational
forces is not known exactly. We show that the common practice of using PID control yields
global asymptotic stability when the integral action is activated after some time. The ques-
tion remains if using integral action from the beginning can also result in global asymptotic
stability. The result we obtain is just a switch between a PD and a PID control. Switching
controllers is closely related to the results of Teel and Kapoor (1997) and Prieur and Praly
(1999).

An other approach of the problem would be to view the unknown constant gravitational vector

as an unknown parameter. In that case the integrated error can be seen as an estimate for this
unknown parameter and the additional integral action can be seen as an update law for this
estimate.
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In Chapter 9 we study a different adaptive control problem. Here we adapt for the unknown
orientation of the camera that provides us with measurements. The main difficulty in solving
this adaptive problem is given by the fact that the unknown parameter enters the dynamics in
a nonlinear way. As a result none of the standard linear-in-the-parameters adaptive control
techniques can be used. Our solution consists of switching between two controllers which
results in a chattering behavior. Although not presented, also a smooth semi-global solution
is available. In Chapter 4 we studied the output-feedback tracking problem where part of the
position was unmeasured. However, if we consider the same problem where we assume that
the position is measured but not the orientation, then we run into similar problems. In this
case we also have to reconstruct an unknown angle that enters the dynamics nonlinearly. As
illustrated by Jakubiak, Lefeber, Tah‘and Nijmeijer (2000) the problems turn out to be the
closely related. Actually, similar semi-global solutions can be derived. Results on adaptive
control of nonlinearly parameterized systems (in a more general framework) can for instance
be found in the work of Loh, Annaswamy and Skantze (1999) and Kojic and Annaswamy
(1999).

Whereas in Chapter 8 and Chapter 9 we studied the adaptive regulation problem for fully-
actuated systems, in Chapter 10 we study the adagptate-trackingproblem for under-
actuated systems. In light of Chapter 8 and Chapter 9 the extension of the state-tracking
problem as considered in Part | to an adaptive state-tracking problem seems to be a natural
next step. Asitturns out the first step to be made is arriving at a suitable problem formulation.
A precise statement of the general adaptive state-tracking control problem is not so simple.
An attempt is made in Chapter 10 by considering the example of a four-wheel mobile robot
with unknown length. The reason for considering this example is not given from a practical
point of view (since in practice the length of a mobile car can easily be measured), but mainly
to illustrate the difficulties one runs into when considering the (also from a practical point
of view interesting) adaptive state-tracking problem. For this specific example a problem
formulation is presented which could form a basis to arrive at a general problem formulation
of the adaptive tracking control problem as for instance presented by Lefeber and Nijmeijer
(1998).
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Abstract

In this paper we address the problem of set-point control of robot manipulators
with uncertain gravity knowledge by combining several previous contributions to PID
control. The main contribution is a linear PID controller which ensures global asymp-
totic stability of the closed loop. The key feature of the controller, which allows to
prove globality is that the integration is started after a short transient. In the case
of unmeasurable velocities, a similar “delayed” PI?’D controller is shown to globally
asymptotically stabilize the manipulator.
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1 Introduction

1.1 Literature review

From the seminal paper [19] it is well known now that a PD plus gravity compensation
controller can globally asymptotically stabilize a rigid-joints manipulator. However, this
approach has two drawbacks (which have been already extensively studied): 1) the vector of
gravitational forces is assumed to be known accurately and 2) velocities are needed to inject
the necessary damping.

An ad hoc solution to the first problem is to compensate for the gravitational vector with
the best estimate available. It is well known that in such case, the manipulator in closed
loop with a simple PD controller will exhibit some robustness properties; more precisely, the
position error will converge to a bounded steady state error.

This problem is not exclusive to robot control but it is often encountered in different
industrial processes. A typical and efficient remedy is to use PID control, originally proposed
by Nicholas Minorsky in 1922. In the western literature the first stability proof of a PID
controller in closed loop with a rigid-joints manipulator is attributed to [3]. Unfortunately,
due to some “mathematical technicalities” of the model only local (or at best semiglobal)
asymptotic stability can be proven. (See for instance [11]).

Concerning the problem of unmeasurable velocities, we know at least the following linear
dynamic position feedback controllers which appeared independently [10, 1, 5, 6], see also
[16] where the concept of EL controllers was introduced and which generalizes the results
of the previous references. As in the simple PD control case one can expect that if one
compensates with a constant vector estimate of the gravitational forces instead of the true
one, the manipulator error trajectories will converge to a bounded domain.

Furthermore, as in the case of measurable velocities, one can prove that the steady state
error can be eliminated by adding an integrator. More precisely, the PI2D controller originally
introduced in [15], is based upon the PD structure and the approximate differentiation filter
as proposed in [10], in combination with a double integrator: of the position error and of the
filter output. Unfortunately, due to some technical difficulties, one can prove only semi-global
asymptotic stability, see also [7].

For the case of measurable velocities one can design, with some smart modifications,
nonlinear PID’s which guarantee global asymptotic stability. As far as we know, the first
nonlinear PID controller is due to [9]' which was inspired upon the results of Tomei [21].
Tomei proposed a PD plus adaptive gravity cancellation and used a normalization (firstly
introduced by Koditschek in [12]) to prove global asymptotic convergence. Using the same
normalization idea, Kelly showed in [9] that global asymptotic convergence is still possible
in the case when one compensates for the gravity forces evaluated at the desired position.
The latter allows to reformulate the controller of [9] as a normalized PID.

Later, Arimoto [2] proposed to use a saturated proportional term. This idea helps in
the same way as the normalization to cope with the third order terms which appear in the
Lyapunov function derivative and impede claiming globality.

!Even though Kelly [9] presented his result as an “adaptive” controller, in section 4 it will become clear
why we use the “PID” qualifier.
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As far as we know, there exist no proof of global asymptotic stability of a linear PID
controller in closed loop with a robot manipulator. In this paper we use some well known
results to prove that the set-point regulation can be established by means of a linear delayed
PID controller, that is a simple PD controller to which an integral action is added after some
transient of time. In the sequel we will refer to this controller as “delayed PID”, in short
PI,D.

Also, in case when no velocity measurements are available we show in a similar way that
the integral action of a PI?D controller can be delayed as to guarantee the global asymptotic
stability of the closed loop. This linear controller will be referred to in the sequel as “delayed
PI?D” or in short PI2D.

Our approach is inspired on the ideas of composite control developed in? [14]. The idea
of the composite control approach is simple and practically appealing: to apply in a first
phase, a global control law, which drives the closed loop trajectories inside some pre-specified
bounded set. In the second phase, more precisely at time instant ¢; when the trajectories
are contained in the bounded domain, one switches to a locally stabilizing control law which
drives the tracking error to zero. A successful usage of this approach hinges upon the ability
of designing both controllers in a way such that the bounded set of the first phase, is contained
within the domain of attraction designed for the closed loop in the second phase.

Finally it is also worth mentioning the related but different work [20] where the authors

propose an algorithm to combine global with local controllers with the aim at improving both
robustness and performance.

1.2 Model and problem formulation

The rigid-joints robot kinetic energy is given by T'(q, ¢) = %(jTD(q)q, where ¢ € IR™ represents
the link positions, D(g) = DT(¢g) > 0 is the robot inertia matrix, and the potential energy
generating gravity forces is denoted by U,(¢). Applying the Euler-Lagrange equations we
obtain the well known model

D(q)§+C(q,4)q+ g(q) = u (1)

where g(q) := ’r';—[;g(q), C(q,q)q represents the Coriolis and centrifugal forces, and u € IR"
are the applied torques. It is also well known now (see for instance [17]) that the following
properties hold.

P1 For all ¢ € IR" the matrix D(g) is positive definite and, with a suitable factorization
(more precisely using the so-called Christoffel symbols of the first kind) the matrix
N(q,q) = D(q) — 2C(q,q) is skew-symmetric. Moreover, there exist some positive
constants d,,, and dj; such that

dnI < D(q) < dpyl. (2)

P 2 There exists some positive constants k, and &, such that for all ¢ € R"
0*Uy(q) 3)
o ||’

2Tt is worth mentioning that the name “composite control” has already been used by other authors to
baptize different approaches than the one used in this paper, see for instance [18].

kg > sup

geR™

3
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k’U 2 Sup
geR™

9U,(q) H .
dq

P 3 The matrix C(z,y) is bounded in z and linear in y, that is, for all z € R"

Clz,y)z=C(z,2)y (5)
1C(z,y)|| <Eellyll, ke >0. (6)

In this paper we are interested in the solution to the state and output (position) feedback
set-point control problem of (1) assuming that the potential energy U,(g), is not exactly
known. More precisely, consider the following problems.

Set-point control problem with uncertain gravity knowledge.

Assume that the gravitational energy function Uy,(g) is not exactly known but only its es-

timate Ug(q) is available. Moreover, assume that the estimate of the gravitational forces
2 00

vector, §(q) 5

(q) satisfies

ko > sup [|lg(g)ll, ¥V q € R” (7)
geR™

where £k, is defined in (4). Under these conditions design continuous control laws
(state feedback) u=u(t,q,q)
(output feedback) w=u(t,q,q.), 4. = f(q,4c)

such that, given any desired constant position the error ¢ = q — qq be asymptotically con-
vergent, that is, for any initial conditions

lim G(t) = 0. (8)

t—o0

In particular we are interested in PID-like control laws achieving this goal, more precisely
we seek for controllers of the form

u —kplj — kdq + l/(t), kp, kd >0 (9)
g(Qd): v Ogtéts

v(t)

(10)
—ki [} q(s)ds + g(qa) ¥ t >t k>0

for the case when joint velocities are measured. In the sequel controllers like (9), (10) will
be referred to as PI;D. In the case when velocity measurements are not available we seek for
a position feedback PI2D controller, that is

u = —kpg— ke +v(t) (11)
. bp d
Y = diagq —— . 12
g{p+a}q7 a,b>0, p=— (12)
9(q4), V 0<t<t
v o= (13)

—k; [ (@(s) = 0(s))ds + g(aa) ¥V t >t

4
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The paper is organized as follows. In section 2 we analyze in certain detail some results which
appear fundamental to our main contributions. Section 3 contains our main results, that
is, we show that the PI;D and PI2D controllers solve the global set-point control problem
with uncertain gravity knowledge. In section 4 we discuss the advantages of our results over
the mentioned nonlinear PID’s. Section 5 presents a comparative simulation study of our
contributions against previous results. We finish the paper with some concluding remarks
in section 6.

Notation. In this paper we use ||-|| for the Euclidean norm of vectors and matrices. We
denote by k. and k,,, the smallest and largest eigenvalues of matrix K, and similarly for
any matrix M € R™".

2 Preliminary results

In order to put our contributions in perspective and to introduce some notation used in the
sequel, we find it convenient to describe in more detail some of the above-mentioned PID and
PD controllers. Even though some of these results are well known or can be easily derived
they are fundamental to our main contributions.

2.1 First case: measurable velocities

Based on the results of [19] and [22] we present below a simple robustness result vis-a-vis
the uncertainty of g(q).

2.1 Proposition. Consider the robot manipulator model (1) in closed loop with the PD
control law

u = — p(j—qu'-l—ﬁ(qd). (14)
Let k,, > kg, then there exists a unique equilibrium point (¢,q) = (0,¢;) for the closed
loop system. The point (¢,q) = (0, ¢s) is globally asymptotically stable for (1), (14) and the
steady state error §s = qs — qq Satisfies

2k,
A — 15
11l P (15)

Proof. The closed loop equation (1), (14) is given by
D(q)j + C(q,4)q + 9(q) — 9(qa) + Kpq + Kqg = 0. (16)
System (16) is a Lagrangian system with potential energy

A - T 1+
Ui(q) = Uy(q) — Uyg(aa) — G 9(aa) + qu i

It is well known that (16) has its equilibria at the minima of Ui(¢). To evaluate these
equilibria we calculate the critical points of U;(q) say, all points ¢ = ¢, satisfying

aa—il(qs) =0 & K,(gs —qa) + 9(¢5) — §(ga) = 0. an

5
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moreover the equilibrium ¢ = ¢; is global and unique if &, > k, where k, satisfies (3). The
global asymptotic stability result is then established with help of the Lyapunov function
candidate

Vila,d) = 507 Dla)i + Ui(a) (13)

which corresponds to the total energy of the closed loop system (16), hence it is positive
definite and moreover has a global and unique minimum at (¢, ¢) = (0, ¢;) if k,,, > k,. The
time derivative of V; along the trajectories of (16) is

Vi(d) = —¢" Kaq.

Global asymptotic stability of the equilibrium (¢,¢) = (0, ¢s) immediately follows using
Krasovskii-LaSalle’s invariance principle. Finally the bound for the steady state error
defined in (15) is easily derived from (17) using the triangle inequality and the conditions
on k, given by (7), (4). ]

However, as it is well known the steady state error ¢, can be eliminated by the use of
an integrator, this result was firstly proved in [3]. Reformulating (for further analysis) the
original contribution of [3] we have the following

2.2 Proposition. Consider the dynamic model (1) in closed loop with the PID control law

—K,— Kqg+v (19)
7[{16, l/(o) =1y € R". (20)

where K, K4, and K; are diagonal positive definite matrices. If K, is sufficiently large then

the closed loop is locally asymptotically stable at the origin = collq, ¢, 7] = 0. (]
Proof. Choose any positive definite diagonal matrix K, and let
Ao, 1
Kp - Ap + _Ki (21)
€

where ¢ > 0 is a (small) constant to be determined, clearly K, is also positive definite and
diagonal for any £ > 0. Then the error equation (1), (19), (20) can be written as

M| =

D(q)j+ C(q,4)4 + 9(q) — 9(qa) + K,§ + Kaf = —
v=—Kq (23)

KiG+7 (22)

where we have defined 7 2 v — 9(qq) in order to compact the notation. A simple inspection
shows that the unique equilibrium of the system (22), (23) is § =0, # = 0 and ¢ = 0. Now
we proceed to analyze the stability of the closed loop system, for this we use the Lyapunov
function candidate

N . 1 N T VI U S
Va(4:4:7) = 54" Di+Uy = Uy, =4 gat 50 K d+ 5 (- K +0) K (- - Kig+7)+¢4" D
(24)

where we have dropped the arguments and defined U,, e Uy(qa), 9a 2 g(qa) to simplify the
notation. It is worth mentioning at this point that, Lyapunov candidate functions with cross

6
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terms as V3 have been widely used in the literature starting probably with [12] (see also
[23, 11, 2, 15] and references therein).

We find it convenient to this point to split the kinetic, and part of the potential energy
terms as

Q'K = (M+A+XA3)i K
i'D(@)q = (M+A+Xs)q D(g)g

with 1 > A\; > 0,47 =1, 2, 3. Then one can show that if

ko €2d,,
t, > mox {2, 2], (25)
AL A

then the function V5(q, ¢, 7) satisfies the lowerbound:
L. A3 S A PR
Va(G, 4,7) > quK,’,q + %qTDq (26)
hence it is positive definite and radially unbounded. The motivation for this partitioning of
the energy terms will become more evident in the sequel. Next, using the well known bounds

(6) and

lg(a) — glaa)ll < kyllgll (27)

we obtain that the time derivative of V5(q, ¢, 7) along the trajectories of (22), (23) is bounded
by

S € _ . , 1 -
VQ(q’ q) < - (kdm - gde - Ekc ”(I” - EdM) Hq”2 —€ <kpm - kg - ide> ”q”2 (28)

which is negative semidefinite for instance if

kdm > E(de + QdM) (29)
1
o > kgt hdu (30)
N kq
< -, 1
il <t @)

Local asymptotic stability of the origin « = 0 follows using Krasovskii-LaSalle’s invariance
principle. Furthermore one can define a domain of attraction for the closed loop system (22),
(23) as follows. Define the level set

Bs £ {z e R : Vy(x) < 6} (32)

where § is the largest positive constant such that VQ(I) < 0 for all z € B;. Since V5 is
radially unbounded and positive definite, and VZ(I) < 0 for all z € By, this level set is
positive invariant (i.e. if x(0) € Bj then x(t) € B; for all t > 0) and qualifies as a domain
of attraction for z. |
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2.2 Second case: unmeasurable velocities

In this section we briefly present some similar results to those contained in Propositions 2.1
and 2.2 for the case when only position feedback is available. First, based on the results of
Kelly [11], consider the following

2.3 Proposition. Consider the dynamic model (1) in closed loop with the PD control law

u = —K,q— Kq+§(qa) (33)
Ge = 7A(‘]c + BQ) (34)
U = q.+ Bg (35)

where A, B, Kq and K, are diagonal positive definite matrices. Then, if k,, > kg, the
equilibrium point (¢, 9, ¢) = (0, 0, ¢;) where q, satisfies (15), of the closed loop system is
globally asymptotically stable. O

Proof. The proof can be easily given along the lines of the proof of Proposition 2.1. First
we write the error equation (1), (33)-(35) as

D(q)i+C(q,4)q + 9(q) — 9(qa) + K,q + Kq9 =0 (36)
0 = —AY + Bq. (37)

Then, consider the Lyapunov function candidate
. . 1
Vi(d,7,q) = Vi(g,q) + 519%[13*119 (38)

which is positive definite and radially unbounded with a global and unique minimum at
collg, 9, ¢l = col[0, 0, g,] if k,,, > ky. Its time derivative along the trajectories of (36), (37)
is

V3(9) < 9" KBt A,

then global asymptotic stability follows by invoking Krasovskii-LaSalle’s invariance principle
and using standard arguments. ]

The proposition above ensures the global asymptotic convergence of ¢ — ¢s as t — oo
where ¢ satisfies (15). However, as in the case of measurable velocities, one can eliminate
the steady state error by using PID control. More precisely, in [15] we introduced the
PI2D controller which establishes semi-global asymptotic stability with uncertain gravity
knowledge. For simplicity and for the purposes of this paper we formulate below a proposition
which follows as a corollary of the main result contained in [15] (see also [7]). The result
below guarantees local asymptotic stability.

2.4 Proposition. Consider the robot model (1) in closed loop with the PI?D control law

u = — p(j — I{dﬁ +v

v = —Ki(G—9), v(0) =vy € R" (39)
Ge = 7A(‘]c +Bq)

¥ = q.+ Bg.
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Let K,, K;, Kq, A and B be positive definite diagonal matrices where B is such that
BD(q) = D(q)B > 0. Under these conditions, we can always find a sufficiently large propor-
tional gain K, (or sufficiently small K;) such that the equilibrium & e collq, ¢, v, V] =01is
locally asymptotically stable. O

Proof. Below we give an outline of the proof proposed in [15], which we will use in the
sequel for our main results. First, the error equation (1), (39) can be written as

D(q)i + C(q,4)q + 9(q) — 9(qa) + K,q + Ko = v — EKZ-@ (40)
v=—K;(qg—1) (41)
9= —AY + Bg (42)

where K is defined by (21).

From [15] we know that the Lyapunov function candidate
1
‘/21(177 q.7 79) = ‘/Q(qa q.7 17) + éﬂTKdB7119 - 519TD(q)q

is positive definite and radially unbounded with a global and unique minimum at the origin
if € is sufficiently small. For the sake of completeness we rewrite the conditions derived in
[15] with a slight modification convenient for the purpose of this paper. Let us partition the
term 9T KyB™19 = (1 + p2)9 " KB~ where 0 < py + po < 1, p1; > 0 with i = 1,2. With
these definitions, one can prove that if (25) holds and

kg, Aopin | M/
<< dm 2N2> (43)

darbyr
then Vi(q, ¢, ) satisfies the bound

A A
Vi(@,0.9) 2 51 D+ 547K a+ 50T KaB . (44)
Furthermore, it has also been shown in [15] that if the position error § and the filter output

¥ satisfy

bynd
9 gl < =™ 45
91 + ] < 22+ (15)
and if € > 0 is sufficiently small to satisfy
k, —kg)kd,, am kg, Gmdy  ka, amn,
¢ < min (Fp, = Fg)ka . dn @ . dm @ (46)
s [, + kay, +Eg) 20mdu]?” 2barka,,

then there exist strictly positive constants 3;, £, and (3 such that the time derivative of V}
along the closed loop trajectories (40), (41) is bounded by

Vila,¢.0,7) < =B dll” = Bz ldl* — Bsll9|I*. (47)

Since V} is positive definite and Vi is locally negative semidefinite, local asymptotic stability
of £ = 0 can be proven by invoking Krasovskii-LaSalle’s invariance principle and using
standard arguments. Furthermore a domain of attraction for system (40), (42) with state

9
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& = collg, ¢, 9, 7] can be defined similarly as in the proof of Proposition 2.2 as the level
set
A
B, = {¢ e R™: Vi(¢) < p} (48)

where p is the largest positive constant such that V4(§) < 0 for all £ € B,. The proof
finishes using similar arguments as in the proof of Proposition 2.2. |

We are ready now to present our main results: global asymptotic stability with PID and
PI%D control.

3 DMain results

In this section we present our main results, which leans on the results derived in Propositions
2.1 - 2.4 and the composite control approach proposed in [13]. We show that one can achieve
global asymptotic stability with PID and PI?D control by simply delaying the integral action.

3.1 First case: measurable velocities

3.1 Proposition. Consider the robot manipulator model (1) in closed loop with the PI;D
control law

u = —K,q— Kqg+v(t) (49)
9(qa), V 0<t<t,
v(t) = (50)
—K; [} d(s)ds +g(ga) ¥ t>t,

where K,, K4, and K; are diagonal positive definite matrices. There always exist a finite
time instant t; > 0, a sufficiently large proportional gain K, and/or a sufficiently small
integral gain K;, such that the closed loop system is globally asymptotically stable at the

origin x = collq,q,v) = 0. O

Roughly speaking, in its first phase (that is 0 < ¢ < #;), the delayed PID of Proposition
3.1 collapses to the robust controller of Proposition 2.1 which guarantees global asymptotic
stability of a different equilibrium than desired but it also guarantees that the steady position
error is confined to the closed ball of radius determined by (15). In its second phase (that is,
for all ¢ > ¢,), the delayed PID collapses to the “conventional” PID controller of Proposition
2.2 with initial conditions zq = z(¢,). From the proof of Proposition 2.2 we know that if the
initial conditions xo are small enough then the trajectories x(t) are asymptotically stable
(hence ¢(t) — qq as t — oo). Thus the main difficulty in the proof of Proposition 3.1 is to
show that there exist suitable gains K, and K; such that the bounded set of convergence
defined for the first phase is contained in the domain of attraction defined for the second
phase. The latter implies that, before the integral action is incorporated (i.e. for all ¢ < t,),
the delayed PID drives the generalized positions and velocities into the domain of attraction
B;s in finite time. From this the existence of a finite start-integration time ¢, to guarantee
GAS, follows. We prove below that this is the case.

10
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3.2 Remark. It is important to remark that even though the (delayed) PID controller
proposed above is not smooth, it is continuous. This depends of course on the correct
setting of the initial conditions of the integrator, that is v(¢;) = §(qq)-

Proof of Proposition 3.1. From Proposition 2.1 it follows that during the first phase of
the delayed PID, (G, ¢, 7) = (gs, 0, §(qa) — g(qa)) as t — oo. Furthermore, §s satisfies the
upperbound (15). Define the set

A . 2k, . -

re{oem i< 22 =0, o <2k ),
Pm

from the discussion above, we must find a constant § large enough so that I' C Bs where

By is defined in (32), henceforth a suitable time moment ¢, to guarantee GAS of the closed

loop. Notice that in order to give an explicit value to d in terms of the control gains, V(z)

is needed, however the potential energy term Uy (g) is not known explicitly. Therefore, let us
define

€
2k

N | . . N T
Varr (4, 4,7) = 54" D + 5 (kyy, + ko) all* + 1171 1141l + 171" +eq D (51)

2 2

im
and the level set A
B ={z e R™ : Vay(z) <6}
It is not difficult to see that Vay(z) > Va(z) hence BY C B;. Now we look for a § such that

I' € B¥ C B;, it suffices that the four corners of the “plane” I' be contained in B} hence,
using (51) and (15) it is sufficient that

2%, \?  4k2  2ek?
_) v 8 v (52)

1
0> —(k k .
2( o T g) (kpm kpm " kim
In words, the lower-bound on ¢ given above, ensures that the delayed PID controller in its
first phase will drive the trajectories into the domain of attraction Bjs in finite time. The
second requirement on J is that V5 be negative semi-definite for all x € Bs, hence we proceed
to calculate an upperbound for § so that Vo(B;) < 0.

From the proof of Proposition 2.2 (see (26)) we know that (25) implies that Va(z) >
Vo (2) where we defined

A A ~
Vam(®) = by, Nl
Define the set By 2 {z € R™ : Vy,(x) < 6}. With these definitions we have that B C B}
hence it suffices to prove that Vao(By*) < 0. Notice that among the three sufficient conditions
(29)-(31) to ensure Vy(z) < 0, the only one which affects the definition of the domain of
attraction (hence of ¢) is (31) thus, it should hold true that

26 k3
< e (53)
Askp, - 4e?k2
In summary, recalling (52) it is sufficient that J satisfies
1 2%, \?  AkE  2ek2 Ask! k2
_ k k —'U v v 6 Pm m 4
st () 2 <o < 2 o

11
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to ensure that the trajectories z(t) converge to the domain of attraction Bj in finite time.
Finally, to ensure global asymptotic stability of the origin it suffices to choose the time t;
as the first time moment when the “initial conditions” z(ts) € Bs that is, ts : Va(x(ts)) < 0
however, since V5(z) is not accurately known consider the function

|
>

| - - eky T
77D+ g+ k) 1+ 26, (1l + 52 ) + <7D

1
2 iv

To this point, we recall that for all ¢ < ¢, the PI;D controller is a_robust PD with 7 =
§(qa) — g(qq) = constant, hence ||7|| < 2k,. From this it follows that Vau(2(t)) > Vapr(2(2))

for all t < t;. Thus, the proof is completed by defining the start-integration time as
ts : Vour(z(ts)) <6 (55)

and noticing that (54) holds for sufficiently small &, hence due to (21) for sufficiently large
k,,. and/or sufficiently small k;,, < e.

Summarizing all conditions, we draw the following corollary from the proofs of Propo-
sitions 2.2 and 3.1. This gives an insight to the practitioner on how to choose the control
gains and the switching time ¢, to guarantee GAS of the origin.

3.3 Corollary. Counsider the dynamic model (1) in closed loop with the PI;D control law
(49), (50). Let K,, K4, and K; be diagonal positive definite matrices, satisfying

kdm > 6(/€dM + QdM) (56)
ky e2d k
k! > max<{ 2 Mo dut
Pm {/\17 )\2>\1 s vg + 9 ; (57)

and (54). Define the start-integration time ts as in (55). Under these conditions, the closed
loop system is globally asymptotically stable at the origin.

The first two parts of condition (57) ensure that Vi(z) > Vi, (x), Va(z) is positive definite
and radially unbounded. Then, condition (56) and the third part of condition (57) imply
that Vi(z) is negative semi-definite. Thus all sufficient conditions derived in the previous
proofs have been collected in the corollary above. In order to satisfy them one may proceed
as follows:

1. Pick any ¢ and ); in the interval (0, 1) satisfying A\; + A2 + A3 < 1 and any proportional
and derivative gains K), and K, satisfying (56) and (57).

I

2. Pick any “small” integral gain K; and check whether there is a 0 satisfying (54)
(21).

not, then pick a smaller ¢ hence either larger £, or smaller k;,, according with

3. Repeat steps 1 and 2 until all conditions are satisfied. Finally, define ¢, as in (55).

Thus all conditions can be easily verified and the controller gains can be computed for any
initial conditions x(0).

12
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3.2 Second case: unmeasurable velocities

3.4 Proposition. Consider the robot model (1) in closed loop with the PI2D control law

u o= —Kyj— K+ v(t) (58)

G = —Alg.+ Bq) (59)

9 = q¢.+Bq (60)
9(qa); V 0<t<t,

v = (61)

— K [, (a(s) = 9(s))ds + §aa) ¥ =1,

Let K,, K;, Kq, A and B be positive definite diagonal matrices where B is such that
BD(q) = D(¢q)B > 0.Under these conditions, we can always find a finite time instant t; > 0,
sufficiently large gains K, B and/or a sufficiently small integral gain K; such that the closed

loop system is globally asymptotically stable at the origin & = collg, q,9, 7] = 0. d

Proof. The proof follows along the lines of the proof of Proposition 3.1, based on the
results obtained in Propositions 2.3 and 2.4. We start by defining the set

A 4n ~ ka . ~
2 feemn < 2 = o=o. o) <2m),

Pm

and denoting the level set
A n
B ={£eR™ : Vin(€) < p}.
where 1
Vine (€) £ Vanr(z) + 50 KaB 9 — 207 D,

Notice from the proof of Proposition 2.4 that Vi (§) > Vi(§), hence B)' C B,. Notice also
that Vi (I") = Vo (T) hence T' C B)' if p satisfies a similar bound as (52). We only need
to define an upperbound for p which ensures that Vi(B,) < 0. Let

1>

k
Vin(€) 2 V() + 520 0] (62)
M

and from (44) we have that Vy(§) > Vi, (€) if condition (43) and (25) hold. Consider next
the condition established by inequality (45), then analogously to (53) we have that

2 2 72

max p , 2pbm < bin T

/\3]§;m Mlkdm 16]€g

and (46) imply that V;(€) < 0 for all £ such that Vi, (£) < p, hence also for all £ € B, In
summary, it is sufficient that p satisfies

1 2%, \> 4k 2k b2z, Asky, tika,,
gttt (5] 45 <o e {(97) ()} @

m

to ensure that the delayed PI?D controller in its first phase drives the trajectories £(t) into
the domain of attraction defined for the second phase. Hence there exists a finite t; > 0

13
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ensuring GAS of the origin £ = 0. As in the proof of Proposition 3.1, considering that for
all ¢ < tg, the gravity compensation error ||7|| is a constant bounded by 2k,, the instant ¢;
can be chosen as

ts : Vin(z(ts)) < p (64)

where

k:

Tm

_ Al o1 N N ek, .1 _ .
Vi (z) = 5qTDq + 5(1% + k) lgI* + 2k, <||q|| + > +¢¢'Dg + 519TKdB Y9 — e Dg.

The proof finishes noticing that (63) holds for sufficiently large b, and sufficiently small &,
hence due to (21) for sufficiently large k,, and/or sufficiently small k;,, < e. ]

3.5 Remark. Notice from (64) that the switching time ¢, does depend indeed on the unmea-
surable velocities (ts). Hence, the precise theoretical result which is contained in Proposition
3.4 is that “there exists a start-integration time ¢, such that the origin £ = 0 is GAS”. For
practical purposes however, observe that the velocity measurements are not used in the
controller equations (58) — (61). As it can be seen from the proof above, in practice the
start-integration time ¢; can be computed with knowledge of the best estimate available of
the velocity measurement at a precise instant. For instance any ¢, such that Vi (z(t,)) < p
where we redefined

Fiare(t)) £ 50 Die) + b + ) late) I+ 28, (e + 32 + it 7D

. (65)
and §(ts) is the best estimate available of ¢(t;), that is, at the precise instant ¢;. Such
estimate can be computed for instance from the last two position measurements prior to the
moment ;.

We finally draw the following Corollary from Propositions 2.4 and 3.4.

3.6 Corollary. Consider the dynamic model (1) in closed loop with the PIZD control law
(58)-(61). Let K,, K4, and K; be diagonal positive definite matrices with K, defined by
(21), satisfying (43), (46), and (63). There exists time instant t, (for instance given by
(64)) such that the closed loop system is globally asymptotically stable at the origin £ =
collq, ¢,9,7] = 0.

For practical applications however one may choose the start-integration time ¢; according to
(65). It is important to remark that the semiglobal stability results reported in [15] and [7]
have the same practical drawback: the initial (unmeasurable) velocity must be known.

4 Discussion

As it is clear now from the proof of Proposition 2.2, what impedes claiming global asymptotic
stability for a PID controller is the presence of the cubic term ¢k, ||| ||¢]|* in the Lyapunov
function derivative V. As mentioned in the introduction, this technical difficulty can be
overcome by making some “smart” modifications to the PID control law, leading for instance,
to the design of nonlinear PID controllers.

14
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To the best of our knowledge, the first non-linear PID controllers appeared in the liter-
ature are [9] and [2]. In this section we discuss these controllers and show that seemingly
these results cannot so easily be extended to the case of unmeasurable velocities.

4.1 The normalized PID of Kelly [9]

In order to cope with the cubic term ek ||| [|d]|* in (28), Kelly [9] has proposed the “adap-
tive” PD controller

u=—Kj— Ku+ ®(qa)0 (66)
together with the update law
= o 1 € (j
6=6=—"d(q)" [ + 2 } 67

where 5 > 0 is a small constant. Kelly [9] proved that this “adaptive” controller in closed
loop with a rigid-joint robot results in a globally convergent system. However, since the
regressor vector ®(qq) is constant the update law (67), together with the control input (66)
can be implemented as a nonlinear PID controller by integrating out the velocities vector
from (67):

b= o) {~+/t cod d}+é(0) (68)
= ——®\ q T aT .
v o L+ |ldl

Notice that the choice K, = K, + K;, with K; = %@(qd)q)(qd)T, yields the controller imple-
mentation

v = —K,g—K¢j+v (69)
. q
v = —gKi——, v(0) =y, € IR". 70
ST TR 7
Since controllers (66), (68) and (69), (70) are equivalent, following the steps of Kelly [9] one

can prove global asymptotic stability of the closed loop system (1), (69)—(70). Evaluating
the time derivative of the Lyapunov function candidate

. 1, . 1 _ - )
Vk(q,q,Zk)=5qTD(q)q+Ug(q)—U( aa)— ' 9(qa)+ qTK’q+§szK,- Y2p+exd D(q)g. (1)

2

where we have defined

(72)

1
2 = —KiG+ 7, (73)

we obtain that

k
(K —ky— 2 ]

2
(74)
however, notice that the normalized term ek, ||| ||l < k.||d]|>, hence Vi(q, q, z) is neg-
ative semi-definite for sufficiently small ¢y. Global asymptotic stability follows by invoking
Krasovskii-LaSalle’s invariance principle.

e €0 cok,
V(.6 2) < — (/c el eudsy ) gl

1+||\ 1+|| |

15
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4.2 The saturated PID controller of Arimoto [2]

An alternative trick to achieve GAS is the scheme of Arimoto [2] who proposed the nonlinear
PID:

U S .
u = —K, sat(q) — ng‘q — Kyq+v (75)
v o= —K,q, V(O) =1y € R™. (76)

where the saturation function sat : IR" — IR" satisfies sat(y)T¢ > 0 for all ¢y # 0,
sat(0) = 0 and it is bounded as || sat(¢)|| < 1. Arimoto® [2] proved that if &k, > k,, and
K; is sufficiently small, the closed loop is globally asymptotically stable.

The key idea used in [2] is to dominate the cubic terms in the Lyapunov function derivative
by means of the saturated proportional feedback in (75). More precisely, it can be easily
proven that the time derivative of the Lyapunov function

Va(d, 4, 2) = %q’TD(q)dJrUg(q)—U(qd)—dTg(qd)Jr%c}TK,’,q~+%ZTKZLZ+6 sat(q) ' D(q)g (77)
where ¢ > 0 is a small constant and z is defined by
2Ep— %Ki(j (78)
(78), along the trajectories of the closed loop system (1), (75)-(76) is bounded by
V. 2) < ~(hu = che | 504(0)] = 2 — k) [41° = =(K), — by — Shay) sat(@)? (79

however, notice that the term ek, || sat(§)| [|dll* < ke||dl|>, hence V(q,q,z) is negative
semi-definite for sufficiently small € and global asymptotic stability follows by observing
that sgn( sat(¢)) = sgn(¢) and invoking Krasovskii-LaSalle’s invariance principle.

Remarks.

1. Besides their complexity, a practical drawback of the nonlinear PID controllers of [2]
and [9] with respect to the controller of Proposition 3.1 is that one may expect from the
expressions of the Lyapunov derivatives V, and Vk, that they converge slower than our
linear PI;D controller. More precisely, notice that the saturation and normalization
used in those approaches clearly attenuates the growth rate of —V, and -V} with
respect to ||g||.

2. In contrast to this, our approach guarantees global asymptotic stability with a simple
linear PID as it is used in many practical applications. Roughly speaking the user can
apply a simple robust PD controller as that of Proposition 2.1 and start the integration
effect when the generalized velocities and the positions are small.

3. From a theoretical point of view, the trick of introducing cross terms in the Lyapunov
function is not new [12, 23] however, the idea of using a saturated proportional feedback
in (75) is due, as far as we know, to [2]. This trick in combination with the saturated
cross term used in V, were fundamental to prove GAS. The same observation is valid
for the approach of Kelly where the normalization plays a crucial role.

31t is worth mentioning that in [2], Arimoto used a saturation function which is a particular case of sat
considered here, however this point is not fundamental for the validity of the result.

16
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4. Even though these “tricks” can be efficiently applied to bound the “position dependent”
cubic terms ek, sat(qN)('jZ, and ¢g %ﬁmij?, when velocity measurements are supposed un-
available, it is not possible to appiy the same approaches. To illustrate this idea, let —
without loss of generality — sat (1) = tanh(J) then, if one uses the saturation a la Ari-
moto in the PI*D scheme, seemingly the saturated cross term & tanh(d)) " D(q)q should
be used in the Lyapunov function candidate V;, instead of 9T D(g)g. However, this
yields the term —eb,,d,, || sech? (1) || 1'12 in the Lyapunov function derivative, instead of

fabmdm(f and since || sech? (1)) || vanishes as ¢ — oo the Lyapunov function derivative
will be locally negative semidefinite. Similar conclusions can be drawn if one tries to
use the normalization used in [9]. For this reason there is not much hope to extend
the approaches of [2] and [11] to the output feedback case. For its simplicity and the
arguments exposed in Remark 3.5, our result of Corollary 3.6 seems more promising
for practical applications.

5 Simulation results

To illustrate the working of the controllers derived in this paper, simulations have been
carried out using MATLAB™. We compared the delayed PID controller derived in section 3.1
with the normalized PID of Kelly [9] and the saturated PID controller of Arimoto [2]. For
our simulations we used the model presented in [4], where

D) = 8.774+1.02cosqa 0.76 4+ 0.51 cos qo
D= 1 076+ 0.51 cos go 0.62

0

7.6sinq; + 0.63sin(q; + ¢2)
0.63sin(q; + ¢2)

Cle.)) = o.msinqzhfa f<q'1+q'z>]
9(q) = 9.81{

For this system we have d,,, = 0.45, dys = 9.96, k. = 1.53, k, = 80.7, k, = 81.2. We assume
to have no better estimate of the gravitational forces vector than g(q) = [0,0]".

We considered the problem of controlling the manipulator from the position [2,0]" to-
wards [1,1]7. For this we used K, = 2401, K4 = 751, K; = 1501, where K = 1201. From
(21) it follows that e = 1.25. From (25) we see that V5 > 0 and by choosing 6 = 290 we meet

(52) and are guaranteed to enter the set BM = {¢ € R™ : Vyy(x) < 6} and therefore the
existence of ¢ as defined in (55) is also guaranteed.

By choosing Ay = 0.7, A3 = 0.2 and A3 = 0.1 we see from (25) that
Va(d.4,7) = 6d]|”
so that from V5(q, ¢, 7) < § we can conclude that ||g]| < 7, which results into
Ve < —2.2/|4|* - 1.6]|q]*.

Therefore, if we start integrating as soon as we enter B we have asymptotic stability of
the second phase and global asymptotic stability of the PI;D controller.
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From section 4 we know that our selection of gains also guarantees global asymptotic
stability of the normalized PID of Kelly [9] (we use ¢g = 1) and the saturated PID controller
of Arimoto [2].

The resulting performance is depicted in Figure 1.

1
05 - P|d|||3
: - K
1o’ A:niloto — PP
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0 Arimoto
0 2 4 6 8 10 6 8 10
t t
40
60 I~ Lo
o P
: N - Kelly
— PID 20 N
- 20 ? d N » : Arimoto
0\ G - Kglly 10}
ool Arimoto
0
-40
2 4 6 8 10 0 2 4 6 8 10
t t
T T T
e PIdD
- = Kelly n
Arimoto ,
| | | | | |
4 5 6 7 8 9 10

Figure 1: A comparitive study

We see that the partially saturated proportional term leads to a larger overshoot for Ari-
moto’s controller [2], whereas the saturation in Kelly’s controller [9] leads to a slower con-
vergence of v to g(gg). We can also see the delayed integration (starting at ¢; = 0.2533) of
the PI;D controller.

To make not only a qualitative but also a quantitative comparison between the three
controllers, we looked at the expression

ise(t) 2 / 4(s)Tq(s)ds
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Then we see that Arimoto’s controller [2] all the time has the largest ise due to the
partially saturated proportional term. We also see that during the first second, the ise of
Kelly’s controller [9] is a little bit lower than the ise of our delayed PID controller, however,
due to the saturation in the integral part the final convergence of Kelly’s controller is slower,
resulting into a larger ise.
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Figure 2: Delayed PI?D controller (first 25 seconds)

In case of unmeasurable velocities we also consider the problem of controlling the manipulator
from the position [2,0]" towards [1,1]T. For this we used K, = 2401, K, = 751, K; = 21,
A =151, B = 200/. The smaller value for K; in comparison with the state-feedback case
is due to the more restrictive inequalities. By choosing K, = 100/ (which results into
€ = 0.0143) we have that Vj; > 0, and using A; = 0.82, Ay = 0.08, A3 = 0.10, p; = 0.95,
o = 0.05, (62) becomes

Vi (@, 4,9) > 5/q|* + 0.1781|9|? (80)
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By choosing p = 275 we meet the left hand side of (63) and are guaranteed to enter the set
B)' and therefore the existence of t, as defined in (64).

From V,,, < p we conclude that

llall + [[9]] < 40
so that .
_ 4]l 0.3974 0 —1.0675 4]l
Vi< —1| 4l 0 0.2679 —0.6697 4]l
19| —1.0675 —0.6697 4.5535 19|

Therefore if we start integrating as soon as we are in B,ﬂ” we have asymptotic stability of
the second phase and global asymptotic stability of the delayed PI?D controller.

As already pointed out in Remark 3.5 the problem is to determine when we are in B;,V[,
since we need velocity measurements for determining this. However, we are guaranteed that
during the first phase we converge to a fixed point that is contained in Bé” .

In Figure 2 we can see the behaviour of the signals during the first 25 seconds of sim-
ulation. It can be seen that at ¢ = 25 we have almost converged a fixed point. Therefore,
we decided to start integrating from ¢ = 25 on. The resulting overall performance of the
delayed PI2D controller is depicted in Figure 3. We can see that the integrating that started
at ty = 25 results into zero position error.

1
0
O n
(///—} -0.5
— N
jon o
-1 4 1
-2 -1.5
0 50 100 150 200 250 0 50 100 150 200 250
t t
8
60 6
A0 1 o4
> >
2
20
0
0 -2
0 50 100 150 200 250 0 50 100 150 200 250
t t

Figure 3: Delayed PI2D controller
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6 Concluding remarks

We have addressed the practically important problem of global asymptotic stabilization of
robot manipulators with PID and PI2D control, i.e. the problem of set-point control with
uncertain gravity knowledge and both by state and output feedback. Our main contribution
is the proof that GAS is possible with linear PID and PI?D controllers by simply delaying
the integral action. We have called our new controllers PI;D and PID.

From a theoretical point of view we have shown for both cases state and position feed-
back, that there exists a “start-integration time” ¢; such that GAS is guaranteed. From
a practical point of view, we have given criteria on how to choose the instant ¢, and the
control gains. Unfortunately, in both cases the time ¢, depend on the whole state however
since the PI2D does not use velocity feedback, this drawback can be overcome in practice
by using an estimate of the generalized velocities at the precise instant ts. Finally, we have
shown in simulations the potential advantages of our schemes vis-a-vis existing nonlinear
PID controllers.

From a theoretical point of view, the technique of switching controllers has recently
become very popular (see e.g. [20, 14, 8] and references therein) in the nonlinear systems
literature. Our results illustrate the impact that this theory has in practice, and an important
issue of future research is how to combine local and global controllers avoiding the fact that
the switching time ¢; depend on unmeasurable state variables.
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Chapter 9. Adaptive and filtered visual servoing of planar robots

External sensors such as visual systems enlarge th
potential applications of actual robot manipulators
evolving in unstructured environments. Although this
fact has been recognized decades ago, it is until recen
years that its effectiveness has reached the real worl
applications thanks to the technological improvement
in cameras and dedicated hardware for image process;
ing (Hashimoto, 1993; Hutchinsat al., 1996).

This paper deals with a fixed camera configuration
for visual servoing of robot manipulators. Most pre-
vious research has been started with the optics of the
kinematic control where the robot velocity control (in
joint or Cartesian space) is assumed to be compute
in advance, and therefore the robot dynamics can be
neglected (Alleret al,, 1993; Castad and Hutchin-
son, 1994; Chaumettt al,, 1991; Espiau, 1993; Fed-
demaet al, 1991; Hageret al, 1995; Nelsonet
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Abstract: In this paper we address the visual servoing of planar robot manipulators with
a fixed—camera configuration. The control goal is to place the robot end-effector over a
desired static target by using a vision system equiped with a fixed camera to ‘see’ the
robot end-effector and target. To achieve this goal we introduce a class of visual servo
state feedback controllers and output (position) feedback controllers provided the camera
orientation is known. For the case of unknown camera orientation a class of adaptive visual
servo controllers is presented. All three classes contain controllers that meet input constraints.

Keywords: Visual servoing, robotics, stability

1. INTRODUCTION al., 1996; Mitsudaet al, 1996). This approach is an
example of a mechanical control system in which a
%inematic model is used for control design, that is,
the velocity of the system is assumed to be a direct
input which can be manipulated. In physical systems,
owever, actuators exert forces or torques. This con-
rol philosophy is certainly effective for slow robot
motion but its application is of a limited value when
high speed motions are demanded.

We focus the visual servoing problem from an auto-
matic control point of view by considering the full
robot nonlinear dynamics with the applied torques
as the control actions, and a rigorous stability ana-
Jysis is given for an appropriate (adaptive) set point
controller. Also, we are interested in simple control
schemes avoiding the common procedures of camera
calibration, inversion of the robot Jacobian and com-
putation of the inverse kinematics. Previous efforts in
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9.2. Problem formulation, preliminaries and notation 121

this subject have been reported in (Coste-Mané&tre For the purposes of this paper we consider a planar
al.,, 1995; Kelly, 1996; Kellyet al, 1996; Lei and two degrees of freedom robot arm. For convenience
Ghosh, 1993; Miyazaki and Masutani, 1990). we define a Cartesian reference frame anywhere in the
The main contributions of our work are extensions of robot base.

the results in (Kelly, 1996) to the cases where velocity

measurements are not available and the camera ori-

entation parameter is unknown. The first problem is 2 2 Output equation

solved invoking the (by now) standard "dirty deriva-

tive” solution. However, the later problem involves a We consider a fixed CDD camera whose optical axis is
nonlinearly parametrized adaptive system, —a situationPerpendicular to the plane where the robot tip evolves.
which is essentially unexplored in the field— hence The or_lentanon of the camera with respect to the robot
special analysis and synthesis tools have to be deframeis denoted by. ]

veloped for its solution. Furthermore, we provide a e image acquired by the camera supplies a two—
simple common framework to design standard propor- dimensional array of brightness values from a three—
tional or saturated controllers. dimensional scene. This image may undergo various
The organisation of this paper is as follows. Section 2 tyPes of computer processing to enhance image prop-
contains the problem formulation, preliminaries and €rties and extract image features. In this paper we
notation. In section 3 we introduce a class of visual a8ssume that the image features are the projection into
servo controllers which includes the controllers re- the 2D image plane of 3D points in the scene space.
ported in (Coste-Manieret al, 1995; Kelly, 1996;  The output variablg € [k” is defined as the position
Kelly et al, 1996). In section 4 we derive a class of (in pixels) of the robot tip in the image. The mapping
adaptive visual servo controllers in case the camera(fom the joint positionsy to the outputy involves
orientation is unknown. In section 5 we present a class® igid body transformation, a perspective projection
of visual servo controllers in case we have no velocity @1d @ linear transformation (Feddereal, 1991;
measurements available. Section 6 contains our conHutchinsonet al, 1996). The corresponding output

cluding remarks. equation has the form (Kelly, 1996)
y = ae”"[k(q) — V1] + 02 (3)

2. PROBLEM FORMULATION, PRELIMINARIES o

AND NOTATION wherea > 0 and,, 9> denote intrinsic camera

parameters (scale factors, focal length, center offset),

2.1 Robot dynamics k : R? — IR? stands for the robot direct kinematics,
In the absence of friction or other disturbances, the and
dynamics of a seriak—link rigid robot manipulator J= [0 71] .
can be written as (see e.g. (Ortega and Spong, 1989; 10
Spong and Vidyasagar, 1989)): The direct kinematics yieldé = 7(q)¢, where

. N J(g) € IR?*? is the analytic robot Jacobian. An
M(a)i+Cla,9)q+g(a) =7 @ im(pc))rtant property of this Jacobian is the following
whereg is the2 x 1 vector of joint displacements,is  (see e.g. (Spong and Vidyasagar, 1989)):
the2 x 1 vector of applied joint torquesy/ (¢) is the o ,
2 x 2 symmetric positive definite manipulator inertia Property 3. The Jacobian is bounded for allc r”,
matrix, C(q,)q is the 2 x 1 vector of centripetal ~ i-€- there exists a finite constani; such that
and _Coriolis torques, angl(g) is the2 x 1 vector of T (@) < Ju Vg€ R
gravitational torques. Two important properties of the
robot dynamic model are the following:
Property 1. (see e.g. (Ortega and Spong, 1989; Spong 2.3 Problem formulation
and Vidyasagar, 1989)) The time derivative of the Consider the robotic system (1) together with the out-
inertia matrix, and the centripetal and Coriolis matrix put equation (3), where the camera orientatiois
satisfy: known, but the intrinsic camera parameter#; and
1 2 are unknown. Suppose that together with the posi-
T =M(q) = C(q,q)| ¢=0; Vq,q€ R*. (2) tion y of the robot tip in the image also measurements
2 of the joint positions; and velocitiesj are available.
Let y; € IR? be a desired constant position for the
robot tip in the image plane. This corresponds to the
image of a point target which is assumed to be located
strictly inside the robot workspace. Then the control

Property 2.(see e.g. (Craig, 1988)). The gravitational
torque vectory(q) is bounded for aly € IR?. This
means there exist finite constakts> 0 such that

max ||gi(g)l| < ki i=1,2 problem can be stated as to design a control law for
1€l the actuator torques such that the robot tip reaches,
whereg;(¢) stands for the elements gfq). in the image supplied on the screen, the target point
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placed anywhere in the robot workspace. In other
words:

Jim y(t) = ya

Later in this paper the assumption that the camera

orientationd is known will be relaxed, as well as the
assumption that measurements of the joint velocities
are available.

To be able to solve the problem formulated above we
make the following assumptions:

Assumption 4(Problem solvability) There exists a
constant (unknown) vectag € IR* such that

ya = ae"[k(qq) — V1] + 92

Assumption 5(Nonsingularity at the desired con-
figuration) For the (unknown) vector; € IR? it
holds true that

det{J(qa)} # 0.

Corollary 6. There exists a neighborhood arouggd
for which det{J(¢)} # 0 (by smoothness of the
Jacobian).

It is worth noticing that in casg, corresponds to the
image of a point target located strictly inside the robot
workspace, then Assumptions 4 and 5 are trivially

satisfied. Also, under Assumptions 4 and 5 we have

thatq = ¢4 € IR? is an isolated solution of

)

i.e. there exists a neighborhood aroupdfor which
g = qq is the only solution of (4).

ya = ae"7[k(q) — 1] + V2

2.4 Notation
Throughout we use the following notation.
Definition 7. Let ™ denote the class of continuous

functions f : IR™ — IR" for which there exists a
positive definiteF’ : IR"™ — IR such that

%(zlz-~-axn)
f@)=f(@1,....20) = ®)

oF

0_%(-7717---7%1)

and for whichze™ f () is a positive definite function.
Definition 8. Let B" denote the class gf € F" that
are bounded, i.e the class pfe F™ for which there

exists a constanfy; € IR such thal|f(z)|| < far for
allz € R".

An important property of € F" is the following:

Property 9. Let f € F™. Thenf(z) = 0 if and only
if £ =0.
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In general it is not easy to verify whether a given
f : R — IR" can be written as the gradient of
a radially unbounded” : IR® — IR. However, a
necessary condition for continuously differentiatfle

is that its Jacobia% is symmetric.
It is easy to see that elements®f are the functions

f@) = Kilfi(@),... falan)]®

and

f(z) = Ko
whereK;, = KT is an x n diagonal positive definite
matrix, K> = K is an x n (not necessarily diagonal)
positive definite matrix, and; are continuous nonde-
creasing functions satisfyinf(0) = 0 andf;(0) > 0
(¢ = 1,...,n). By choosingf;(z) tanh(\;z),
filz) = sat(\iz) or fi(x) = s (L > 0) we
obtain elements of8”, whereasf(z) = Kz is an
element ofF" but not of B™.
Throughout we denote fof € F™ by F(z) the
associated function of whichis the gradient (cf. (5)).
Furthermore, we define

§=q—qaandj =y —yq.
Sincey is measurable ang; is given,

§ = ae™""(k(q) — k(qa)
can be measured too. However, simgds unknown,
G is notavailable for measurement.

We conclude this section by noticing that singeis
fixed,y = ae~’? 7 (¢)¢ and therefore

F@) =ad" T (@) e’ £ (7).

3. ACLASS OF STABLE VISUAL SERVO
CONTROLLERS

In this section we introduce a class of visual servo
controllers which includes those reported in (Coste-
Maniereet al, 1995; Kelly, 1996; Kellyet al,, 1996).
Assuming that the camera orientatiénis known,
and the full stateq ¢) is measured, these controllers
ensure local regulation. This is formally stated in the
next

Proposition 10.Consider the system (1) in closed-
loop with the control law

T=9(¢) — f1(d) = T (@) "’ f2(7) ®)
wherefy, f» € F2. Under Assumptions 4-5 we have
A 90 = Jim 6 =0
provided the initial conditiong(0) andy(0) are suffi-

ciently small.

PROOF. Using the control law (6) results in the
closed-loop dynamics

M(9)i + C(q,9)d + f1(d) + T (q)" e’ f2(§) = A7)

According to Assumptions 4-5 this equation has an
isolated equilibrium afg” ¢7)7 = [¢F 0T]7.
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Consider the Lyapunov function candidate
. 1. o1

V(3,9) = 50" M(9)q + _ F>(7)
which is a (locally) positive definite function.
Along the closed-loop dynamics (7) its time-derivative
becomes, using Property 1:

V(d,d)=—d"fi(d) — " T (@) " f29) +

+" T ()" e’ f2(9)
-q"fi() <0

which is negative semidefinite in the stégeq). Using
LaSalle’s theorem and Corollary 6, for any initial
condition in a small neighborhood of the equilibrium
we have

Jlim (¢) = lim f5(g(#)) = 0
so we can conclude using Property 9:

im g(t) = O
tlggo §() = 0.

Consider the system (1) where we deal with the input
constraints

®)

|Ti(t)| < Ti,maz i=1,2.

Then we can derive the following

Corollary 11. If 7 ez > ki, Wherek; has been
defined in Property 2, then there exift, f» € B>
such that the controller (6) meets (8) and in closed-
loop with the system (1) yields

Mg 90 =0
provided the initial conditions are sufficiently small.

4. ADAPTIVE VISUAL SERVOING

In this section we consider the case in which, in con-
trast with the previous section, also the camera ori-
entationd is unknown. Still assuming that the full

state(q, ¢) is available for measurement we introduce

a class of adaptive controllers that ensure local regula-

tion:

Proposition 12.Consider the system (1) in closed-

loop with the control law

9(a) = fi(d) = T()Te" £2(5)
if 4" T(a)"e”’ f2(7) > 0

= 9
9(a) = f1(@) + T (@)’ f2(9) ©
if "7 (@) e’ f2(5) <0
wheref,, f» € F2. We update the parametéas
6 =4"7(0)" Je” 2(5) (10)

wherey > 0 is a constant. Under Assumptions 4-5
we have, if we defind = 6 — 6:

90 = Jlig, 40 = fig, 0) =0

provided the initial conditiong(0), 5(0) andd(0) are
sufficiently small.
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PROOF. Using the control law (9) together with the
parameter update law (10) results in the closed-loop
dynamics

M(@)i+Cla, )i + 1i(d) = £ (0)" e’ fo(3)
0 =~i"T (@) Je”’ f2(7)
where the' reads as at+’ if ¢7.7(q)Te’? f2(5) > 0

andas a2’ if ¢7.7(q)Te’? f2(3) < 0.
Consider the Lyapunov function candidate

(11

I 1 1 ~
V(3,4,0)= EqTM(q)quan(y)+;(1—0059) (12

which is a (locally) positive definite function.
Along the closed-loop dynamics (11) its time-deriva-
tive becomes, using Property 1:

V(3.4.0)=—d"f1(@) - |i" (@) fa(d)| +
+' T (@) e’ f2(3) +
+sinbg" T ()" Te”" f2(7)
=—"11(@) - [i" 7@ " £25)| +

+" T (@ (e + sinf.0)e” f2(5)

=" 1) - |i" T @ £23)| +
+cosd” 7 ()" " f2(7)
<="fi(@)

which is negative semidefinite in the stdg, 6).
According to LaSalle’s theorem, the closed-loop sys-
tem tends to the largest invariant set of poifits;, 6)

for whichV = 0. From0 = V < —¢"f1(4) < 0

it follows that necessarilyj 0. Then from the
closed-loop dynamics (11) we knofv= 0 and us-
ing Corollary 6 alsof2(y) = 0. Therefore LaSalle’s
theorem gives us for any initial condition in a small
neighborhood of the origin

im0 = [ a0) = iz 9(0) =0
0

Remark 13.The switching nature of the controller
(9) leads to chattering, which is undesirable. Using
a suitably smoothed control law might be a way to
overcome the chattering.

As in the previous section we can derive the following

Corollary 14. If 7; ae > ki, Wherek; has been
defined in Property 2, then there exift, fo € B>
such that the controller (9) meets (8) and in closed-
loop with the system (1) yields

(m 90) = Jizg, d0) = g, 0(6) =0
provided the initial conditions are sufficiently small.

Remark 15.For the system (1) it is well known
(Ortega and Spong, 1989) that there exist a repara-
metrization of all unknown system parameters into a
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parameter vectoP € IR’ that enters linearly in the
system dynamics (1). Therefore the following holds:

M(q,0)i+Cl(q,4,0)4+ 9(q,0) =
Mo(q)d + Colq,9)d + g0(q) + Y (q,4,4,5)O

We can cope with those unknown system parameters

in the ‘standard’ way by addiny (¢, ¢, ¢, (j)(:) to the
control law (and replacing(g) with go(¢)), where®
is updated according to

é = 71‘\).7'1"((]7 qa (17 q)q

wherel’ = I'T > 0 is a positive definite matrix. To
prove asymptotic stability as in Proposition 12, we
only add67T 16 to the Lyapunov function (12),
where we defined = © — ©.

5. FILTERED VISUAL SERVOING

In this section we consider the case in which, in

contrast with section 3, no measurements of the joint

velocitiesq are available. Assuming that the camera
orientationd is known and only measurements of the

joint positionsg are available we introduce a class of

controllers and filters that ensure local regulation. This
is formally stated in the next

Proposition 16.Consider the system (1) in closed-
loop with the control law

T=9(@) - T " fi(z) = T(@)" e’ f(7) (13)
wheref,, f» € F?, andz is generated from the filter

z
w

y—w

. (14)

Under Assumptions 4-5 we have
g ) = Jlig, 20 = g 40) = B 50 =0
provided the initial conditionsv(0), ¢(0), and§(0)

are sufficiently small.

PROOF. Using the control law (13) together with the
filter (14) results in the closed-loop dynamics

M(q)i+C(a, )q+T ()" e’ [ i)+ o(0)]
z=ae " T(q)q - 2

Consider the Lyapunov function candidate

=Yas)

V(3.67) = 5i M@i+ 1 F) + L Fi(2) (16)

which is a (locally) positive definite function.
Along the closed-loop dynamics (15) its time-deriva-
tive becomes:

V(G d,2)=—q"T (@) e’ f1(2)— 3" T (0)Te”’ f2() +
FTT (@) Fo5) 425 (2)
=" T ()" e fu(2)+q"T (@) fi(2) -
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1 T
o2 h (2)
-1
- a
which is negative semidefinite in the stéfeq, z). Us-
ing LaSalle’s theorem and Corollary 6, for any initial

2" fi(z) <0

condition in a small neighborhood of the equilibrium
we can conclude

[lirrgom(t) = tllfrf)lo 2(t) = tli»nolo q(t) = llggy(t) =0

Remark 17.The filter (14) can, similar to the one
presented in (Lefeber and Nijmeijer, 1997), be seen
as a simple representative of a whole class of possible
filters. For instance iff, € F? satisfies the property
that alsoAf € F2, whereA is an arbitrary positive
definite matrix, then it can easily be seen that instead
of (14) also the filter

z=MNy—Now
u'; = /\3(1\217 - Ag’w)

can be used (replace in (1) () with the F(3y)
associated with\; ' f, (§) to obtain

@an

V= 72ZTA3A2Aflfl(z) =2Tf(2)

with f1(z) € F2). The filter (17) is similar to the ones
presented in (Ailon and Ortega, 1993; Berghuis and
Nijmeijer, 1993). Also the more general class of linear
filters presented in (Arimotet al, 1994; Kelly and
Santibaez, 1996) can similarly be seen as a special
case of (14). Also a wide variety of nonlinear filters
can be rewritten as (14).

In general one can say that the filter (14) is a repre-
sentative of a whole class of controllers that takes its
simple form due to a well chosen change of coordi-
nates.

To obtain other possible filters, just apply a suitable
change of coordinates inandw (suitable in the sense
thatVV remains negative definite). As far as the proof
is concerned, one possibly has to replagg)) in (16)
with a different#’, as we have seen in deriving (17),
sometimes resulting in a different expressionfgfz)

in (13).

As in the previous sections we can derive the follow-
ing

Corollary 18. If 7; mee > ki, Wherek; has been
defined in Property 2, then there exift, fo € B>
such that the controller (13) meets (8) and in closed-
loop with the system (1) yields

g wlt) = i =) = B 4) = g 90) = 0

provided the initial conditions are sufficiently small.

6. CONCLUDING REMARKS

In this paper we addressed the visual servoing of pla-
nar robot manipulators under a fixed camera config-
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uration. In case the camera orientation is known, we Feddema, J. T., C. S. G. Lee and O. R. Mitchell (1991).
introduced a class of visual servo controllers for both Weighted selection of image features for resolved
the state feedback and output feedback case (position  rate visual feedback contrdEEE Transactions
measurements). In case of unknown camera orienta- on Robotics and Automatioffl1), 31-47.

tion a class of adaptive controllers has been presentedHager, G. D., W. C. Chang and A. S. Morse (1995).

The results include controllers that satisfy input con-
straints.
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Adaptive tracking control of nonholonomic systems: an example

Erjen Lefebet, Henk Nijmeijef-t
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The NetherlanddA.A.J.Lefeber,H.Nijmeijerj@math.utwente.nl
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Abstract

We study an example of an adaptive (state) tracking control
problem for a four-wheel mobile robot, as it is an illustra-
tive example of the general adaptive state-feedback tracking
control problem. It turns out that formulating the adaptive
state-feedback tracking control problem is not straightfor-
ward, since specifying the reference state-trajectory can be
in conflict with not knowing certain parameters. Our exam-
ple illustrates this difficulty and we propose a problem for-
mulation for the adaptive state-feedback tracking problem

that meets the natural prerequisite that it reduces to the state-

feedback tracking problem if the parameters are known. A
general methodology for solving the problem is derived.

1 Introduction

In recent years a lot of interest has been devoted to (mainly)
stabilization and tracking of nonholonomic dynamic sys-
tems, see e.g. [1, 2, 3, 4] and references therein. One
of the reasons for the attention is the lack of a continuous
static state feedback control since Brockett’s necessary con-
dition for smooth stabilization is not met, see [5]. The pro-
posed solutions to this problem follow mainly two routes,
namely discontinuous and/or time-varying control. For a
good overview, see the survey paper [6].

Less studied is the adaptive control of nonholonomic sys-
tems. Results on adaptive stabilization can be found in
[7, 8. In[9, 10, 11, 12] the adaptive tracking problem
is studied, but all papers are either concerned with adap-
tive outputtracking, or the state trajectory to be tracked is
feasable for any possible parameter. However, it is possible
that specifying a reference-state trajectory and not know-
ing certain parameters are in conflict with each other. The
question then arises how to formulate the adaptive tracking
problem in such a way that it reduces to the state feedback
tracking problem in case the parameters are known.

In this paper we consider a simple academic example that
clearly illustrates the above mentioned conflict. We pro-
pose a formulation for the adaptive (state) tracking control
problem and derive a general methodology for solving this
problem.

The example we study is the kinematic model of a mobile

0-7803-5250-5/99/$ 10.00 © 1999 IEEE 2094

car with rear wheel driving and front wheel steering:

& = wcosf

gy = wvsinf

é = %tan [0) @
¢ = w

The forward velocity of the rear wheeland the angular ve-
locity of the front wheel are considered as inputs;, y) is

the center of the rear axis of the vehidlds the orientation

of the body of the carg is the angle between front wheel
and car and. > 0 is a constant that denotes the length of
the car (see also Figure 1), and is assumed to be unknown.

Figure 1: The mobile car

The organization of the paper is as follows. Section 2 con-
tains the problem formulation of the tracking problem and
illustrates the difficulties in arriving at the problem formu-
lation for the adaptive tracking problem. Section 3 con-
tains some definitions and preliminary results. Section 4
addresses the tracking problem and prepares for Section 5
in which the adaptive tracking problem is considered. Fi-
nally, Section 6 concludes the paper.

2 Problem formulation

2.1 Tracking control problem

Since we want the adaptive tracking control problem to re-
duce to the tracking problem for knowh we first have to
formulate the tracking problem for the cabés known.
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Consider the problem of tracking a feasible reference trajec-
tory, i.e. a trajectory[z.., ¥, 0, 6|7, [v,,w,]T) satisfying

&, = wv.cosf,

Yr = vpsiné,

. v 2
(?r = fr tan ¢, ( )
¢r = Wwr

This reference trajectory can be generated by any of the
motion planning techniques available from literature. The
tracking control problem then can be formulated as

Problem 2.1 (Tracking control problem) Given a feasi-
ble reference trajectory[z;, yr, 0r, ¢r]*, [vr, w,]T), find
appropriate control laws andw of the form

3

v=uv(t,2,9,0,0), w=uwtry,6,0)

such that for the resulting closed-loop system (1,3)

(lz(t) = (O] + y(®) — ye ()| +
+O(t) — 0, (1)] + [p(t) — b1 (1)])

Remark 2.2 Notice that in general, the control laws (3) are
notonly a function of, y, 6, and¢, but also ofv,.(t), w,(t),
z,(t), yr(t), 6-(t), ¢-(t), and possibly their derivatives
with respect to time. This explains the time-dependency in

).

Remark 2.3 Notice that the tracking control problem we
study here is not the same as an output tracking problem
of the flat outpufz,(t), y.(t)]*. First of all, by specifying
z,(t) andy,.(t) the reference trajectory can not be uniquely
specified (e.gu,.(t) can be either positive or negative). But
more important is the fact that tracking of.(¢) andy,(¢)
does not guarantee tracking of the corresponding) and

e (8).

lim
t—o00

0

2.2 Adaptive tracking control problem

In case the parametdris unknown, however, we can not
formulate the adaptive tracking problem in the same way.
This is due to the fact that for unknowinwe can not specify

a feasible reference trajectofit,, v, 6, #:]7, [vr, wr]T),
satisfying (2). In specifying,(t), ¢,(t) andf,.(t) we have

to make sure that

= % tan ¢,
in order to obtain a feasible reference trajectory. This is in
conflict with the assumption that we do not kndw since
oncev,(t), ¢,(t) andf,.(t) are specified it is possible to
determineL from (4).

So the question is how to formulate the adaptive tracking
problem for the nonholonomic system (1) in such a way that
itreduces to the state-feedback tracking control problem for
the casel is known? Appearently we can not both specify
vy, 6, and ¢, as functions of time, and assume thais
unknown.

6, “
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When generating a feasible reference trajectory satisfying
(2), one usually generates some sufficiently smooth refer-
ence signals, e.g:, () andy..(¢), and then all other signals
are derived from the equations (2). Notice that it is possible
to specifyv,(t), z(t), y-(t), andd,(t) without assuming
anything onL. These signals mainly cover the behaviour
of the mobile car. However, as mentioned in Remark 2.3,
tracking of the output:,, y,, 6, is not what we are inter-
ested in, since itis possible to hav@)—z,(t), y(t)—y-(t),
andé(t) — 6,.(t) converge to zero asgoes to infinity, but
¢(t) not converge tap,(t). Actually, ¢(t) can even grow
unbounded. That is why we insist on looking at State
tracking problem.

In case we know. it is possible, once, (t), z,(t), y-(t)

and 6,.(t) are given, to determineé,(¢) uniquely. No-
tice that we can determinen ¢, (t), from which ¢, (¢) is
uniquely determined (sincé. has to exist and therefore
¢r €] — 5,5. Onceg,(t) is known, alsaw,(t) can be
uniquely determined using (2).

When L is unknown we still know that once,.(t), z,(t),
yr(t) andé, (t) are giveng,(t) andw,(t) are uniquely de-
termined. The only problem is that these signals are un-
known, due to the fact that is unknown. This is some-
thing we illustrate throughout by writing” () andw? (t).
Therefore, we can assume that a feasible reference trajec-
tory ([&r, Yr, Or, 917, [vr, wk]?), satisfying (2) is given
and study the problem of finding a state-feedback law that
assures tracking of this reference state.

Problem 2.4 (Adaptive tracking control problem) Let a
feasible reference trajectory(z.,,yr, 0r, ¢E17, [vr, wE]T)
be given (i.ex,(t), y,(t), 0,.(t) andv,.(t) are known time-
functions, butpX (t) andw? (t) are unknown, due to the fact
that L is unknown). Find appropriate control lawsandw
of the form

v=10(t,2,y.0,¢), w=wtzy,0,¢)
such that for the resulting closed-loop system

(lz(®) = 22 (O] + ly(®) — yr (D) +
+6(t) = 0O + |o(t) = o7 (D)]) =0

®)
lim
t—o00

Remark 2.5 Notice that the time-dependency in (5) allows
for usingv,(t), z,(t), y-(t), 0,(t) in the control laws (as
well as their derivatives with respect to time), but in this
case we camot usew? (t) or ¢% (t).

Remark 2.6 It is clear that onceL is known this prob-
lem formulation reduces to that of the tracking problem for
known L. Then also,(t) andw,(t) can be used in the
control laws again, since these signals are just functions
(depending or) of v,.(t), 8,.(t) and their derivatives with
respect to time.

In order to be able to solve the (adaptive) tracking control
problem, we need to make the following assumptions on the
reference trajectory
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Assumption 2.7 First of all, the reference dynamics need
to have a unique solution, which is why we negdt) €
]— M, M[with M < Z. This is equivalent to assuming that

0_,« is bounded.
v

-
Second, we assume that the reference is always moving in

a forward direction with a bounded velocity, i.e. there exist
constantsMM andvM3such that

0 < oMM <y, (1) < oMEX

Furthermore, we assume that the forward and angular ac-
celeration, i.ex, andé,., are bounded.

3 Preliminaries

In this section we introduce the definitions and theorems
used in the remainder of this paper.

Definition 3.1 We callw(t) = [wi(t),...,wn(t)]" persis-
tently excitingif there exist constant§ e;, €2 > 0 such that
forall t > 0:

)
el < / w(T)w(r) dr < eI
t

Lemma 3.2 (cf. e.g. [13, 14])Consider the system

- 15
o] [
wheree € R?, ¢ € R™, w € R¥, v > 0. Assume that
M(s) = cl (sI — Apm)~'byy, is a strictly positive real trans-

fer function, ther(t) is bounded and

Am bw? (t)

—yw(t)el 0 ©)

tlin;} e(t) =0.
If in additionw(t) andw(¢) are bounded for alt > ¢, and
w(t) is persistently exciting then the system (6) is globally
exponentially stable.

Lemma 3.3 ([15]) Let f : Ry — R be any differentiable
function. Iff(¢) converges to zero @s— oo and its deriva-
tive satisfies

f(#) = fo(t) + n(t)

where fy is a uniformly continuous function andt) tends
to zero as — oo, thenf(¢) and fo(¢) tend to zero ag —
0.

t>0

Using standard techniques it is easy to show that
Lemma 3.4 Assume that origin of the system

&= f(t ) F(0)=0 vt
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wherez € R” is globally exponentially stable. Then the
disturbed system

&= f(t,z) + A(t)
whereA(t) is a bounded vanishing disturbance, i.e.

sup||A(t)|| <M and lim A(t) =0
t t—o0
is globally asymptotically stable.

Remark 3.5 Throughout this paper we use the expressions
z cosz—sin(z) =z—sin(z) cos(z)—1 l—azsinz—cos(z) cos(z)—1
== i v ol

and #27) - These functions are discontinuousain= 0,
but if we define their values far = 0 as respectively, 0,
0, —%, -1, and1 itis easy to verify that all functions are
continuous and bounded.

4 A tracking controller

First we consider the tracking problem for the cdsés
known. To overcome the problem that the errors- z,
andy — y, depend on how we choose the inertial reference
frame, we define errors in a body reference frame, i.e. in a
coordinate-frame attached to the car (cf. [16]):

{zg] { cosf sinf 0'| [z,.fz-|

Ye | = | —sinf cosf O Yr— Y
leo] | o o 1]|e o]

In order to be able to control the orientati@of our mobile

car by means of the input, we prefer to have(t) # 0 for

allt > 0. Sincew, (£) > vMN > 0 we know that if(-) is a
function that fulfills

™

o(z) > _Ugnin Vr e R

the control law

v =v, +o(z)

®

automatically guaranteegt) > 0 for all ¢ > 0. Further-
more, we assume that(z) is continuously differentiable
and satisfies

zo(z) >0, Vr#0

Examples of possible choices fefz) are

o(z) = vinin-tanh(z)
) = min, _ T

o(z) = v, T+ 2]

With the control law (8) the dynamics in the new coordi-
nates (7) and become

Fe = yeu7E) tang + v (cosfe — 1) — o(w.)
e = —i. w tan ¢ + v, sin 6,
0'.9 = “tang, — 2t fan ¢

= w

C)
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Differentiating the functiorl;, = %z? + f;yj along the so- Consider the Lyapunov function candidate
lutions of (9) yields
Vs = L +1y + L g2 ! z2 (13)
. . _ - 3= 35 e e Py
Vi = —zeo(@e) + v, (#T + %y) fe 272" T 20 T deeay

When we considep as avirtual controlwe could design an
intermediate control law fap that achievesi(, k> > 0):

)

Usmg the Lyapunov function candiddie = —z + )ye +
,20 and similar reasoning as in [2], we can then claim

thatze, ye andf, converge to zero, provided that Assump-

tion 2.7 is satisfied.

It would be the ‘standard procedure’ to define éner vari-

able

cosf, — 1
95

sin 6,

0.

6. = —k16. — kv (

Te

s = g, - 0T gy ket
cosf, — 1 sin 6,
+kavy (#xe T%/e)

However, for simplicity of analysis we prefer to consider
the error variable = Lz, i.e. we defined;, c; > 0):

z =vrtan ¢, —vtan @ + 16, + cav, (msgij’lze + S‘“g* Ye )
(10)

With this definition the error-dynamics (9) now become

Te = Ye % tan ¢ + vp(cosfe — 1) — o(z.) (11a)
Yo = —T¢ % tan ¢ + vy sin 0, (11b)
. c Co cosf, — 1 sin 6,
0. = 7f19e — f)vr (Tze + 7 ye) +
1
- 11c
+Lz (11c)
' O (Falsingeoss—w) +50) (1)
: = —a(t)singcosp —w
cos?2 ¢ \ L !
where
a(t) = ye.tang + ¢ — v, (1 €0sbe pp, 4 e—sinb. g;“g‘z ye)
B(t) = vptang, + ¢ + (v cos . — v) tan ¢ +
+e2(0pxe — VU, — 02) ”’“gj’l + C2Urye Sig‘f“ +
+e1 % tan gy + co, (1792 sineﬁ;—tos O g+
4 0. cos 9;%7Siu 0. yF) zf, tan ¢r
When we choose the input
2
. cos
w=—a(t) ” ¢ (B(t) + c32) (12)
we obtain

2= —c32

2097

Differentiating (13) along solutions of (11,12) yields

—ze0(ze) —
_Ieg(ze)

2
0 2+ 01 ez — ; CIQ z
7(‘2 91’ 2cicz ®

Vs

IN

<0
14

We establish the following result

Proposition 4.1 Assume that Assumption 2.7 is satisfied.
Then all trajectories of (11,12) are globally uniformly
bounded. Furthermore, all closed-loop solutions converge
to zero, i.e.
Jim (| (8)] + e (8] + 8. (8)] + |2()]) = 0

Proof: Since V' is positive-definite and radially un-
bounded, we conclude from (14) that, y., . and z
are uniformly bounded. From (10) and Assumption 2.7
it follows that alsov, tan¢ and as a result als@ and

¢ — ¢, are uniformly bounded. Also the derivatives of all
these signals are bounded. With Barbalat's Lemma it fol-
lows thatz., 6. andz converge to zero asgoes to infin-

ity. Using Lemma 3.3 withf = 6., fo = —kov,y. and
7= —ki6, — kv, (“059—*‘16 + (% — l)ye) + 2 gives

also thaty, tends to zero asgoes to infinity. [ ]

Corollary 4.2 Consider the system (1) in closed loop with
the control laws (8,12) where the reference trajectory satis-
fies (2) and Assumption 2.7. For the resulting closed-loop
system we have

Jim  (2(t) = 2, ()] + y(t) =y (0] +
+10(t) = 6:(8)] +16(8) — (D)) =0
Proof: Using (7) it follows fromz, andy. tending to zero

that alsar — z,- andy — y,, converge to zero. It only remains
to show thai(t) — ¢, (¢) tends to zero astends to infinity.
This comes down to showing thiatn ¢(¢) —tan ¢,.(¢) tends
to zero ag tends to infinity, which is a direct result from the
fact thatz tends to zero (and,, y. andé.). n

5 An adaptive tracking controller

From now on we assume that the paramétés unknown.
As mentioned in section 2 we have the difficulty that not
only L is unknown, but also the reference signal<t) and
wk(t) (that appear in the expressigit)) can not be used
in the control law.

Fortunately, we are not only allowed to usg, y., . and

#, but alsod, andé,.. Notice that in (10) we can replace the
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occurence of~ by means of the si néL:
b, by g

sin 0,
fe

cosf.—1
9. Le

+

z =L, —vtan ¢ + c16. + cavy ( ye)

(15)

However, using the variable as defined in (10) or (15)
makes it hard to design a controller using conventional
adaptive techniques becauseacludes the unknown param-
eterL. Therefore, we define

sin 0.
bugxr .Ue)

(16)

zZ= i&r —wvtan @ + c10, + covy ("‘”g:*lze +

which can be seen as an estimatexfosing? the tracking
error dynamicg9) can be expressed as

Te = Ye % tan ¢ + v,(cosf, — 1) — () (17a)
Yo = —X % tan ¢ + v, sin 6, (17b)
i 1 Co cosf, — 1 sin 6,
. = fg"' - Z’UT ( 9, Te + 0, f‘/e) +
1, -1,
+Ez — LZQ,. (17¢c)
: = @ (0a(t) sin peos ¢ — w) + B(t) (17d)

L. Furthermore,

where we introduced the parameter= +

we defined = L — L and

1—cosf.
[

= Yetand +c1 — cavy ( Te + 0’5—%“91/6)

iér + i@r + (vy cosfe —v) tan ¢ +

. N _ .
+eo(0pme — VU, — v;)“’sgifl + C20,Ye

sil;vﬂe +
+Clér + 20, (1—69 si1199ge —cos f T+
+0. cosg§ —sin 0, ye) é,

When we choose the input

cos? ¢
sin ¢ cos p + ——
v

w = da(t) (3@) + k32) (18)

we obtain § = ¢ — p):
2= —ks2 — ga(t)vtan o

Consider the Lyapunov function candidaig,(y» > 0)

2

~2

iz

1., 1., L@ 3 P
Vy = = 2 a2 e
4 2% + 2?15 + 2co  2ci1e9c3 202y 2c169037%2
(19)
Differentiating (19) along solutions of (17,18) yields
’ €l g2 1
» < -z Le) — —0, —
Vi £ —weolre) 29 ¢ 201(’)2
1 X . ~
+ (L - meeer) I+
C271
1 .
5 mvosa(t)ot ) -
pp— (g Yoza(t)vtang ) g

2098

So, if we define the parameter-update-laws

i’ 71069.7‘ (203)
6 = mia(t)vtang (20b)
we get
. C1 o 1 .,
Vi< 71‘60'(16) 5. e 22<0

N 2(32 e 28162
and can establish the following result

Proposition 5.1 Assume that Assumption 2.7 is satisfied.
Then all trajectories of (17,18,20) are globally uniformly
bounded. Furthermore,

lim [ (8)] +16.(8)] + 2] + () — 6, (8)] = 0
If in additiond, () is persistently exciting, we also have that
Jim (jg. ()] + | L) +1a®)]) =0

Proof: Similar to the proof of Proposition 4.1 we can show
uniform boundedness of all signals and their derivatives
with respect to time. From Barbalat’s Lemma it follows that
z, 0., andz converge to zero ggoes to infinity. From (16)
we conclude thaf —v tan ¢+ cavry, CONVerges to zero too.
Using Lemma 3.3 we can conclude that atso,y. + D‘)T
converges to zero. Combining these two results, we obtain
that L6, — vtan ¢ and therefore,.[tan ¢~ — tan ¢] con-
verges to zero. As a result

lim [4(t) — o)

t—o0 (t)‘ =0
Assume that in additiofi, (¢) is persistently exciting. No-
tice that the(z., y.)-dynamics (17a,17b) can also be seen
as a LTV subsystem with an additional disturbance that is
bounded and goes to zerotagoes to infinity:

=Ll "0 0 (6]
LTV subsystem disturbance
(1)

From Lemma 3.2 we know that the LTV subsystem of
(21) is globally exponentially stable and therefore, from
Lemma 3.4 that alsg. tends to zero astends to infinity.
Also, the (6., L) dynamics can be seen as a cascade of
a LTV subsystem with an additional disturbance that is
bounded and goes to zerotagoes to infinity:

[t HOIE ]

In the same way we can conclude that alstends to zero
ast tends to infinity.

ée
L

0.

" fa(t) ]

fa(t)
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Since we have shown thgt tends to zero, also thg, g)

Schaft, Eds., number 246 in Lecture Notes in Control and

dynamics can be seen as a cascade of a LTV subsystem with Information Sciences, pp. 183-199. Springer-Verlag, Lon-

an additional disturbance that is bounded and goes to zero

ast goes to infinity:
H f5(t) ]
L = +
H J15 ] [20
Therefore, als@ tends to zero astends to infinity, which
concludes the proof. [ ]

—ks
Y2 L0, (t)

—c1 L6, (t)
0

(S 3

ST

Corollary 5.2 Consider the system (1) in closed loop with
the control laws (8,18) where the parameter estimdtesd

¢ are updated accoding to (20) and assume that the refer-
ence trajectory satisfies (2), Assumption 2.7, and thas
persistently exciting. For the resulting closed-loop system
we have

Jim - (Je(t) = 2, (8)] + Jy(t)

-y )+
+HO(t) — 6:(0)] + |o(t) —

or(®)]) =0

and convergence of the parameter-estimates to their true
value, i.e.

lim
t—o0

(‘ﬁ(t) —L‘+

00 - 1) =0

6 Concluding remarks

In this paper we addressed the problem of adaptive state
tracking control for a four wheel mobile robot with un-
known length. This simple example clearly illustrates that
for the general state tracking problem specifying the state
trajectory to be tracked and not knowing certain parameters
can be in conflict with each other. We propose a formulation
for the adaptive tracking problem that is such that it reduces
to the tracking problem in case the parameters are known.
Not only did we formulate the problem, also a solution was
derived.
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Chapter 11

Conclusions

From a practical point of view, the problem of making a system follow a certain trajectory

is interesting. One can think of robots that have to perform a desired motion, mobile cars in
the harbor driving a prescribed trajectory, a spacecraft moving along a predetermined path,
autopilots for airplanes, and numerous other examples. One not necessarily has to think of
robots, also a factory following a predetermined production schedule can be thought of as a
tracking problem. Since the tracking control problem for arbitrary systems is too complex to
be solved in general, all we can do is restrict ourselves to classes of systems with a specific
structure. This thesis is concerned with certain nonlinear mechanical systems described by
continuous-time models.

11.1 Discussion

In Part | of this thesis we studied the tracking control problem for several non-holonomic
systems with two inputs. We introduced the cascaded design approach as a new method for
controller design. The key idea is to use one input for stabilizing a subsystem of the tracking
error dynamics. Assuming that this stabilization has been achieved, part of the remaining
dynamics can be ignored. Next, the second input can be used for stabilizing this simplified
tracking error dynamics. One of the advantages of this method is that it is not necessary to
transform the system into a certain form by means of a change of co-ordinates. As a result,
the controllers derived by means of this method are less complex expressions.

The cascaded design approach was applied successfully for several classes of mechanical
systems, including a rotating rigid body, mobile robots, chained-form systems, and an under-
actuated ship. Under a persistence of excitation condition on one of the two reference inputs
we arrived atglobally K-exponentially stable tracking error dynamics. This is a type of
uniformstability which guarantees a certain robustness to disturbances.

Backstepping is a widely used controller design method for nonlinear systems with a triangu-
lar structure. In case we compare the cascaded design to a backstepping design, we can say
that backstepping assumes a triangular structure of the system and uses this structure to arrive
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at a triangular closed-loop system in a systematic way. However, what is most important in
our eyes is not the triangular structure of the open-loop system, but the triangular structure
of the closed-loop system. Using backstepping, this triangular structure for the closed-loop
system readily follows starting from a triangular open-loop system. However, the open-loop
system not necessarily has to be in triangular form to obtain triangular closed-loop dynamics.
This is where the cascaded design approach comes into play. A triangular structure for the
open-loop system not necessarily has to be assumed beforehand. All we focus on, is a tri-
angular structure for the closed-loop system. This is exactly what the cascaded approach
does. As a result, transformation of the open-loop system for obtaining a triangular structure
suitable for backstepping is not necessary.

In all the examples studied in the first part of this thesis we were able to perform the analysis
in the original error co-ordinates, leading to a clear structure of the closed-loop dynamics and
to much simpler expressions for the control laws (in the original co-ordinates) than achieved
so far by means of backstepping. For the systems under consideration, the nonlinear tracking
control problem essentially reduced to two linear stabilization problems. As a result, the gain
tuning turned out to be not very difficult, since we could rely on linear techniques. Also the
extension to other problems is straightforward. If one, for instance, is interestedHn.an
design, one simply has to solve two linear problems instead of solving partial differential
equations that come from the nonlindég, control problem. Notice that all analysis can be
done in the original error co-ordinates, without using state-feedback or input transformations.

In all the examples studied in the first part of this thesis, the connectinggérm;, z2)

could be upper bounded by a linear functionzef At first glance this might seem to be a
restriction to the general applicability of the cascaded approach. This is not the case. First
of all, the usage of the linearity assumptiong(n, z;, z-) is to guarantee boundedness of the
solutions of the cascaded system. Whenever one is able to show boundedness of solutions,
no assumption on(t, z1, z2) is needed. In case the linearity assumptioy@nzi, 22) is not
satisfied, one way to proceed might be to use the original cascaded theorem (Theorem 2.4.3)
instead of Corollary 2.4.6. Another way to overcome the problem would be using different
co-ordinates, as is done in backstepping. Using as new co-ordinates the difference between
the actual value and the desired value of the virtual control assures a linear connecting term
in a backstepping design. For a cascaded design the problem can be overcome, similarly.

To summarize, the main contributions in Part | are:

e we introduce theeascaded design approacivhich does not require the system to be
transformed into a specific structure, leading to simpler controllers than found so far;

e we present controllers for solving both the state- anhutfeedback tracking problem
for mobile robots. These controllers yield glohmiformasymptotic stability and also
deal withinput saturations

e we present controllers that solve both the state- amgutfeedback tracking prob-
lem for chained-form systems with two inputs. These controllers gktal uniform
asymptotic stability and partially deal withput saturations

e we present controllers that solve the tracking problem for under-actuated ships by
means of state-feedback. These controllers yg&thal uniformasymptotic stability.
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In the second part of this thesis we studied three specific problems. First, we addressed the
practically important problem of global set-point stabilization of robot manipulators with PID
control. We showed that for both the state- and output-feedback problem a “start-integration
time” exists such that global asymptotic stability is guaranteed. We also presented criteria
on how to choose the start-integration time and the control gains. Finally, we showed in
simulations the potential advantages of our linear scheme in comparison to existing nonlinear
controllers.

Secondly, we addressed the visual servoing problem of planar robot manipulators under a
fixed camera configuration. That is, we considered a robot manipulator operating in the
plane, viewed from above with a camera, and of which an image is displayed at a screen.
We were able to regulate the tip of the robot manipulator to a specified point at this screen
using only position measurements. As an extra difficulty we took into account the possibility
that both the camera position and orientation are unknown, as well as certain intrinsic camera
parameters (like scale factors, focal length and center offset). In case the camera orientation
is known, we introduced a class of visual servoing controllers for both the state- and output-
feedback case. In case of unknown camera orientation, adaptive controllers were presented.

Thirdly we addressed the problem of adaptive state tracking control for nonlinear systems.
It turned out that formulating the adaptive state-feedback tracking control problem is not
straightforward, since specifying the reference state-trajectory can be in conflict with not
knowing certain parameters. We showed this difficulty by means of an illustrative example
of a four-wheel mobile car with unknown length. We formulated the adaptive state-feedback
tracking control problem in such a way that it reduced to the tracking problem in case the
parameters are known. Furthermore, we presented a general methodology for solving the
problem by means of Lyapunov techniques.

To summarize, the main contributions of Part Il are:

e we showglobal asymptotic stability of linear PID controllers when delaying the inte-
gral action;

e we introduceclasses of controllerthat solve the visual servoing of planar robots under
a fixed camera position for both the state- andbutfeedback problem. These classes
also contairsaturatedcontrollers. In case of unknown camera orientation a class of
adaptive controllers is presented;

e we illustrate difficulties in formulating the adaptive state-tracking problem for non-
linear systems with unknown parameters by means of an example. For this example
a suitableproblem formulation of the adaptive state-tracking problisngiven and a
solutionis presented.

11.2 Further research

One of the key properties of the backstepping design methodology is its recursive nature.
Once a system is written in a triangular form that is suitable for backstepping, a control law

can be built step by step. In a sense, the cascaded design approach can be seen as a one-step
vectorial backstepping design where part of the dynamics can be forgotten. The fact that we
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do not have a Lyapunov function for showing stability of the overall closed-loop system can
be seen as a shortcoming of the cascaded design approach (or at least of Theorem 2.4.3),
since it makes a recursive application of Theorem 2.4.3 difficult. It would be interesting to
find out whether Theorem 2.4.3 could be extended by showing the existence of a Lyapunov
function candidate satisfying Assumption Al along trajectories of the overall closed-loop
system. In that way the cascaded design approach can be applied recursively (as in the proof
of Proposition 4.3.2).

For the systems considered in the first part of this thesis, the cascaded design approach re-
duced the nonlinear tracking control problem to two linear stabilization problems. This led
us to a clear structure and gave us a simple strategy for tuning the gains. As a result, the
from a practical point of view more interesting methods like using filtered measurements,
adding integral action or usinf,-control can be applied without any difficulties. It would

be interesting to perform this exercise and study the resulting performance and compare this
to existing results.

Another interesting question concerns the actual controller design, namely the gain-tuning.
The method we used in this thesis is simply applying optimal control to the resulting linear
systems. Notice however, that we have more freedom in choosing the control laws. For the
mobile robot for instance, we could add an (almost) arbitrary e, , ye, 6. )6, to v. As

long as the functiog can be bounded by a linear function[ef, y.]” the proof still follows

the same lines. In a similar way changes to the control laws for the chained-form system
or the under-actuated ship can be constructed. This extra freedom enables us to improve
performance and it is worth investigating how this freedom can be used in designing a well
performing control law.

As mentioned in the beginning of this section, one could view the cascaded design approach
as one-step vectorial backstepping. However, the cascaded design approach is more than that,
since the design methodology as proposed also turns out to be an eye-opener to recognizing
structures that had not been noticed before. However, once a cascaded design leads us to a
simple structure, instead of applying the cascaded theorem for concluding asymptotic stabil-
ity, one could also apply backstepping and redesign the control law for the input that was
used for first stabilizing a subsystem. As mentioned in Remark 4.2.6 this can be done for the
mobile robot, and leads to a weakening of the persistence of excitation condition on one of
the two reference inputs. It is worth investigating whether this idea leads to similar results for
the chained-form system and the under-actuated ship.

Another idea to weaken the persistence of excitation condition on one of the two reference
inputs could be using the concept of unifosrpersistence of excitation{tPE) as introduced

in (Loria et al. 1999b). In that paper the stabilization problem for a chained-form system of
order3 was solved using this concept. Since the mobile car can be transformed to a chained-
form system of ordeB the stabilization problem for a mobile car can be solved in a similar
way. It is worth investigating whether the concept 6fRE can be successful in weakening

the PE condition for general chained-form systems and the under-actuated ship.

For all systems studied in the first part of this thesis it turned out that we could conclude global
KC-exponential stability, provided that one of the reference inputs was persistently exciting.
As it happened to be, the reference input that has to be persistently exciting, also was the
first input that we used for stabilizing part of the tracking error dynamics. It is interesting to
determine whether this is purely a coincidence or that it can be explained. This observation
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might also be a third way to overcome the “problem of the PE-condition”. The main reason
why this PE-condition on the reference input is annoying, is that for the mobile robot and
the under-actuated ship it makes it impossible to follow straight lines. A PE-condition on the
other reference input would be less annoying, since that would imply only that the reference
has to “keep on moving”. As for the mobile robot this can indeed be done (i.e., first use
v to stabize ther.-dynamics, then use for stablizing the simplified remaining dynamics,
then conclude GUAS of the overall system under a PE-condition.prit would be worth
investigating if this idea can be applied to the tracking problem for the under-actuated ship as
well.

In Chapter 10 it was shown, by means of an illustrative example, that the formulation of
the general adaptive (state)-tracking problem is a problem in itself. As mentioned in the
beginning of this chapter, the problem of following a prescribed trajectory is important from

a practical point of view. Unfortunately, in practice we always have to deal with the fact that
certain parameters are not known exactly. Therefore, the adaptive tracking control problem
is even more interesting to study. However, before we are able to do so, we need to have
a correct problem formulation. Obviously, arriving at a proper problem formulation is an
interesting problem in itself that deserves attention. And once we have a proper problem
formulation, solving the problem is even more interesting.
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Appendix A

Proofs

We present the proofs of Theorem 2.3.7, Theorem 2.3.8 and Proposition 6.3.1. However, first
we consider the stability of the differential equation

am dm—t d

- .. = = 1

g V() +argmmry() + -+ amo1 gy (t) +amy(t) =0 (A1)

For this system we can define the Hurwitz-determinants

ay a3 as ... a2;—1
1 a2 Q4 ... a2i—2
0 a; as ... a2;—3 .
A= 0 1 ax ... a2 4 (Zzl""vm)
o 0 0 ... a;

where, if an elementi; appears im\; with j > ¢, it is assumed to be zero. It was shown by
Hurwitz (1895) that the system (A.1) is asymptotically stable if and only if the determinants
A, are all positive.

A proof of this result by means of the second method of Lyapunov is less known (see also
(Morin and Samson 1997)). If we define

A AVER YAV .
&, bs 3 b= ———t  (j=4,...,m)
Ay

bi=21, b= = AN NN

as was shown by Parks (1962), the system (A.1) can also be represented as

—by —by O ... 0 7
1 0 :
b,

| 0 0 1 0 |
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Differentiating the Lyapunov function candidate

2
m

V = byw] + bibowy + -+ 4+ biba -+ by_yw?, | +biba - -byuw

(which is positive definite if and only if the determinams are all positive) along solutions
of (A.2) results in

V= —biwi.
Asymptotic stability then can be shown by invoking LaSalle’s theorem (LaSalle 1960).

Inspired by the result of Parks (1962) we look for a state-transformatierSw, that trans-
forms the system (A.2) into

—a1 —a2 e e —Qm
1 0 0
=10 : z (A.3)
0 0 1 0
To start with, we define
Zm = W -

Sincew,,, = w,,—1, and we would like?,,, = z,,—1, we define
Zm—1 = Wm_1.

Sincew,,—1 = Wy;,—2 — by,w,,, and we would like,,,_1 = 2z,,_2, we define
Zm—2 = Wm—2 — bW, -

Proceeding similarly, we define al} and obtain an expression that looks like

Zk = Wk + Sk k4+2Wk42 + Sk k+4Weta + ..o (A4)

By this construction of the state-transformation, we are guaranteed to meest-thé final
equations of (A.3). The only thing that remains to be verified is whether the equation for
%1 holds. From the structure displayed in (A.4) we know that the mafrig nonsingular.
Therefore, we can write

21 = —Q2] — Q2 — " — QpZp, a; € R (i=1,...,m).
The characteristic polynomial of the transformed system then becomes
A N b A

Since a state-transformation does not change the characteristic polynomial and we know from
Parks (1962) that the characteristic polynomial of (A.2) equals

A+ Uzl/\mil +oFama A+ Gy
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clearlya; = a; (i = 1,...,m).

Before we can prove Theorem 2.3.7 and Theorem 2.3.8 we need to remark one thing about
this transformation. When we defifie= S—!, we know that

wy = 2z1 +t1323 +t1 525 + ...
Wo = 2o +t2424 + 12626 +....
But alsow; = —ajw; — bows (Notice thath; = ay). Therefore,
w1 = 21 +t1,323 +t1 585 + ...
=(—a121 —aszy — - —apzp) +t1 322 +t1 524 + ...
=[-a121 —aszzzs —...] +[(t13 — a2)za + (t15 —as)za +...].

So obviously

as as
wy =21 +—23+—25+....
ay a1

Knowing this state-transformation and (A.5) we can start proving Theorems 2.3.7 and 2.3.8.

(A.5)

A.1 Proof of Theorem 2.3.7

Proof. We need to show global uniform exponential stability (GUES) of the system (2.12),
which is described by

—a; —axd(t) —az —asp(t) ..
o(t) 0 e 0
z=10 ' z (A.6)
0 e 0 o(t) 0
We can also write the system (A.6) as
[(—a; —as —Qm, a1z1 + aszs + ...
1 0 0 0
i=¢()| O z+(o(t) — 1)
| O 0 1 0 0
When we apply the change of co-ordinates Sw as defined before, we obtain
[—by —b2 O 0 T e a1w1
1 0 0
0
w=¢t) | o 0 |w+(e@)—1) _
. . . % :
: R —bm 0 0 1 :
0 0 0 | 0
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which (usinga; = b,) can we rewritten as

[—by  —byd(t) O ... 0

o) 0 :
_bm¢(t)

L 0 0 o(t) 0 |

Consider the Lyapunov function candidate
V = byw] + bibowi + -+ + biby - by—yw?, ;| + biba - byuw?, (A.8)
which is positive definite if and only if
A"+ a A" a1 A+ ap
is a Hurwitz-polynomial. Differentiating (A.8) along solutions of (A.7) results in
V= —bfwf
which is negative semi-definite.

It is well-known (Khalil 1996) that the origin of the system (A.7) is globally uniformly expo-
nentially stable (GUES) if the pair

[—by —byd(t) O ... 0 ]
o(t) 0 :

: . . - =bno(t)
0 o0 P 0

is uniformly completely observable (UCO).

If ¢(t) is persistently exciting, it follows immediately from Corollary 2.3.4 that the pair (A.9)
is UCO, which completes the proof. O
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A.2 Proof of Theorem 2.3.8

Proof. The system (2.13) can be written as

(ko —ksd —ku —ksd ... ko —ksp —ks —kso
¢ 0 ... ... 0 0 ... ... ... 0
Z1=1 0 a4+ | 2| 2o
0 0 ¢' 0 0 0
) fi(t) ’ g(t,z1.22) ’
o .. .. 0 ]
. ¢ —ls¢
22 = 0 —l 22
: .0 =3¢
0 ... 0 ¢ —I|
) folt2) ’
where
2= [E2e Tze o Tae]l
and
2y = (W20 —&2e Tge—dge ... ;Tcme—:ﬁn,e]T

Since¢(t) is persistently exciting (PE) ankl,; are such that the polynomials (2.14) are
Hurwitz, we know from Theorem 2.3.7 that the systeims= fi(¢,z1) andzs = fi(t, z2)
are globally uniformly exponentially stable (GUES).

Then the result follows immediately from Corollary 2.4.6, (Sip€e 21, 22) satisfies (2.25))
and the fact that a LTV system which is globally uniformly asymptotically stable (GUAS) is
also GUES (Theorem 2.3.9). O
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A.3 Proof of Proposition 6.3.1

Before we prove Proposition 6.3.1 we first prove the following lemma:

Lemma A.3.1. Let the following conditions be given:

k1 > daa — dn1 (A.10a)
_ ky(ka + k1 + dig — dao)

ko = A.10b
? L (dazks +maiks) ( )
d22
0< ks < (lﬁ +di — d22)— (A.lOC)
mi1
kg > 0. (A.10d)
DefineX andu (A < p) by means of
Atp= kit du (A.11a)
mi1
k3
A= ——, (A.11b)
mi1
which is similar to saying thak andy are the roots of the polynomial
p(z) = mua® — (k1 + du)z + ks. (A.12)
Then\ andy are well-defined, and furthermore
O<pu—A (A.13a)
0< d22 - m11/\ (A13b)
0< miip — doo (A13C)
0< m%l A+ dasky (A.13d)
0<ky+mpiA (AlSe)
0<ky+ miq . (A13f)

Proof. First, we remark that from (A.10a) and the fact that > 0, m1; > 0 we have:

da> < ki +dn
mi1 mi1

0<

Consider the polynomial (A.12). Then obviously
ki +d
p(0) =p <¥> = ks >0
mi1

and

dy \ _ ’ a2 B s
pl— ) =my | — —(k1+d11)m—+k‘3—(d22—k1—d11)m—+k3<0.

11 11
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Therefore, from the intermediate value theorem we know that a cons&xists,0 < A <
22 such thap(\) = 0 and also au, 222 < pu < Btdu sych thap(u) = 0. As a result

mi’

we obtain that\ andy are well-defined by means of (A.11). From (A.10) and
do-
0<A< =2 <y
mi1

we can conclude the inequalities (A.13). O

Proof of Proposition 6.3.1The closed-loop system (6.11, 6.12) is given by

Ue —mher—ldln %—ﬁjrr(t) _mk_il mk_flrr(t) Ue

) 11 22

P | _ | Tt 0 0 ve | (A.14)
Z1e 1 0 0 (1) Z1e

Z9.e 0 1 —r,(t) 0 Z2.e

If we define) andy as in (A.11) and use (A.10b), the closed-loop dynamics (A.14) can be
expressed as

. k A)(k 3

i ][O TR () M k@] Tu
’[)e _ —m“rr(t) —doy 0 0 Ve
. mo2 m22

e 1 0 0 7 (t) Z1,e
%2, 0 1 —r(t) 0 ?2,e

Using the change of co-ordinates

A
Ue 0 0 n—A n—A Ty
Ve 0 1 0 0 To
= —1 1
Z1,e 0 0 —M*)\ —H*A I3
Mo  _ Mma3
22 das dos 0 0 s

which, due to (A.13a), is well-defined, we obtain

—d doo — A
0 0 mii1H 22, 2227 M11

&1 Tmoa(r=nN) T T maa (=N T z1
. 0 _ dap o mums miix
T2 ma2 mag(k—=XA) " mag(p—XA)"" T2
s = mm(mkfltl;llM“‘ m22(:4+mé1*)(d22*muk)ﬂTT —u 0 o3
22(m7; Ap+tdaoky)
T4 mag(kgt+mygp), — mos(katmiip)(migp—dog)r 0 Y Ta
m11d22 " doa(mZ  Ap+doskys) "
(A.15)

Differentiating the positive definite (cf. (A.13)) Lyapunov-function candidate

m3s o Miy(day — miA)(marp —das) (ma1p — daa) 5

V= ] + x5 + x5 +
2m11d22 ! 2m11d22 (mfl)\u + d22k‘4) 2 2(k4 + mn)\)(u — )\) 3
(dzz - mll)\) 72

2(ks +map)(p—A)""
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along solutions of (A.15) yields

_ (mi1p — daz)(d22 — M1 A)miay 22— p(marp — daz) 22—
mu1 (mi A+ dazky) 2=+ N
)\(d22 — mn)\) .772
(1= A (kg +mayp) ™

V=

which is negative semi-definite (cf. (A.13)).

It is well-known (Khalil 1996) that the origin of the system (A.15) is globally uniformly
exponentially stable (GUES) if the paid(t), C) is uniformly completely observable (UCO),
where

0 0 _mii1p—doo _daa—miyi
mag(p—2X) "7 mag(p—X) "
d moyqp miq A
0 _ 9422 _ 11 r ”
mog mag(p—2X) """ mog(p—XA) "
A(t) - mog(kg+mi1) moo(kg+mi11A)(dag—mi1M)p _ 0
pr— Tr P) Tr 1
11922 doo(m7) Aptdasks)
mas(kgatmygp),  mog(kgtmiip)(migp—dog)r 0 Y
mi11das " doo(m2, Aptdask T
22(m7{ | Aptdooky)

_ (mii1p—dag)(dap—mi3A)moy p(mygp—dos) A(dag—m11MN)
C= [0 \/ 1L (mZ, At dazka) VA \/(u—x)(kﬁmuu)] .

If r.(t) is persistently exciting, it follows from Corollary 2.3.4 that the gai(t), C) is UCO,
which completes the proof. O
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Summary

The subject of this thesis is the design of tracking controllers for certain classes of mechanical
systems. The thesis consists of two parts. In the first part an accurate mathematical model of
the mechanical system under consideration is assumed to be given. The goal is to follow a
certain specified trajectory. Therefore, a feasible reference trajectory is assumed to be given
i.e., a trajectory that can be realized for the system under consideration. The tracking error
at each time is defined as the difference between where the system is and where it should
be. The problem now is to design a controller for the system which is such that the tracking
error converges to zero, no matter where the system is initialized nor at which time-instant. A
new design methodology is presented, based on the theory of cascaded systems, i.e., systems
that can be seen as a special interconnection of two stable subsystems. This new approach
is applied to three different models. In Chapter 4 the kinematic model of a mobile car is
considered. Chapter 5 is concerned with systems in chained form. A large class of interesting
mechanical systems can be transformed to the chained form, including a mobile robot, a car
towing multiple trailers, a knife edge, a vertical rolling wheel and a rigid spacecraft with two
torque actuators. In Chapter 6 the tracking problem for an under-actuated ship is dealt with,
i.e., a ship with only two controls is considered, whereas it has three degrees of freedom. All
systems under consideration happen to have two inputs.

In the cascaded design approach, first one of the inputs is used to stabilize a subsystem of
the tracking error dynamics. Next, it is assumed for the remaining dynamics that the stabi-
lization of the first subsystem has worked out, i.e., it is assumed that for the first subsystem
the state equals the reference state and the input equals the reference input. This assump-
tion simplifies the remaining dynamics considerably. Next, the remaining input is used for
establishing asymptotic stability of the simplified remaining dynamics. Having found in this
manner control laws for the two inputs, the resulting closed-loop tracking error dynamics is
considered. Due to the design this closed-loop tracking error dynamics has a cascaded struc-
ture. By means of the theory of cascaded systems global uniform asymptotic stability of the
tracking error dynamics is shown, i.e., it is shown that the tracking error converges to zero,
no matter where the system is initialized nor at which time-instant.

This design strategy is applied to the three models mentioned above. The behavior of the
resulting controllers is illustrated by means of numerical simulations and in case of the ship
by means of experiments on a scale model of an offshore supply vessel.

In the second part of the thesis some uncertainties are taken into account, concerning the
models of the mechanical systems under consideration. First the set-point control problem

161



162 Summary

for a rigid robot manipulator is studied in case the vector of gravitational forces is unknown.
Since compensation for this vector is needed to achieve perfect regulation, it is common
practice to use a PID controller instead of a PD-controller with gravity compensation. It is
shown that this approach leads to global asymptotic stability of the error dynamics provided
that the integral action is not activated from the beginning, but only after some period of time.

Secondly, the visual servoing problem for a rigid robot manipulator is considered. Imagine
that a rigid robot manipulator is moving in the horizontal plane and a camera is placed at
the ceiling to watch the manipulator from above. The output of this camera is displayed at
a screen. An operator determines a spot on the screen to which the tip of the manipulator
should move and a controller has to be found which makes the manipulator do so. One of the
major difficulties is that some of the camera parameters are unknown. The fact that also the
orientation angle of the camera is unknown leads to designing an adaptive controller to solve
this problem.

Thirdly, the tracking problem of Part | is considered again, but this time it is assumed that
certain system parameters are unknown. By means of an example it is shown that the formu-
lation of the adaptive tracking control problem is far from trivial. This is due to the fact that
entirely specifying the reference trajectory is in conflict with not knowing certain parameters.
For this example of a four-wheel mobile robot with unknown length a formulation of the
adaptive tracking problem is presented and also solved.

The thesis ends with conclusions and recommendations for further research.



Samenvatting

Dit proefschrift gaat over het ontwerpen van regelaars voor het volg-probleem voor bepaalde
klassen van mechanische regelsystemen. Het proefschrift bestaat uit twee delen. In het
eerste deel wordt een wiskundig model van het mechanische regelsysteem met twee ingan-
gen bekend verondersteld. Het doel is om een gespecificeerd traject te volgen, waarbij wordt
aangenomen dat dat gewenste traject daadwerkelijk door het regelsysteem te volgen is. Op
elk tijdstip wordt de volgfout gedefinieerd als het verschil tussen waar het regelsysteem is
en waar het zou moeten zijn (gezien het gewenste traject). Het probleem is nu om voor
het regelsysteem een regelaar te ontwerpen die er voor zorgt dat de volgfout naar nul con-
vergeert, ongeacht waar of op welk tijdstip het regelsysteem worditigdiseerd. Er wordt

een nieuwe ontwerpmethode gepresenteerd die gebaseerd is op de theorie van cascade syste-
men, dat wil zeggen, systemen die gezien kunnen worden als een bijzondere verbinding van
twee stabiele systemen. Deze nieuwe aanpak wordt toegepast op drie verschillende modellen.
In hoofdstuk 4 wordt het kinematische model van een mobiele robot beschouwd. Hoofdstuk 5
gaat over regelsystemen in “chained form”. Een grote klasse van interessante mechanische
regelsystemen kan worden getransformeerd naar de “chained form”, waaronder een robot
karretje, een wagen die een aantal opleggers trekt, een mesblad, een verticaal rollend wiel en
een ruimteschip met twee aandrijfmogelijkheden. In hoofdstuk 6 wordt het volg-probleem
behandeld voor een schip met slechts twee stuurmiddelen, terwijl het drie vrijheidsgraden
heeft.

In de cascade ontwerpaanpak wordt eerst een van de ingangen gebruikt om een deelsys-
teem van de volgfout-dynamica te stabilizeren. Daarna wordt voor de resterende dynamica
aangenomen dat de stabilisatie van het eerste deelsysteem gelukt is. Dat betekent dat veron-
dersteld wordt dat voor het eerste deelsysteem de toestand gelijk is aan de referentietoestand
en de ingang gelijk is aan de referentie-ingang. Deze aanname vereenvoudigt de resterende
dynamica aanzienlijk. Vervolgens wordt de ingang die nog over is gebruikt om asymptoti-
sche stabiliteit van de vereenvoudigde resterende dynamica te bewerkstelligen. Nu er op deze
manier regelwetten voor de twee ingangen gevonden zijn, wordt de resulterende volgfout-
dynamica in gesloten lus bekeken. Dankzij de ontwerpaanpak heeft de volgfout-dynamica
een cascade structuur. Met behulp van de theorie van cascade systemen wordt vervolgens
globale uniforme asymptotische stabiliteit van de volgfout-dynamica aangetoond, wat wil
zeggen dat de volgfout naar nul convergeert, ongeacht waar of op welk tijdstip het regelsys-
teem g@nitialiseerd wordt.

Deze ontwerpaanpak wordt toegepast op de drie eerder genoemde modellen. Het gedrag van
de resulterende regelaars wordtllystreerd met behulp van numerieke simulaties danwel,
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in geval van het schip, met behulp van experimenten op een schaalmodel van een zeewaardig
bevoorradingsschip.

In het tweede deel van het proefschrift wordt rekening gehouden met een aantal onzekerhe-
den in de modellen van de mechanische regelsystemen. Als eerste wordt gekeken naar het
probleem om een stijve robotarm naar een vast punt te sturen waarbij de zwaartekrachtsvector
onbekend verondersteld wordt. Aangezien deze vector gecompenseerd moet worden om per-
fecte positionering te krijgen is het gebruikelijk om een PID-regelaar te gebruiken in plaats
van een PD-regelaar met compensatie voor de zwaartekracht. Er wordt aangetoond dat deze
aanpak leidt tot globale asymptotische stabiliteit van de foutdynamica, onder de voorwaarde
dat de integrerende actie niet van het begin af aan, maar pas na enige tijd wordt geactiveerd.

Als tweede wordt het ‘visual servoing’ probleem voor stijve robotarmen bekeken. Neem aan
dat een stijve robotarm in een horizontaal vlak beweegt en dat een camera aan het plafond
de robotarm van boven registreert. Op een beeldscherm wordt weergegeven wat die camera
ziet. Het doel is om een regelaar te ontwerpen die er voor zorgt dat de robotarm zich beweegt
naar de plek die door iemand op het scherm is aangewezen. Een van de problemen die hierbij
een rol speelt, is dat enkele van de parameters van de camera niet bekend zijn. Het feit dat
bovendien de orientatiehoek van de camera onbekend is, heeft er toe geleid een adaptieve
regelaar te ontwerpen om dit probleem op te lossen.

Als derde wordt het volg-probleem van deel | opnieuw bekeken, maar deze keer wordt
aangenomen dat enkele parameters van het regelsysteem onbekend zijn. Door middel van
een voorbeeld wordt aangetoond dat het formuleren van een adaptief volg-probleem verre
van triviaal is. Dit komt doordat het volledig specificeren van het referentie-traject en het
niet kennen van enkele parameters met elkaar in conflict is. Voor dit voorbeeld van een
vier-wielige mobiele robot met onbekende lengte wordt het adaptieve volg-probleem zowel
geformuleerd als opgelost.

Het proefschrift wordt afgesloten met conclusies en aanbevelingen voor verder onderzoek.
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