
Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://seweb.se.wtb.tue.nl/

SE-Report: Nr. 2006-04

Control of a reentrant
manufacturing system with setup
times: the Kumar-Seidman case

E. Lefeber and J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2006-04
Eindhoven, October 2006

SE Reports are available via http://seweb.se.wtb.tue.nl/sereports

2

Abstract

In this paper we consider the control of a reentrant manufacturing system with setup times,
as introduced by Kumar and Seidman. In most literature on control of a network of servers
with setup times, first a policy is introduced and then the resulting network behavior is an-
alyzed. In manufacturing systems the network typically is fixed and given a priori. Further-
more, optimal steady state behavior is desired. Therefore, this paper follows a different ap-
proach. First optimal steady state network behavior is determined, then a feedback controller
is presented which makes the network converge towards this desired steady state behavior.
The resulting controller is a non-distributed controller: each server needs global state infor-
mation. For a manufacturing system this is not a problem, since global information typically
is available. Finally it is shown that also a distributed controller (each server needs only local
state information) can be used to achieve the same result.

1 Introduction
Reentrant manufacturing systemsmight show some unexpected behavior. In [1] it was shown
by simulation that even when each server has enough capacity to serve all jobs, these networks
can be unstable in the sense that the total number of jobs in the network explodes as time
evolves. Whether this happens or not depends on the policy used to control the flows through
the network. In [5] it was shown analytically that using a clearing policy (serve the queue
you are currently serving until it is empty, then switch to another queue), certain networks
become unstable, even deterministic systems with no setup times. In [8] several clearing
policies have been introduced, the so-called Clear a Fraction (CAF) policies. It was shown
that these policies are stable for a single server in isolation in a deterministic environment.
Furthermore, it was shown that a CAF policy stabilizes a multi server system, provided the
network is acyclic. A network is called acyclic if the servers can be ordered in such a way
that jobs can only move from one server to a server higher in the ordering. A network is
called non-acyclic if such an ordering is not possible. The example in [5] shows that there are
non-acyclic networks that can not be stabilized by a CAF policy.
The main reason why CAF policies can fail for a non-acyclic network is because they spend
too long on serving one type of job. This results in starvation of other servers and therefore
a waste of their capacity. Due to this waste the effective capacity of these other servers is
not sufficient anymore, resulting in an unstable system. This observation has led to the
development of so-called buffer regulators [4, 9] or gated policies. The main idea is that
each buffer contains a gate, so the buffer is split into two parts (before and after the gate).
Instead of switching depending on the total buffer contents, switching is now determined
based on the buffer contents after the gate. As a result, a server might now leave a buffer
earlier, avoiding long periods of serving one type of job. It has been shown in [9] that under
certain conditions on these regulators the (possibly non-acyclic) network is stabilized. Since
non-acyclic networks are only unstable under certain conditions, applying buffer regulators is
not always necessary. Needlessly applying buffer regulators results in a larger mean number
of jobs in the network, which from a performance point of view is undesired. Furthermore,
it is not known whether these policies result in optimal network behavior.
In [10, 11] a different approach has been developed. First the minimal period is determined
during which the network is able to serve all jobs that arrive during that period. Given this
minimal period, or any longer period, one can determine how long each server should serve
each step. Next, a distributed controller is proposed where each server serves its buffers in a
cyclic order until either the buffer becomes empty or the server has spend the time reserved
for serving that step. If necessary the next setup is prolonged to make sure that the time
reserved for serving a step is fully used. In [10, 11] it was shown that this policy guarantees
that all trajectories of the controlled system are bounded and that for constant arrival rates
the behavior of the network eventually becomes periodic, i.e. regular behavior is achieved.
The policy introduced in [10, 11] has two disadvantages. First, it is not really a state feedback:
the current mode of each server has been fixed a priori, independent of the current state.
Second, if initially a large number of jobs is in the system, the resulting periodic steady state
behavior also contains a large number of jobs in the system, as no attempt is made to reduce
the number of jobs, which from a performance point of view is undesired.
The above mentioned references are only a few of the many papers that have been published
in this area. However, most of the papers have one thing in common: first a policy (or
a class of policies) is proposed, and then the resulting behavior of the network under this
policy (these policies) is considered. Sometimes the system behavior is optimized over the
class of considered policies. A strength of these results is that they can be applied to general
networks. A drawback however is that it is usually unclear if the presented policies result in
optimal behavior, or what to do to obtain prescribed or desired system behavior. In particular
if a network is known a priori (and not subject to change), which typically is the case for
manufacturing systems, one has the possibility of taking a global viewpoint and design a
controller for the network which imposes optimal network performance.
Therefore, in this paper the approach we follow is exactly the other way around as in the

2

above mentioned papers. First we determine optimal system behavior. Next, this desired
closed-loop behavior of the system is used as a starting point and then, based on the ideas
presented in [6], a global policy is presented which establishes convergence to this optimal
behavior.
Finally, we are able to improve the presented controller in such a way that it can be imple-
mented in a distributed way. That is, we can implement a separate controller for each server
where both controllers need only local information, i.e. no information about the state at the
other server is needed. It turns out that the resulting local controllers are different from local
controllers as so far proposed in literature.

2 The Kumar-Seidman case

λ = 1
x1 x2

x3x4

µ1 =
1
0.3

µ4 = 1
0.6

µ2 =
1

0.6

µ3 =
1
0.3

A B

σ14 = σ41 = 50 σ23 = σ32 = 50

Figure 1: The system introduced in [5].

In [5] Kumar and Seidman presented the manufacturing system shown in Figure 1. A single
job-type is considered which first visits machine A, then machine B, then machine B again,
and finally machine A again. The successive buffers visited will be denoted by 1, 2, 3, and
4, respectively. The constant input rate λ into buffer 1 is 1 job/time-unit, while the maximal
process rates required at the buffers are µ1 = 1/0.3, µ2 = 1/0.6, µ3 = 1/0.3, and µ4 = 1/0.6,
respectively. Lastly, the times for setting up buffers 1 and 4 at machine A are σ41 = 50 and
σ14 = 50, the times for setting up to buffers 2 and 3 at machine B are σ32 = 50 and σ23 = 50.
Even though for this system each machine has enough capacity, i.e. (λ/µ1) + (λ/µ4) < 1 and
(λ/µ2) + (λ/µ3) < 1, it has been shown in [5] that since (λ/µ2) + (λ/µ4) > 1 and setup times are
all positive, using a clearing policy for both machines results in an unstable system.
The state of this system is not only given by the buffer contents x1, x2, x3, and x4, but also
by the remaining setup time at machine A, xA0 , the remaining setup time at machine B, xB0 ,
and the current mode m = (mA, mB) ∈ {(1, 2), (1, 3), (4, 2), (4, 3)}. We say that the system is in
mode (1,2) whenmachine A is processing or setting up for step 1 andmachine B is processing
or setting up for step 2. Similar for the other modes.
The input of this system is given by rates u1 ≤ µ1, u2 ≤ µ2, u3 ≤ µ3, and u4 ≤ µ4, at which
respectively buffers 1, 2, 3, and 4 are being served (a machine not necessarily has to serve at
full rate), as well as the current activity for machine A, uA0 ∈ {❶,①,❹,④}, and for machine B,
uB0 ∈ {❷,②,❸,③}. The activity ❶ denotes setting up for serving step 1, whereas ① denotes
serving step 1. Similarly, the activities for steps 2, 3, and 4 can be distinguished.
The dynamics of this system is hybrid. On the one hand we have the discrete event dynamics

xA0 := σ14; mA := 4 if uA0 = ❹ and mA = 1

xA0 := σ41; mA := 1 if uA0 = ❶ and mA = 4

xB0 := σ23; mB := 3 if uB0 = ❸ and mB = 2

xB0 := σ32; mB := 2 if uB0 = ❷ and mB = 3.

3 The Kumar-Seidman case

In words: if the system is currently in a mode, and according to the input the current activity
becomes “set up to a different mode”, both the remaining setup time and current mode
change.
On the other hand we have the continuous dynamics

ẋA0 (t) =

{
−1 if uA0 ∈ {❶,❹}
0 if uA0 ∈ {①,④}

ẋB0 (t) =

{
−1 if uB0∈ {❷,❸}
0 if uB0∈ {②,③}

ẋ1(t) = λ − u1(t) ẋ2(t) = u1(t) − u2(t)

ẋ4(t) = u3(t) − u4(t) ẋ3(t) = u2(t) − u3(t).

Furthermore, at each time instant the input is subject to the constraints u1 ≥ 0, u2 ≥ 0,
u3 ≥ 0, u4 ≥ 0, and

uA0 ∈ {❶,❹} u1 = 0 u4 = 0 for xA0 > 0

uA0 ∈ {①,❹} u1 ≤ µ1 u4 = 0 for xA0 = 0, x1 > 0, mA = 1

uA0 ∈ {①,❹} u1 ≤ λ u4 = 0 for xA0 = 0, x1 = 0, mA = 1

uA0 ∈ {❶,④} u1 = 0 u4 ≤ µ4 for xA0 = 0, x4 > 0, mA = 4

uA0 ∈ {❶,④} u1 = 0 u4 ≤ min(u3,µ4) for xA0 = 0, x4 = 0, mA = 4

uB0 ∈ {❷,❸} u2 = 0 u3 = 0 for xB0 > 0

uB0 ∈ {②,❸} u2 ≤ µ2 u3 = 0 for xB0 = 0, x2 > 0, mB = 2

uB0 ∈ {②,❸} u2 ≤ min(u1,µ2) u3 = 0 for xB0 = 0, x2 = 0, mB = 2

uB0 ∈ {❷,③} u2 = 0 u3 ≤ µ3 for xB0 = 0, x3 > 0, mB = 3

uB0 ∈ {❷,③} u2 = 0 u3 ≤ u2 for xB0 = 0, x3 = 0, mB = 3.

In words, these constraints say that in case the server is setting up, no jobs can be served.
Furthermore, in case a setup has been completed, only the job type can be processed for
which the server has been set up. This processing takes place at a rate which is at most µi if
jobs of step i are available in the buffer and at the arrival rate if no jobs of type i are available in
the buffer (i ∈ {1, 2, 3, 4}). Also, it is possible to either stay in the current mode, or to switch
to the other mode. In particular it is possible during a setup to leave that setup and start a
setup to the other type again. The latter setup is assumed to take the entire setup time.
Having defined the state, input, dynamics and constraints for the system, we can consider the
problem of controlling this system, i.e. designing an input u which satisfies the constraints
and achieves desired behavior. But before we can do so we first need to specify desired behav-
ior.

3 Desired periodic behavior
As mentioned in the introduction, we do not want to start from a policy which works for a
general network and analyze the resulting closed-loop behavior, but given this specific man-
ufacturing system we want to start from desired system behavior and determine a feedback
controller which makes the system converge towards this desired behavior. This implies that
we first need to define desired periodic behavior. For manufacturing systems this would typ-
ically be behavior for which the mean amount of jobs in the system is minimal, since from
Little’s law we know that this results in the smallest mean flow time (the time a job spends
in the system). More precisely, we would like to minimize

J =
1
T

∫T

0
x1(t) + x2(t) + x3(t) + x4(t) dt

over the set of feasible periodic orbits, where T denotes the period of the periodic orbit under
consideration.

4

A first observation is that the set of feasible periodic orbits is not empty. Note that, even
though in [5] it has been shown that using a clearing policy for both machines renders the
system of Section 2 unstable, it has been made clear in [10, 11] and other papers that this is
not some system property, but due to the policy used. To make the latter more clear, consider
machine A. Each job needs 0.3+0.6 = 0.9 time-units of processing. During a cycle of serving
both step 1 and step 4 in total 50+50 = 100 time-units are lost due to setups. Therefore, during
a cycle of 1000 time-units, the 1000 jobs that arrive can also be processed. The same holds
for machine B (since the parameters of machine B are identical). These 1000 time-units is
also the minimal cycle period as observed in [11], but a longer time period can be used as well.
As presented in [2, 7], it is not necessary that a periodic orbit with the smallest mean amount
of jobs also has the smallest period. Having a longer period in some cases reduces the mean
amount of jobs in the system. At first glance this is counterintuitive. Having a longer period
implies not serving jobs at the highest possible rate. Can this be efficient? It turns out that a
trade-off needs to be made. Since a small period implies that on average less time is wasted
on setups. So one either has to waste capacity by frequent switching, or by occasionally not
serving at the highest possible rate.
Consider an optimal periodic orbit with period T ≥ 1000. First consider machine A. For
an optimal periodic orbit a machine should always produce at the highest possible rate [3].
Furthermore, during the period T , both step 1 and step 4 need to serve T jobs. This first
observation determines the allowed activities, whereas the second observation determines
their respective durations. We obtain that machine A loops through the following activities:

• ❶ for 50 time-units,

• ① at rate u1 = 1/0.3 for 9
35T + 426

7 time-units,

• ① at rate u1 = 1 for 1
7T − 1426

7 time-units,

• ❹ for 50 time-units,

• ④ at rate u4 = 1/0.6 for 3
5T time-units.

Note that machine A serves T jobs of step 1 within 2
5T−100 < 3

5T time-units. Machine B needs

at least 3
5T > 2

5T − 100 time-units for serving step 2. Therefore, the possibility of machine B
serving step 2 at rate u2 = 1 can be disregarded. As a result, machine B needs to idle for a
duration of 1

10T − 100 time-units. Only for T > 1000 we have idling (not for T = 1000), and
for the optimal periodic orbit this idling occurs when x2 = x3 = 0 and machine B has been
set up for serving step 2.
Therefore, for the optimal periodic orbit, machine B loops through the following activities:

• ❷ for 50 time-units,

• ② at rate u2 = 0 for 1
10T − 100 time-units,

• ② at rate u2 = 1/0.6 for 3
5T time-units,

• ❸ for 50 time-units,

• ③ at rate u3 = 1/0.3 for 3
10T time-units.

Given these actions of both machines it is rather straightforward to determine for a given
period T the optimal periodic behavior and the corresponding average number of jobs in the
system.
For buffer 1 we have that for a duration of 3

5T + 100 the buffer contents increase at a rate of 1

after which for a duration of 9
35T + 426

7 the buffer contents decrease to the initial level again.

5 Desired periodic behavior

Clearly, for the optimal periodic orbit the buffer contents go from 0 to 3
5T + 100 and back to

0 again. As a result ∫T

0
x1(t) dt =

9
35
T2 +

600
7

T +
50000

7
.

Similarly, for buffer 3 we have that for a duration of 3
5T the buffer contents increase from 0 to

T . Next, the buffer contents remain at T for a duration of 50 time-units due to the setup from
serving step 2 to serving step 3. Finally for a duration of 3

10T the buffer contents decrease
from T to 0. This results in ∫T

0
x3(t) dt =

9
20

T2 + 50T.

Determining the mean number of jobs in buffers 2 and 4 is a little bit more involved. First
consider the case where T > 1000. In that case we know that buffer 2 is empty when we start
serving step 2 at full rate, which coincides with starting to serve step 1 at full rate also. Then,
for a duration of 9

35T + 426
7 the contents of buffer 2 increase from 0 to 3

7T + 71 37 . Next, for a

duration of 1
7T − 1426

7 the contents of buffer 2 decrease from 3
7T + 71 37 to

1
3T + 166 2

3 . Finally,
for a duration of 1

5T + 100 the contents of buffer 2 decrease from 1
3T + 166 2

3 to 0. As a result∫T

0
x2(t) dt =

1
7
T2 +

100
7

T −
50000

7
.

When machine A completes serving step 1, machine B still needs 1
5T + 100 for clearing

buffer 2. Therefore, when machine A is about to start serving step 4 it still takes 1
5T + 100

time-units for jobs to arrive from machine B, which implies that buffer 4 should already con-
tain 1

3T +166 2
3 jobs. Therefore, for buffer 4 we have the following: For a duration of 2

5T buffer
contents are equal to 1

3T +166 2
3 jobs. Then for a duration of 1

5T +100 buffer contents decrease

from 1
3T + 166 2

3 to 0. Then for a duration of 3
10T buffer contents increase from 0 to 1

2T and
finally for a duration of 1

10T − 100 buffer contents decrease from 1
2T to 1

3T + 166 2
3 jobs. As a

result ∫T

0
x4(t) dt =

17
60

T2 +
200
3

T.

The above derivation for the mean wip levels of buffers 2 and 4 was done under the assump-
tion that buffer 2 is empty when machine B starts serving step 2 at full rate, which is the
case for T > 1000. For T = 1000 it might be that buffer 2 contains jobs when machine B
starts serving step 2 at full rate. In the latter case, for optimal behavior, machine A starts
serving step 1 exactly at the time buffer 2 becomes empty. As a result, machine A also starts
serving step 4 later, which leads to a reduction of the initial contents of buffer 4 by exactly the
same amount as the initial contents of buffer 2 has increased. From this observation we can
conclude that the mean number of jobs in the system therefore does not change.
To summarize, for a given period T ≥ 1000 the periodic orbit which minimizes the mean
number of jobs in the system results in:

J =
1
T

∫T

0
x1(t) + x2(t) + x3(t) + x4(t) dt =

17
15
T +

650
3

.

Clearly, the minimal mean number of jobs is achieved for T = 1000.
As mentioned, several periodic orbits of period T = 1000 exist which minimize the mean
amount of jobs in the system. Therefore, we also consider the mean amount of work in the
system. The amount of work associated with a job is its total remaining process time. A
job which is in buffer 1 needs 0.3 time-units processing at step 1, 0.6 time-units at step 2,
0.3 time-units at step 3 and 0.6 time-units at step 4. So the amount of work associated
with a job in buffer 1 equals 1.8. Therefore, the amount of work in the system is given by
1.8x1 + 1.5x2 + 0.9x3 + 0.6x4. As the mean amount of jobs in buffers 1 and 3 is the same, we

6

are interested in the periodic orbit for which the mean amount of jobs in buffer 2 is minimal.
That is, the periodic orbit for which machine A andmachine B start serving respectively steps
1 and 2 at the same time. The time-evolution of both the buffer contents and the amount of
work for this orbit has been depicted in Figure 2.

PSfrag replacements

0
0
0

1

2

3

4

200

200

200 400

400

400

500

600

600

600 800

800

800 1000

1000

1000

2000
2500
3000
3500
4000
5000

6000

1460

1480

1500

1520

1540

1560

×10
2
4

6
8
10

timetime

b
u
ff
er

co
n
te
n
ts

total number of jobs
Controller from [11]

Controller from Proposition 3

w
o
rk

[h
rs
]x

x

x

x

Figure 2: Evolution over time of both buffer contents and amount of work for the desired
periodic behavior

• From t = 0 till t = 350 the system is in mode (1,2). From t = 0 till t = 50 both machines
are setting up, from t = 50 till t = 350 both machines are serving at full rate. At the end
of this mode x1 = 0, x2 = 500, x3 = 500, and x4 = 500.

• From t = 350 till t = 650 the system is in mode (4,2). From t = 350 till t = 400
machine A is setting up, from t = 400 till t = 650 machine A is serving at full rate.
Machine B is serving at full rate all the time. At the end of this mode x1 = 300, x2 = 0,
x3 = 1000, and x4 = 83 1

3 = 50/0.6.

• From t = 650 till t = 1000 the system is in mode (4,3). Machine A is serving at full
rate all the time. From t = 650 till t = 700 machine B is setting up. From t = 700 till
t = 1000 machine B is serving at full rate. At the end of this mode x1 = 650, x2 = 0,
x3 = 0, and x4 = 500.

For this periodic orbit the mean amount of jobs in the system equals 1350 and the mean
amount of work equals 1515 time-units. Notice that for the desired periodic orbit the system
never is in mode (1,3). Furthermore, the largest amount of work in the system is reached at
t = 50, in mode (1,2).

4 Non-distributed feedback
In the previous section we determined optimal periodic behavior for the manufacturing sys-
tem introduced in Section 2. For the periodic orbit as depicted in Figure 2, both the mean
amount of jobs and the mean amount of work in the system is minimal. In particular this
implies that the mean flow time, i.e. the time a job spends in the system, is minimal. Given
this desired periodic behavior, we next want to have a feedback controller which makes the
manufacturing system introduced in Section 2 converge towards this desired behavior from
any initial condition. Given that we are in a manufacturing setting, global information is
available, which in particular implies we do not have to restrict ourselves to distributed con-
trollers. A non-distributed controller can be implemented relatively easily.

7 Non-distributed feedback

In [6] we introduced for arbitrary networks of switching servers with setup times an approach
for deriving a feedback controller from a given desired periodic orbit. This approach guaran-
tees convergence similar to the desired periodic orbit. However, it might be that some buffers
always contain a fixed number of additional number of jobs, compared to the desired peri-
odic orbit. Something similar holds for the controllers presented in [10, 11], but the controller
that follows from applying the ideas in [6] results in smaller additional amount of jobs in the
system.
Before presenting the controller, we first consider the desired behavior as depicted in Fig-
ure 2. The system cyclically visits the modes (1,2), (4,2), and (4,3). In particular the system
does not visit mode (1,3). Similar to the controller presented in [6] we therefore let the feed-
back be such that the system cyclically visits the modes (1,2), (4,2), and (4,3). If the system
happens to be initially in mode (1,3), we switch to mode (1,2), since the largest amount of work
in the system is reached in mode (1,2), cf. [6].
Next, we need to determine when to leave each mode. Consider mode (1,2) of the desired
periodic orbit. In this mode, only contents of buffer 1 decreases and reaches the value 0.
Buffers 2 and 3 both increase. Since machine B serves from buffer 2 to buffer 3, these buffers
can be considered together. Both buffers increase until x2 + x3 = 1000. Therefore, the
feedback leaves mode (1,2) when x1 = 0 and x2 + x3 ≥ 1000. Notice that it might happen
that machine A needs to continue serving buffer 1 at the arrival rate whenever x1 = 0 and
x2 + x3 < 1000. Similarly, when x1 = x2 = 0 and x3 < 1000, also machine B might need to
continue serving buffer 2 at the arrival rate.
In mode (4,2) the contents of both buffer 2 and buffer 4 decreases, until respectively x2 = 0
and x4 = 83 1

3 . The contents of both buffer 1 and buffer 3 increases, until respectively x1 = 300
and x3 = 1000. Notice that by staying in mode (4,2) it is not possible for x3 to become
arbitrarily large. Therefore, the feedback leaves mode (4,2) when x2 = 0, x4 ≤ 83 1

3 , and
x1 ≥ 300. All three conditions need to be met. Therefore, it might be required for machine A
or machine B to idle.
Similarly, the feedback leaves mode (4,3) when both x3 = 0 and x1 ≥ 650. Again, it might be
required for machine A or machine B to idle.
Notice that the condition on x1 for leaving mode (4,2) and mode (4,3) are automatically ful-
filled once the system has been in mode (1,2). Therefore, we drop these conditions in the
feedback.
The above can be summarized as follows:

Proposition 1. Consider the system as depicted in Figure 1 in closed-loop with the following feedback:

• If initially in mode (1,3), switch to mode (1,2).

• If in mode (1,2), stay in this mode until both x1 = 0 and x2 + x3 ≥ 1000. Then switch to
mode (4,2). Both machines serve at the highest possible rate (which might be the arrival rate).

• If in mode (4,2), stay in this mode until both x2 = 0 and x4 ≤ 83 1
3 . Then switch to mode (4,3).

Both machines serve at the highest possible rate (which might be 0).

• If in mode (4,3), stay in this mode until x3 = 0. Then switch to mode (1,2). Both machines
serve at the highest possible rate (which might be 0).

Then the resulting closed-loop system converges towards the behavior as depicted in Figure 2.

Proof. Let t(k)12 denote the time at which mode (1,2) is entered for the kth time (k ≥ 1), and let

(x(k)1 , x
(k)
2 , x

(k)
3 , x

(k)
4) denote the buffer contents at t(k)12 for buffers 1, 2, 3, and 4, respectively. Let

t
(k)
42 and t

(k)
43 denote the moment at which mode (4,2) respectively mode (4,3) is entered, and

define the durations of these modes: τ
(k)
12 = t

(k)
42 − t

(k)
12 , τ

(k)
42 = t

(k)
43 − t

(k)
42, and τ

(k)
43 = t

(k+1)
12 − t

(k)
43

respectively.
It needs to be shown that

lim
k→∞

(x(k)1 , x
(k)
2 , x

(k)
3 , x

(k)
4) = (650,0,0, 500). (1)

8

A first observation is that at t = t
(k)
43 we have x2 = 0 and x3 ≥ 1000, since in mode (1,2) at least

1000 jobs are processed by machine A and in mode (4,2) buffer 2 is emptied. As a result, at

t = t
(k+1)
12 we have x(k+1)2 = 0, x(k+1)3 = 0, x(k+1)4 ≥ 500.

A second observation is that τ
(k+1)
42 ≥ 300 (since x(k+1)4 ≥ 500), and τ

(k)
43 ≥ 350 (since machine B

needs to process at least 1000 jobs and requires a setup).

From these observations it follows that without loss of generality we can assume x(k)1 ≥ 650,

x
(k)
2 = 0, x(k)3 = 0, x(k)4 ≥ 500 by considering k ≥ 2. Under these assumptions we would like to

determine x(k+1)1 and x
(k+1)
4 .

During mode (1,2), first both machines need to be set up, which takes 50 time-units. At

t
(k)
12 + 50 buffer 1 contains x(k)1 + 50 jobs. If machine A serves at full rate, x1 effectively reduces

at a rate of (1/0.3) − 1 = 7/3 jobs per time-unit. Therefore, clearing buffer 1 takes 3
7 (x

(k)
1 + 50),

during which 10
7 (x

(k)
1 +50) jobs are being processed by machine A. Notice that since x(k)1 ≥ 650

also 1000 jobs have been processed, so τ
(k)
12 = 50 + 3

7 (x
(k)
1 + 50). Also, at t(k)42 = t

(k)
12 + τ

(k)
12 we have

x2 = x3 =
5
7 (x

(k)
1 + 50).

Next, from the condition on x2 we obtain τ
(k)
42 ≥ 3

7 (x
(k)
1 + 50), and from the condition on x4 we

obtain τ
(k)
42 ≥ 3

5x
(k)
4 , so τ

(k)
42 = max

(3
7 (x

(k)
1 + 50), 35x

(k)
4

)
.

At t43 = t
(k)
42 + τ

(k)
42 we have x3 = 10

7 (x
(k)
1 + 50), so τ43 = 50 + 3

7 (x
(k)
1 + 50).

Since x4 = 0 at t43+50 we get x(k+1)4 = 5
7 (x

(k)
1 +50). Furthermore, x(k+1)1 = τ

(k)
42+τ

(k)
43 = max

(3
7 (x

(k)
1 +

50), 35x
(k)
4

)
+ 50 + 3

7 (x
(k)
1 + 50).

To summarize, we have for k ≥ 2 that

x
(k+1)
1 = max

(
3
7
(x(k)1 + 50),

3
5
x
(k)
4

)
+ 50 +

3
7
(x(k)1 + 50) (2a)

x
(k+1)
2 = 0 (2b)

x
(k+1)
3 = 0 (2c)

x
(k+1)
4 =

5
7
(x(k)1 + 50) (2d)

Using this map we need to show that (1) holds.

To simplify analysis of (2), define y
(k)
1 = 1

7 (x
(k)
1 + 50) − 100 and y

(k)
4 = 1

5x
(k)
4 − 100, or x(k)1 =

7y(k)1 + 650, and x
(k)
4 = 5y(k)4 + 500. Then using (2) we obtain for k ≥ 2:

y
(k+1)
1 =

3
7
max(y(k)1 , y

(k)
4) +

3
7
y
(k)
1 yB1 ≥ 0 (3a)

y
(k+1)
4 = y

(k)
1 yB4 ≥ 0. (3b)

From (3) we have

0 ≤ y
(k+1)
1 ≤

6
7
max(y(k)1 , y

(k)
4).

Also

0 ≤ yk+21 ≤
6
7
max

(6
7
max(y(k)1 , y

(k)
4), y(k)1

)
≤
6
7
max(y(k)1 , y

(k)
4).

Therefore,

0 ≤ max(yk+21 , yk+24) ≤
6
7
max(y(k)1 , y

(k)
4),

from which we can conclude that

lim
k→∞

y
(k)
1 = lim

k→∞
y
(k)
4 = 0,

9 Non-distributed feedback

which shows that (1) holds.

Remark 2. Proposition 1 only claims convergence towards the steady state cycle depicted in
Figure 2. No claims are made concerning optimal transient behavior.

5 Distributed controller implementation
The controller derived in the previous section is a non-distributed controller. Machine A
needs information about the state at machine B to determine what to do, and machine B
requires information about the state at machine A. Since we consider a manufacturing prob-
lem, global information is available and a non-distributed controller can be implemented in
a rather straightforward way.
Nevertheless, in this case the controller can be implemented in a distributed way. That is,
such that machine A does not require information about the state at machine B and ma-
chine B does not require information about the state at machine A. This becomes clear from
the proof of Proposition 1.
Notice that we know from the proof of Proposition 1 that for k ≥ 2 when machine B switches
from serving step 2 to serving step 3, x2 = 0 and x2 + x3 ≥ 1000. That is, buffer 2 needs to be
empty, and machine B should have served at least 1000 jobs (for k ≥ 2). Furthermore, notice
that before switching from mode (4,2) to mode (4,3) it might happen that machine B needs
to idle (in case x4 is still too large). However, instead of first idling and then serving step 3,
machine B can also first switch and serve step 3 and then idle for the same duration. As
long as machine A stops serving step 4 at the same time as in the feedback of Proposition 1,
the mapping (2) still holds. So as long as the behavior of machine A is still according to
that specified by the feedback of Proposition 1 we can implement the following controller for
machine B:

• Serve step 2 at the highest possible rate (which might be at the arrival rate or even
idling) until both x2 = 0 and at least 1000 jobs have been served. Then switch to step 3.

• Serve step 3 at maximal rate until x3 = 0. Then switch to step 2.

It remains to determine a controller for machine A. As mentioned above, this controller
needs to make sure that, after a finite transient, the overall system behavior still satisfies
mapping (2). Notice that in this mapping only x1 and x4 play a role. This enables us to come
up with a controller for machine A. From the proof of Proposition 1 we know that, for k ≥ 2,
during mode (1,2) machine A serves x̄(k)1 = 10

7 (x
(k)
1 + 50) jobs. From (2d) we know that after

machine A has served step 4, machine B is empty and 1
2 x̄

(k)
1 jobs remain in buffer 4. At the

time machine A starts serving step 4, buffer 4 contains x(k)4 jobs. From this it follows that

machine A has served x
(k)
4 + x̄

(k)
1 − 1

2 x̄
(k)
1 = x

(k)
4 + 1

2 x̄
(k)
1 jobs. Therefore, we can implement the

following controller for machine A:

• Serve step 1 at the highest possible rate (which might be at the arrival rate) until both
x1 = 0 and at least 1000 jobs have been served. Then switch to step 4. Let x̄1 denote the
number of jobs served.

• Let x̄4 denote the number of jobs in buffer 4. Serve x̄4 + 1
2 x̄1 jobs from buffer 4. Then

switch to step 1.

The above can be summarized in the following

Proposition 3. Consider the system as depicted in Figure 1 in closed-loop with the following feedback:

• Controller for machine A:

– If serving step 1, continue until both x1 = 0 and at least 1000 jobs have been served.
Then switch to step 4. Let x̄1 be the number of jobs served during this mode.

10

– Let x̄4 denote the number of jobs in buffer 4 when the setup to serving step 4 has com-
pleted. If serving step 4, continue until x̄4 + 1

2 x̄1 jobs have been served. Then switch to
step 1.

• Controller for machine B:

– Serve step 2 at the highest possible rate (which might be at the arrival rate or even idling)
until both x2 = 0 and at least 1000 jobs have been served. Then switch to step 3.

– Serve step 3 at maximal rate until x3 = 0. Then switch to step 2.

Then the resulting closed-loop system converges towards the behavior as depicted in Figure 2.

Proof. Notice that the cycle for machine B always takes at least 1000 time-units, since at least
1000 jobs need to be served by each step during the cycle. First, assume that the cycle at
machine B repeatedly takes exactly 1000 time-units. In that case machine A also takes a
period of 1000 time-units. Furthermore, serving step 1 takes 300 time-units and serving
step 4 takes 600 time-units, which implies that buffer 4 contains 500 jobs when machine A
starts serving step 4. This implies that the system operates according to the desired periodic
orbit.
As soon as the cycle for machine B takes strictly more than 1000 time-units, machine B
will synchronize with machine A, cf. Section 3, i.e after a finite transient, x2 = x3 = 0 and
machine B is waiting for jobs to arrive from machine A. After this transient, machine A
guarantees that (2) holds again, which guarantees (1).

6 Simulation experiments
To support our claims we performed several simulations in which we compared the dis-
tributed controller presented in the previous section with the controller proposed in [11]. We
chose the parameters of the latter controller according to the desired periodic orbit, i.e. such
that this controller is able to stay on the desired periodic orbit once the system is on it.
In the first simulation we started with an empty system, i.e. x1 = x2 = x3 = x4 = 0, where
we initiated the controllers for machine A and B in respectively “serving step 1” and “serving
step 2”. The resulting responses of the controlled systems are given in Figure 3 for both
controllers. In this figure we see that the controller proposed in [11] achieves regular behavior,
as claimed in [11]. Furthermore, we see that buffer 1 is never emptied, resulting in a larger
mean number of jobs in the system. For the controller of Proposition 3 we obtain convergence
towards the desired periodic orbit. Notice that the total number of jobs oscillates between 1150
at the end of mode (4,3) and 1550 at the time the system starts serving step 4, as should be
the case.
In the second simulation we do not start with an empty system, but with initially 1000 jobs
in each buffer, i.e. x1 = x2 = x3 = x4 = 1000, where the controllers were initiated as in the
first simulation. The resulting responses of the controlled systems are given in Figure 4 for
both controllers. In this figure we clearly see the focus on regular behavior for the controller
introduced in [11]. None of the buffers is cleared and themean amount of jobs in the system is
not reduced. However, the controller presented in Proposition 3 is able to reduce the number
of jobs in the system and makes the system converge again to the desired optimal behavior.
Our third simulation experiment is a discrete event simulation. First of all, the hybrid fluid
model as introduced in Section 2 has been replaced by its discrete event counterpart. Second,
all process times and setup times are made stochastic by drawing them from independent
exponential distributions. That is, process times for step 1 are drawn from an exponential dis-
tribution with mean 0.3, process times for step 2 are drawn from an exponential distribution
with mean 0.6, setup times for switching from step 1 to step 4 are drawn from an exponential
distribution with mean 50, etc. Again we initiated the system in x1 = x2 = x3 = x4 = 1000,
but this time assuming that the setups to serving step 1 and step 2 respectively have already
been completed. Implementing the controller of Proposition 3 in this stochastic setting is

11 Simulation experiments

PSfrag replacements

0
0

0
0

0
0

0
0

1

1

2

2

3

3

4

4

200

200

400

400

500

500

600

600

800

800

1000

1000

1000

1000

1000

1000

1000

1000

2000

20002000

2000

20002000

2500

30003000

30003000

3500

40004000

40004000
5000

6000
1460
1480

1500

1500

1520
1540
1560

×10
2
4

6
8
10

timetime

timetime

b
u
ff
er

co
n
te
n
ts

b
u
ff
er

co
n
te
n
ts

to
ta
l
n
u
m
b
er

o
f
jo
b
s

to
ta
l
n
u
m
b
er

o
f
jo
b
s

Controller from [11]Controller from [11]

Controller from Proposition 3Controller from Proposition 3

work [hrs]

x

x

x

x

x

x

x

x

Figure 3: The buffer contents and total number of jobs for a deterministic system initiated
in (x1, x2, x3, x4) = (0,0,0,0) for both the distributed controller proposed in [11] and the dis-
tributed controller of Proposition 3.

rather straightforward. The controller introduced in [11], however, requires predetermined
maximum durations. Therefore, we considered a preemptive resume policy. That is, in case
the machine has not yet completed a job but it is time to switch, the machine stops serving
the job and completes this service as soon as the machine has switched back. The resulting
responses of the controlled systems in this stochastic discrete event environment are given
in Figure 5 for both controllers. By controlling the seeds of the random generator we made
sure to have a fair comparison between both controllers. The successive inter arrival times
are the same for both experiments, as are the successive process times at each machine and
the successive setup times. We looking at the results depicted in Figure 5 we see that similar
remarks as for the second simulation can be made. Due to the stochasticity we see some
varying behavior over time. The controller introduced in [11] keeps the number of jobs in the
system between 4000 and 6000, whereas the controller of Proposition 3 keeps the number
of jobs in the system between 1500 and 2500.

7 Conclusions
In this paper we considered the reentrant system introduced by Kumar and Seidman. Since
we are interested in optimal network behavior, instead of proposing a control policy for this
reentrant network and analyzing the resulting network behavior, we first determined the op-
timal behavior for this network and then determined a policy which guarantees convergence

12

PSfrag replacements

0
0

0
0

0
0

0
0

1

1

2

2

3

3

4

4

4

4

4

4

200
400

500

500

600
800

1000

1000

1000

1000

2000

2000

2000

2000

2500

2500

3000

3000

3000

3000

3500

3500

4000

4000

5000

5000

6000

6000

1460
1480

1500

1500

1520
1540
1560

×10×10

×10×10

22

22

44

44

66

66

88

88

1010

1010

timetime

timetime

b
u
ff
er

co
n
te
n
ts

b
u
ff
er

co
n
te
n
ts

to
ta
l
n
u
m
b
er

o
f
jo
b
s

to
ta
l
n
u
m
b
er

o
f
jo
b
s

Controller from [11]Controller from [11]

Controller from Proposition 3Controller from Proposition 3

work [hrs]

x

x

x

x

x

x

x

x

Figure 4: The buffer contents and total number of jobs for a deterministic system initiated in
(x1, x2, x3, x4) = (1000, 1000, 1000, 1000) for both the distributed controller proposed in [11]
and the distributed controller of Proposition 3.

towards this optimal behavior.
The resulting controller was a non-distributed controller, i.e. each machine needs to have
global information for determining when to switch. Since we are in a manufacturing setting,
this can be implemented rather easily. However, it turned out that this non-distributed con-
troller can be implemented in a distributed way, i.e. such that each machine only requires
local information for determining when to switch. We showed that these distributed con-
trollers also guarantee convergence of the system towards the desired behavior. The proposed
distributed controllers have been implemented successfully in a discrete event simulation
study containing stochasticity.
Most of the literature on distributed control on networks starts from a policy which works for
an arbitrary network and then analysis its performance. This is a good approach for networks
that are unknown or frequently subject to change. However, for networks that are fully known,
and not subject to change, a different approach should be used. In this paper we showed that
it is possible to come up with distributed controllers that have been designed for a particular
network in order to arrive at optimal network behavior. The resulting distributed controllers
are different for each server and take into account knowledge of the network topology. Fur-
thermore, the controllers do not fit in the class of standard controllers, such as clearing,
gated, or k-limited policies.

13 Conclusions

PSfrag replacements

0
0

0
0

0
0

0
0

1

1

2

2

3

3

4

4

4

4

4

4

200
400

500

500

600
800

1000

1000

1000

1000

2000

2000

2000

2000

2500

2500

3000

3000

3000

3000

3500

3500

4000

4000

5000

5000

6000

6000

1460
1480

1500

1500

1520
1540
1560

×10×10

×10×10

22

22

44

44

66

66

88

88

1010

1010

timetime

timetime

b
u
ff
er

co
n
te
n
ts

b
u
ff
er

co
n
te
n
ts

to
ta
l
n
u
m
b
er

o
f
jo
b
s

to
ta
l
n
u
m
b
er

o
f
jo
b
s

Controller from [11]Controller from [11]

Controller from Proposition 3Controller from Proposition 3

work [hrs]

x

x

x

x

x

x

x

x

Figure 5: The buffer contents and total number of jobs for a stochastic system initiated in
(x1, x2, x3, x4) = (1000, 1000, 1000, 1000) for both the distributed controller proposed in [11]
and the distributed controller of Proposition 3.

Acknowledgments
The authors sincerely thank Joost van Eekelen for providing the code for the simulations.

14

Bibliography

[1] J. Banks and J.G. Dai. Simulation studies of multiclass queueing networks. IIE Transac-
tions, 29:213–219, 1997.

[2] J.A.W.M. van Eekelen, E. Lefeber, and J.E. Rooda. Feedback control of 2-product server
with setups and bounded buffers. In Proceedings of the American Control Conference, Min-
neapolis, Minnesota, USA, June 2006.

[3] J.A.W.M. van Eekelen, E. Lefeber, and J.E. Rooda. State feedback control of switching
servers with setups. Discrete Event Dynamic Systems, 2007. submitted.

[4] C. Humes, Jr. A regulator stabilization technique: Kumar Seidman revisited. IEEE
Transactions on Automatic Control, 39(1):191–196, January 1994.

[5] P.R. Kumar and T.I. Seidman. Dynamic instabilities and stabilization methods in dis-
tributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic
Control, 35(3):289–298, March 1990.

[6] E. Lefeber and J.E. Rooda. Controller design of switched linear systems with setups.
Physica A, 363(1), April 2006.

[7] T.L. Olsen and W.-M Lan. Multi-product systems with both setup times and costs: fluid
bounds and schedules. Operations Research, 2005. Accepted for publication.

[8] J. Perkins and P.R. Kumar. Stable, distributed, real-time scheduling of flexible man-
ufacturing/assembly/disassembly systems. IEEE Transactions on Automatic Control,
34(2):139–148, February 1989.

[9] J.R. Perkins, C. Humes, Jr, and P.R. Kumar. Distributed scheduling of flexible manufac-
turing systems: Stabiliy and performance. IEEE Transactions on Robotics and Automation,
10(2):133–141, April 1994.

[10] A.V. Savkin. Regularizability of complex switched server queueing networks modelled
as hybrid dynamical systems. Systems and Control Letters, 35:291–299, 1998.

[11] A.V. Savkin. Optimal distributed real-time scheduling of flexible manufacturing net-
works modeled as hybrid dynamical systems. In Proceedings of the 42nd Conference on
Decision and Control, pages 5468–5471, Honolulu, Hawaii, USA, December 2003.

15

