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Abstract

In this paper we study the control of switching servers, which can for example be found in man-
ufacturing industry. In general, these systems are discrete event systems. A server processes
multiple job types. Switching between the job types takes time and during that time, no jobs can
be processed, so capacity is lost. How should a server switch between the job types in an efficient
way? In this paper we derive the optimal process cycle with respect to work in process levels for
a server with two job types and finite buffer capacities. The analysis is performed using a hybrid
fluid model approximation. After the optimal process cycle has been defined, a state feedback
controller is proposed that steers the trajectory of the system to this optimal cycle.
Workstations are often placed in series to form a flowline of servers. Our goal is to control
flowlines of switching servers in a way that the work in process level is minimized. In a flowline,
only the most downstream workstation influences the work in process level of the system, since
upstream workstations simply move jobs from one server to the other. If it is possible to have
the most downstream workstation process in its optimal cycle and the other workstations can
make this happen, then optimal work in process levels are achieved. This paper investigates
under which conditions the upstream workstations can make the most downstream workstation
work optimally. Conditions on the upstream workstations are derived and the class of flowlines
is characterized for which the optimal process cycle of an isolated downstream workstation can
become the optimal process cycle for the flowline. For a flowline consisting of two workstations,
a state feedback controller is proposed and convergence to the optimal process cycle is proved
mathematically. An extensive case study demonstrates how the controller performs, for both the
hybrid fluid model and in a discrete event implementation with stochastic inter-arrival and process
times.



1 Introduction
In a lot of applications, servers have to share capacity over competing resources. Such servers
can be found in manufacturing industry, food processing facilities, traffic flow networks and
data communication networks. In general, these systems are discrete event systems. Switching
between the competing resources might take time, the so-called setup time. In this paper we
regard the scheduling problem of switching servers with non-zero setup times. We first derive
the optimal process cycle with respect to work in process levels for a switching server, where
we use hybrid fluid model dynamics to describe the discrete event behavior. Next, we propose
a state feedback controller that brings the trajectory of a system to the optimal cycle. After the
analysis for a single workstation has been completed, we expand the analysis to switching server
flowlines.
With respect to scheduling of a single switching server, in [14, 15, 16] a method is proposed in
which n queues are served. A stable limit cycle solution is found with minimal cycle period. The
control policy then consists of fixed process periods for each job type, actually a feed forward
controller. A disadvantage of this approach is that it does not deal with disturbances and more-
over, it does not reduce the number of jobs in the system, in case this number of jobs is larger
than necessary. In this study we use a feedback controller, to deal with disturbances and with
techniques as described in [13], robustness can be shown. It also reduces the number of jobs in
the system if possible.
Hybrid fluid model dynamics are also used in [2, 8]. In these studies, scheduling problems for
two competing queues with both infinite and finite buffer capacities are considered, as we do
in this paper. However, those studies are based on completely symmetric systems, i.e. equal
setup times, equal arrival rates and equal process rates for both job types, whereas we drop these
assumptions. Another assumption in [2, 8] is that the optimal process cycle is never influenced
by the maximum buffer capacities, whereas we study this influence. On the other hand, [2, 8]
also study optimal transient behavior, which we do not consider explicitly in this paper.
For queuing systems, policies to obtain stable process cycles are proposed in [3, 4]. Some papers,
e.g. [12], use a heavy traffic assumption on top of the proposed policy. In most work, first a
control policy is proposed and then analysis and (sometimes) optimization is done within the
given policy. Clearing policies (serve a queue until it is empty then switch to another queue) of
threshold services (serve a queue until a value has been reached) are mostly considered in this
area for both stochastic and deterministic environments. In this paper, we first derive the desired
process cycle and then look for a control policy. The control policies that are proposed in this
study follow from methods described in [11]. The derivations are not given here, the interested
reader is referred to [11]. Related work for stochastic systems has been done in [9], but only
equal maximum process rates and infinite buffer capacities are considered therein.
In [10] a fluid model is presented for a multi-product server which has to choose between the
competing resources. A convex optimization problem is defined which results in a lower bound
on the work in process levels in a deterministic environment. It is stated that the polling table
resulting from the optimization is rare to find and in most cases unachievable. In this paper we
show that for a server with two job types, this lower bound is actually achievable.
A well known scheduling heuristic is based on the cµ-rule (see e.g. [5]) where switching (without
setup times) takes place according to a cµ index where c is a cost rate and µ the process rate. The
job type with highest index has priority. In our research, an optimal process cycle is derived, in
which a slow-mode may occur (also referred to in literature as ‘idling’ [6] or ‘cruising’ [10]). In
this mode, lots are processed at a lower rate than the maximum rate. If the slow-mode occurs, it
takes place at the queue with the highest cλ index, even if the cµ index of the other job type is
higher, as is shown in the case study in Section 6.
For flowlines of switching servers, we also want to find optimal process cycles. Since in a flow-
line, the work in process level is completely determined by the most downstream workstation
(other workstations can not change the amount of jobs in the system), the optimal work in pro-
cess level of the flowline can never be less than that of the most downstream workstation in
isolation. Therefore, if the most downstream workstation can process at its optimal cycle and the
other workstations can make this happen, minimal work in process levels are achieved for the
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whole flowline. This paper investigates and characterizes the class of flowlines for which this is
possible.
The remainder of this paper can roughly be divided into two parts and is organized as follows.
In sections 2 and 3, the hybrid fluid model (ODE) dynamics of a single switching server are de-
scribed and the optimal process cycle of such a server is derived. In Section 4 a state feedback
controller for a single switching server is proposed and convergence is proved analytically. The
influence of finite buffer capacities on the optimal process cycle and the feedback controller is
then studied in Section 5. The part about the single switching server is concluded with an illustra-
tive example. The second part of this paper deals with flowlines of switching servers. Sections 7
and 8 give a general characterization of flowlines of switching servers. The dynamics are de-
fined and the conditions are investigated under which upstream workstations can make the most
downstream workstation perform at its optimal process cycle. For a flowline consisting of two
workstations, a state feedback controller is proposed in Section 9. A case study is presented in
which the controller is implemented in both a hybrid fluid model simulation and a stochastic dis-
crete event simulation. Section 11 states the conclusions and some recommendations for further
research.

2 Switching server: characteristics and dynamics
Before desired trajectories for switching servers and controllers can be defined, first the charac-
teristics and dynamics of a switching server are presented. In Figure 1 a schematic representation
of a workstation is given. A workstation consists of a number of parallel first-in-first-out (FIFO)
job-type specific buffers and a server. A job is the to be processed entity. The number of jobs
in a buffer is denoted by xi. The server can process only one type of jobs at a time. Switching
from job type i to job type j takes σi j ≥ 0 time units. Without loss of generality, we use ‘hours’
as time unit in this study. Furthermore, unless indicated otherwise, subscript i refers to the job
type: i ∈ {1,2, . . . ,n}, with n the number of different job types in the system (in this study we
consider n = 2). Jobs of type i arrive at the workstation with a constant inter-arrival time of 1/λi
hours. The server processes this type of jobs with a constant process time of 1/µi hours. In
Figure 1, a workstation is shown that processes two job types. We use this workstation in the
analysis in this paper.
Since it is hard to describe the discrete event dynamics of the workstation, we use a hybrid fluid
approximation model to describe the dynamics and perform all analysis with. Instead of using the
interarrival times and process times of jobs, we use the arrival rate λi > 0 and process rate µi > 0.
A consequence is that the buffer levels xi ∈ R+, with R+ = [0,∞).
The partial utilization of a job type on a server is denoted by ρi: ρi = λi/µi. For reasons of
stability, the total utilization of a server must be strictly smaller than 1: ∑i ρ1 < 1. The utilization
must not equal 1, since then there is no time left to process the jobs that arrive during a setup and
buffer levels eventually explode.

λ1

λ2

µ1

µ2

x1

x2
σ12, σ21

Figure 1: Switching server with two job types.

The state of the system consists not only of the buffer levels x1 and x2, but also of the mode m of
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the server and the remaining setup time x0. The mode is the job type that the server is processing
or setting up for. The remaining setup time is positive while a setup is performed and zero
otherwise. The state of the system at time t is given by:

x(t) =
[
x1(t) x2(t) x0(t) m(t)

]T
∈ R

3
+×{1,2} . (1)

We assume that the process rate of the machine can be manipulated by a controller, as long as it
does not exceed the maximum rate µi. Let manipulative input ui ≤ µi be the rate at which jobs are
processed. Another input of the system is the required activity u0 of the server. Possible activities
are:
u0 = ❶ : setup for type 1 jobs
u0 = ① : process type 1 jobs
u0 = ❷ : setup for type 2 jobs
u0 = ② : process type 2 jobs

The complete input vector u is given by:

u(t) =
[
u0(t) u1(t) u2(t)

]T
∈ {①,❶,②,❷}×R

2
+. (2)

The inputs are bound by constraints: It is not possible to process jobs while busy with a setup;
when the server is processing jobs of a specific type, other job types can not be processed; if
a buffer contains jobs, the process rate for that type can not exceed the maximum process rate
and if a buffer is empty, the server can process jobs with at most the arrival rate. Formally, the
constraints are:
u0 ∈ {❶,❷}, u1 = 0, u2 = 0 for x0 > 0
u0 ∈ {①,❷}, 0 ≤ u1 ≤ µ1, u2 = 0 for x0 = 0, x1 > 0, m = 1
u0 ∈ {①,❷}, 0 ≤ u1 ≤ λ1, u2 = 0 for x0 = 0, x1 = 0, m = 1
u0 ∈ {❶,②}, u1 = 0, 0 ≤ u2 ≤ µ2 for x0 = 0, x2 > 0, m = 2
u0 ∈ {❶,②}, u1 = 0, 0 ≤ u2 ≤ λ2 for x0 = 0, x2 = 0, m = 2

Input u0 causes state variables to jump between values. Not only mode m jumps between 1 and 2,
but also the remaining setup time jumps from 0 to σi j when u0 ∈ {❶,❷}:

x0 := σ21, m := 1 for u0 = ❶ and m = 2 (3)
x0 := σ12, m := 2 for u0 = ❷ and m = 1. (4)

Note that during a setup, an intervention may cause a switch to an other job type. In that case the
ongoing setup is interrupted and the new setup starts.
In addition to these discrete event dynamics, the following continuous dynamics apply:

ẋ0(t) =

{

−1 for u0(t) ∈ {❶,❷}

0 for u0(t) ∈ {①,②}
(5a)

ẋ1(t) = λ1 −u1(t) (5b)
ẋ2(t) = λ2 −u2(t). (5c)

The workstation with two product types has a fixed process cycle:
process type 1 → setup to type 2 → process type 2 → setup to type 1 → . . .
This study first focuses on what the ‘best’ way is to perform this cycle. This ‘best’ adjective can
be translated into an optimization problem. In the next section, we study the optimal process
cycle with respect to averaged weighted work in process (wip) levels.

3 Optimal process cycle of single switching server
In this section, we consider a switching server with two incoming job types and constant arrival
rates, as presented in Section 2. A general optimization problem is formulated for averaged
weighted work in process levels. For strictly increasing cost functions, the general form of the
solution is presented and for linear costs, an explicit solution is derived.
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Starting from an arbitrary initial state, we want to achieve a switching policy that in the end
minimizes the costs related to wip levels. The cost function J has the following form:

J = lim
t→∞

1
t

∫ t

0
g1
(
x1(s)

)
+g2

(
x2(s)

)
ds (6)

with gi : R+ →R+ functions that relate costs to wip levels (buffer levels). If we assume that higher
buffer levels result in higher costs, i.e. if we restrict ourselves to strictly increasing functions gi,
i.e. gi(xi) > gi(yi) if xi > yi, then we can make the following statements.

Lemma 3.1. When serving type i, optimal policies first serve at the highest possible rate, after
which they might idle.

Proof. Suppose that a policy is given for which after having completed the setup to type i, buffer i
contains x0

i jobs and at the end of mode i, buffer i contains x f
i jobs. Then one can consider the

alternative policy which serves type i equally long in mode i and first serves at the highest possible
rate, i.e. at the maximal processing rate as long as the buffer contains jobs. This alternative policy
processes at the arrival rate in case the buffer is empty, and in the end idles to make sure that at the
end of mode i the buffer contains x f

i jobs. Clearly, during mode i the number of jobs in the buffer
can not decrease faster and in the end can not increase faster than in this alternative strategy.
Therefore, for the alternative policy at each time instant the wip level of type i is minimal. In
particular, if the given policy is different, there are time instants at which it is less. Since the time
evolution of the other job type(s) is the same for both policies and gi is strictly increasing, the
costs are strictly less using the alternative strategy.

Lemma 3.2. Optimal policies do not idle.

Proof. Suppose that an optimal policy would idle in mode i. Given the result in Lemma 3.1 this
is at the end of mode i. Furthermore, suppose that for this policy service in the next mode stops at
time t f . Consider an alternative policy which does not idle in mode i, but switches immediately
to the next mode and stays in this mode until t f . For this alternative strategy the evolution of the
buffer contents of type i does not change. However, (some of) the jobs that are served in the next
mode are served sooner. Therefore, for some period of time the number of jobs in the buffer of
the next mode is strictly less in the alternative strategy. Since g is strictly increasing, the costs are
strictly less for the alternative strategy. Therefore, an optimal policy does not idle.

Corollary 3.3. The optimal switch policy for a switching server with respect to time averaged
weighted wip levels, with n = 2 job types and strictly increasing costs on wip levels, always
processes at maximum rate when jobs are available in the buffer. If no jobs are available, jobs
are served at arrival rate. The optimal switch policy never makes the server idle.

Remark 3.4. Notice that in the proofs of lemmas 3.1 and 3.2 we did not explicitly use the fact
that n = 2. Therefore, Corollary 3.3 actually holds for a server serving n product types, where (6)
is replaced with

J = lim
t→∞

1
t

∫ t

0

n

∑
i=1

gi
(
xi(s)

)
ds, (7)

and all gi are strictly increasing.
In order to derive the optimal steady state behavior for a server serving two types of jobs, we
first look at properties of optimal behavior for one type only without considering the other type.
Note that in general it might not be possible to have both types behave optimally, but at least this
provides us with a lower bound for optimal system behavior. Next, we show that both types can
behave optimally, i.e. that this lower bound can be achieved.

Lemma 3.5. For optimal steady state behavior of type i, buffer i is always emptied.

Proof. Consider a policy where at time t = t0 the systems stops serving buffer i which is not yet
empty, and that at t = ts type i is served again. Consider an alternative policy where the system
stops serving buffer i at t = t0 + ε , mimics the given policy with a time delay of ε , and then
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starts serving type i at t = ts + ε , where ε > 0 but small enough to result in a feasible alternative
solution. Since some jobs of type i are served sooner in the alternative strategy, the number of
jobs in buffer i is strictly less at each time instant for the alternative strategy. Since gi is strictly
increasing, the contribution to the costs by type i is strictly less for the alternative strategy.

Remark 3.6. Note that the contribution to the costs by the other type(s) might be higher for the
proposed alternative strategy, but as mentioned earlier we currently focus only at optimizing a
single job type without taking into account the other job type(s).

Lemma 3.7. For optimal steady state behavior of type i, vacations always take equally long,
i.e. setups and serving the other type(s) between two successive services of type i.

Proof. Assume that for an optimal steady state behavior, service for type i stops at time t = 0.
From Lemma 3.5 we know that buffer i is empty then. Since jobs of type i arrive at a constant rate,
the contents of buffer i grow linearly, until type i is served again. Then buffer i is emptied, the
contents of buffer i grow linearly until type i is served again, and buffer i is emptied again, see also
Figure 2. Now assume that both periods of not serving type i are not equally long. Without loss

0 0

x i
→

time →

x i
→

time →

Figure 2: Times between successive services are equally long.

of generality we assume that the first period is shorter than the second. The resulting evolution
of the buffer contents of buffer i is depicted in the left hand side of Figure 2. In the right hand
side of Figure 2 the resulting evolution of the buffer contents of buffer i is depicted in case both
periods of not serving type i are equally long. The graph of the buffer contents of type i in the
left hand side figure can be divided into four parts. The first part consists of the period that type i
is not served. The second part consists of the period that type i is first served and then not served,
until the buffer reaches the value it would have had if both periods of not serving type i would
have been equally long. The third part consists of the period that the buffer contents exceed this
value and return at this value. And, finally, the fourth part consists of the remaining period. The
different parts can be distinguished based on the fill color in Figure 2.
By interchanging the second (dark gray) and third (light gray) part of this graph, the right hand
side of Figure 2 can be obtained. Next, it can be seen that the alternative strategy (not serving
type i for equally long duration) results in strictly less jobs of type i for a certain amount of time.
Since gi is strictly increasing, the resulting costs for this alternative strategy are strictly less for
type i.

Lemmas 3.5 and 3.7 are valid if a job type is optimized in isolation. Since multiple job types occur
in switching servers, optimizing each job type separately might not lead to a feasible solution.
However, in case of n = 2 job types, this is not an issue.

Corollary 3.8. The optimal steady state process cycle for a switching server with 2 different job
types and strictly increasing costs on wip levels has in general the shape as shown in Figure 3,
with the costs defined as:

J =
1
T

∫ T

0
g1
(
x1(s)

)
+g2

(
x2(s)

)
ds. (8)
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In the left-hand side graph of Figure 3, x1 and x2 have been plotted against each other. The
right-hand side graphs show the buffer levels over time, with the slopes of the lines annotated to
them. The cycle has period 1 with period length T .

0 x1 →

x 2
→

time →

x 2
→

x 1
→

σ21 τ µ
1 τλ

1 σ12 τ µ
2 τλ

2

❶ ① ① ❷ ② ②
①

①

❷

②

② ❶

λ 1 λ
1 −

µ
1 λ 1

λ
2 −

µ
2λ2

Figure 3: General form optimal process cycle for a switching server processing two job types.
Left: Periodic orbit. Right: buffer levels over time, with slopes of the lines.

In the remainder of this paper, we assume linear costs on wip levels, resulting in the following
costs for the optimal process cycle:

J =
1
T

∫ T

0
c1x1(s)+ c2x2(s)ds (9)

where c1 and c2 are constant weighing factors for job type 1 and 2 respectively. In addition,
without loss of generality, we assume c1λ1 ≥ c2λ2. Moreover, we define σ = σ21 +σ12. Now we
can explicitly determine the optimal behavior as presented in Corollary 3.8.

Proposition 3.9. The optimal process cycle with respect to time averaged weighted wip levels for
a switching server with two different job types and linear costs on wip levels (9), has a slow-mode
for at most one job type (type 1). During the slow-mode, jobs are processed at their arrival rate.
The slow-mode occurs if and only if c1λ1(ρ1 +ρ2)+(c2λ2 − c1λ1)(1−ρ2) < 0.

Proof. From Corollary 3.8 we know the general shape of the optimal process cycle. Let τ µ
i denote

the duration of serving type i at maximal rate, and let τ λ
i denote the duration of the slow-mode of

type i, as indicated in Figure 3.
In steady state, the system reaches the same situation after one complete period. During process-
ing a job type at full rate, as many lots are processed as arrive during setups and processing the
other job type:

λ1(σ12 + τ µ
2 + τλ

2 +σ21) = (µ1 −λ1)τ
µ
1 (10)

λ2(σ21 + τ µ
1 + τλ

1 +σ12) = (µ2 −λ2)τ
µ
2 . (11)

Let τλ
1 = α1σ and τλ

2 = α2σ with α1 ≥ 0,α2 ≥ 0. Solving (10) and (11) for τ µ
i we obtain:









σ
τ µ

1
τλ

1
τ µ

2
τλ

2









=
σ12 +σ21

1−ρ1−ρ2








1−ρ1−ρ2
α1ρ1ρ2 +α2ρ1(1−ρ2)+ρ1

α1(1−ρ1−ρ2)
α1ρ2(1−ρ1)+α2ρ1ρ2 +ρ2

α2(1−ρ1−ρ2)








. (12)
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The weighted mean wip level is computed by determining the area underneath the right hand side
graphs of Figure 3, divided by the period length T :

1
T

∫ T

0
c1x1(s)ds =

c1 ·
1
2 · (σ + τ µ

1 + τ µ
2 + τλ

2 ) · (µ1 −λ1)τ
µ
1

σ + τ µ
1 + τλ

1 + τ µ
2 + τλ

2
(13)

1
T

∫ T

0
c2x2(s)ds =

c2 ·
1
2 · (σ + τ µ

1 + τλ
1 + τ µ

2 ) · (µ2 −λ2)τ
µ
2

σ + τ µ
1 + τλ

1 + τ µ
2 + τλ

2
. (14)

Since 1
2 σ/(1−ρ1−ρ2) is a constant, we need to solve the problem of minimizing

c1λ1(1−ρ1)[1+α1ρ2 +α2(1−ρ2)]
2 + c2λ2(1−ρ2)[1+α1(1−ρ1)+α2ρ1]

2

1+α1(1−ρ1)+α2(1−ρ2)
(15)

subject to the constraints α1 ≥ 0 and α2 ≥ 0.
Instead of solving this optimization problem we first consider the unconstrained problem, i.e. we
ignore α1 ≥ 0 and α2 ≥ 0. Taking the derivatives of (15) with respect to α1 and α2 and putting
them to zero gives the solution of the unconstrained problem: α1 = α2 = −1 (infeasible; local
maximum) or

α1 = 1− 2c2λ2
c1λ1(1−ρ2)+ c2λ2(1−ρ1)

,α2 = 1− 2c1λ1
c1λ1(1−ρ2)+ c2λ2(1−ρ1)

, (16)

which is a local minimum. For this second solution, note that

α1 +α2 =−2 c1λ1ρ2 + c2λ2ρ1
c1λ1(1−ρ2)+ c2λ2(1−ρ1)

< 0 (17)

which means that at least one of the two constraints is active. Suppose that α2 = 0. Then we need
to solve the following optimization problem:

min
α1≥0

c1 [1+α1ρ2]
2 λ1(1−ρ1)+ c2 [1+α1(1−ρ1)]

2 λ2(1−ρ2)

1+α1(1−ρ1)
. (18)

From dJ
dα1

= 0 we obtain:
[
c1λ1ρ2

2 (1−ρ1)+ c2λ2(1−ρ1)
2(1−ρ2)

]
α2

1 + . . .

2
[
c1λ1ρ2

2 + c2λ2(1−ρ1)(1−ρ2)
]

α1 + . . .

[c1λ1(ρ1 +ρ2)+(c2λ2 − c1λ1)(1−ρ2)] = 0. (19)

The coefficients in front of α2
1 and α1 are both strictly positive, so this parabola has a positive real

root iff c1λ1(ρ1 +ρ2)+(c2λ2−c1λ1)(1−ρ2) < 0. Note that this is only possible if c1λ1 > c2λ2.
The value of α1 can be obtained by solving (19) taking into account that α1 has to be non-negative:

α1 =

{

0 if c1λ1(ρ1 +ρ2)+(c2λ2 − c1λ1)(1−ρ2) ≥ 0
positive real root of (19) otherwise.

(20)

For reasons of symmetry, if the other constraint would be active (α1 = 0), the solution would be:

α2 =

{

0 if c2λ2(ρ1 +ρ2)+(c1λ1 − c2λ2)(1−ρ1) ≥ 0
positive real root of second order polynomial otherwise.

(21)

Since we assumed that c1λ1 ≥ c2λ2, we can conclude that α2 = 0 and α1 is given by (20).
With this result, the optimal process cycle for a switching server with two product types, setup
times and linear costs on buffer levels has completely been defined. Under certain conditions, as
stated in Proposition 3.9, a slow-mode occurs in one of the job types.

Remark 3.10. When the server processes jobs at the arrival rate, it is in slow-mode. One might
argue that this slow-mode does not occur for an optimal policy since it means that capacity is
lost due to processing at lower rates than the maximum rate. However, introducing a slow-mode
implies that the process cycle becomes longer, which in turn implies that the system switches
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less. Apparently there is a trade-off between losing capacity due to processing at lower rates and
losing capacity due to switching more often. The outcome of this tradeoff depends on the specific
choice for the functions gi.
In addition to the optimal process cycle, another process cycle is of particular interest for the
remainder of this paper: the cycle with a minimal period and with minimal maximum buffer
lengths. The periodic orbit of this cycle is shown in the left hand side graph of Figure 4. As
can be seen, no slow-modes occur: after having processed a specific job type until its buffer is
empty, the system immediately switches to the other job type. The buffer values at specific corner
points of this (pure) bow tie curve are indicated with an asterisk (∗) and we use hats (̂ ) to indicate
maximum buffer levels for a given cycle. The coordinates of interest are:

After ①: (0, x∗2) with x∗2 = λ2

(

σ21 +
σρ1

1−ρ1−ρ2

)

(22a)

After ❷: (λ1σ12, x̂∗2) with x̂∗2 = λ2σ
(

1−ρ2
1−ρ1−ρ2

)

(22b)

After ②: (x∗1, 0) with x∗1 = λ1

(

σ12 +
σρ2

1−ρ1−ρ2

)

(22c)

After ❶: (x̂∗1, λ2σ21) with x̂∗1 = λ1σ
(

1−ρ1
1−ρ1−ρ2

)

. (22d)

These coordinates are in accordance with the values in the examples of [2, 8] for the symmetric
queues.

0 0x1 →

x 2
→

x1 →

x 2
→

x∗1 x̂∗1

x∗2

x̂∗2
x[

2

x]
2

x̂2

x]
1 x̂1

Figure 4: Pure bow tie curve and truncated bow tie curve.

In the right hand side graph of Figure 4 the periodic orbit of the optimal cycle has been shown for
the case where a slow-mode occurs. This orbit is referred to as the truncated bow tie curve. The
coordinates with flat ([) and sharp (]) symbols denote the points where the slow-mode starts and
ends respectively.
Remark 3.11. The lines corresponding to similar phases in the process cycle have the same slopes
in the left hand side and right hand side graph. Notice that therefore x∗2 ≤ x[

2 and x∗1 ≤ x]
1. Al-

though it looks counterintuitive, the right hand side graph has lower mean weighted wip levels
than the left hand side graph, in case a slow-mode occurs according to the condition stated in
Proposition 3.9. The counterintuitiveness is due to the fact that sense of time is lost in these
graphs: the left hand side graph has a shorter period than the right hand side graph. The system
spends a relatively large amount of time on the vertical axis (x1 = 0) of the truncated bow tie,
compared to the pure bow tie.
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The coordinates of interest for the truncated bow tie curve are:

After ① at µ1: (0, x[
2) with x[

2 = λ2

(

σ21 +
σρ1(1+α1ρ2)

1−ρ1−ρ2

)

(23a)

After ① at λ1: (0, x]
2) with x]

2 = λ2

(

σ21 +
σ(α1(1−ρ1)(1−ρ2)+ρ1)

1−ρ1−ρ2

)

(23b)

After ❷: (λ1σ12, x̂2) with x̂2 = λ2σ
(

(1−ρ2)(1+α1(1−ρ1))

1−ρ1−ρ2

)

(23c)

After ②: (x]
1, 0) with x]

1 = λ1

(

σ12 +
σρ2(1+α1(1−ρ1))

1−ρ1−ρ2

)

(23d)

After ❶: (x̂1, λ2σ21) with x̂1 = λ1σ
(

1+
ρ2(1+α1(1−ρ1))

1−ρ1−ρ2

)

. (23e)

Note that if α1 = 0, the pure bow tie trajectory actually is the optimal curve: x]
2 = x[

2 = x∗2 and
consequently x]

1 = x∗1.
In this section, the optimal process cycle for a switching server with two job types and setup times
has completely been defined. Additionally, the process cycle with minimal period and minimal
extreme buffer lengths has been characterized. In the next section, a state feedback controller
is proposed that steers the trajectory of the system to the desired optimal trajectory, from any
arbitrary start point (initial state).

4 State feedback controller for single switching server
During the ramp-up of a factory, or due to disturbances, the trajectory of a workstation is in
general not on the desired curve. Therefore, a controller is needed to steer the process trajectory
to the desired (optimal) curve. A possible controller can be derived using the theory presented in
[11].

Proposition 4.1. The following state feedback control law brings the system of Figure 1 to the
optimal periodic cycle with respect to minimal time averaged wip level.

(u0,u1,u2) =







(①,µ1,0) if m = 1, x0 = 0, x1 > 0
(①,λ1,0) if m = 1, x0 = 0, x1 = 0, x2 < x]

2
(❷,0,0) if m = 1, x0 = 0, x1 = 0, x2 ≥ x]

2
(❷,0,0) if m = 2, x0 > 0
(②,0,µ2) if m = 2, x0 = 0, x2 > 0
(②,0,λ2) if m = 2, x0 = 0, x2 = 0, x1 < x]

1
(❶,0,0) if m = 2, x0 = 0, x2 = 0, x1 ≥ x]

1
(❶,0,0) if m = 1, x0 > 0.

(24)

Remark 4.2. An informal description of this controller is:

• Mode 1: ① at µ1 as long as x1 > 0, then go to Mode 2.

• Mode 2: ① at λ1 as long as x2 < x]
2, then go to Mode 3.

• Mode 3: perform ❷, after σ12 go to Mode 4.

• Mode 4: ② at µ2 as long as x2 > 0, then go to Mode 5.

• Mode 5: ② at λ2 as long as x1 < x]
1, then go to Mode 6.

• Mode 6: perform ❶, after σ21 go to Mode 1.
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Dependent on the state of the system, the controller is in 1 of the 6 modes initially. This follows
trivially from the controller mode descriptions. Mode 2 and Mode 5 of this controller might have
a duration of zero, immediately forwarding to Mode 3 and Mode 6 respectively.

Proof. The controller loops through Modes 1–6. Given an initial state, the controller starts in one
of the modes. Eventually, the system reaches the same Mode again. We are interested in how the
state has changed after one complete cycle. Based on the way the state has changed, convergence
is proven.
Assume the nth start of ❷ (start of Mode 3) is from coordinate (0,x(n)

2 ). Now we wonder from
which coordinate the (n+1)st start of ❷ takes place. Suppose that x(n)

2 is relatively large compared
to x]

2. In that case, the duration of both Mode 2 and Mode 5 is zero. In one cycle, the coordinates
then become:

(

0,x(n)
2

)
❷
−→
(

λ1σ12,x
(n)
2 +λ2σ12

)

②
−→

(

λ1

(

σ12 +
x(n)

2 +λ2σ12
µ2 −λ2

)

,0
)

❶
−→

(

λ1

(

σ +
x(n)

2 +λ2σ12
µ2 −λ2

)

,λ2σ21

)

①
−→







0,λ2







σ21 +

λ1

(

σ +
x
(n)
2 +λ2σ12

µ2−λ2

)

µ1 −λ1













(25)

which results in:

x(n+1)
2 = λ2







σ21 +

λ1

(

σ +
x
(n)
2 +λ2σ12

µ2−λ2

)

µ1 −λ1







=
ρ1ρ2

(1−ρ1)(1−ρ2)
(x(n)

2 − x∗2)+ x∗2. (26)

In case that x(n)
2 was not large compared to x]

2, either Mode 2 or Mode 5 has a strictly positive
duration and we end up on the optimal curve, getting:

x(n+1)
2 = x]

2. (27)
Combining (26) and (27) results in the difference equation:

x(n+1)
2 = max

(
ρ1ρ2

(1−ρ1)(1−ρ2)
(x(n)

2 − x∗2)+ x∗2, x]
2

)

, x(0)
2 = x0

2 (28)

which has a solution

x(n)
2 = max

([
ρ1ρ2

(1−ρ1)(1−ρ2)

]n

(x0
2 − x∗2)+ x∗2, x]

2

)

. (29)

Since
0 <

ρ1ρ2
(1−ρ1)(1−ρ2)

= 1− 1−ρ1−ρ2
(1−ρ1)(1−ρ2)

< 1 (30)

we obtain
lim
n→∞

x(n)
2 = max(x∗2, x]

2) = x]
2. (31)

Remark 4.3. For x∗2 < x]
2 (i.e. when a slow-mode occurs, α1 > 0) as well as x2(0) < x]

2, we obtain
convergence in finite time.
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The controller presented in Proposition 4.1 is a double threshold policy, i.e. exhaustive processing
and switch only whenever the other buffer level has reached some value. In [9] a similar double
threshold policy is used, though it was done in a stochastic environment. The difference between
their result and the controller presented in this study is that their analysis has only been done
for workstations with equal (stochastic) process rates for both job types. Moreover, in [9], only
infinite buffer capacities have been taken into account. In the next section, the optimal process
cycle analysis and feedback controller are extended to situations with finite buffer capacities.

5 Finite buffer capacities: implications on optimal pro-

cess cycle and feedback controller
In this section, the optimal process cycle for a switching server with two job types and setup
times is determined for workstations with finite buffer capacity. These situations not only occur
in physical systems, like manufacturing systems or food processing industry, but also in data flow
or communication systems, where data storage is most often limited. In fact, storage capacity is
always limited, but in special cases it can be regarded as virtually unlimited and then the analysis
of sections 3 and 4 are applicable. The results from these sections are used to derive the optimal
process cycle in the finite buffer case.
Due to buffer constraints, the optimal process cycle might change. This is the case if during the
optimal cycle, a buffer level exceeds the maximum capacity. Within the buffer constraints, a new
optimal cycle can be looked for. The maximum number of jobs in the buffers is denoted by xmax

1
and xmax

2 . In Section 3, we defined the pure bow tie curve as the periodic orbit with minimal
period and with minimal maximum buffer levels: x̂∗1 and x̂∗2. If the buffer capacity is less than
these values, no periodic orbit can be found, so the first conditions on the new optimal process
cycle are:

xmax
1 ≥ x̂∗1; xmax

2 ≥ x̂∗2 (32)
with x̂∗1 and x̂∗2 as in (22).

0 0x1 →

x 2
→

x1 →

x 2
→

x̄∗1 xmax
1

x̄[
2

x̄]
2

ˆ̄x2

x̄[
2

x̄]
2

xmax
2

x̄]
1 ˆ̄x1

Figure 5: New optimal cycle, due to buffer capacity constraints. In dashed gray: original uncon-
strained optimal cycle.

Assume that xmax
1 < x̂1 or xmax

2 < x̂2. The optimal process cycle now has to be adjusted, to prevent
violation of the buffer constraint. In Figure 5, buffer constraints have been drawn for type 1 jobs
(left hand side graph) and type 2 jobs (right hand side). The coordinates of the optimal process
cycle with buffer level constraints are denoted with bars (̄ ). The original (unconstrained) process
cycle is shown in dashed gray. Examining the geometrical implications of buffer level constraints
on the optimal periodic orbit, the following expressions can easily be derived for the coordinates
of the new optimal process cycle:
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x̄]
1 = min

(

xmax
1 −λ1σ21, λ1

(

σ12 +
xmax

2
µ2 −λ2

)

, x]
1

)

(33a)

ˆ̄x1 = min
(

xmax
1 , λ1

(

σ +
xmax

2
µ2 −λ2

)

, x̂1

)

(33b)

x̄[
2 = min

(

λ2

(

σ21 +
xmax

1
µ1 −λ1

)

,λ2

(

σ21 +
λ1

µ1 −λ1

(

σ +
xmax

2
µ2 −λ2

))

, x[
2

)

(33c)

x̄]
2 = min

(
µ2 −λ2

λ1
(xmax

1 −λ1σ)−λ2σ12, xmax
2 −λ2σ12, x]

2

)

(33d)

ˆ̄x2 = min
(

µ2 −λ2
λ1

(xmax
1 −λ1σ), xmax

2 , x̂2

)

. (33e)

Note that if no slow-mode occurs in the unconstrained optimal process cycle, x̄[
2 = x̄]

2 = x[
2 =

x]
2 = x∗2, ˆ̄x2 = x̂2 = x̂∗2, x̄]

1 = x]
1 = x∗1 and ˆ̄x1 = x̂1 = x̂∗1. Another observation is that if the optimal

process cycle with slow-mode changes due to the buffer capacity constraints, the duration of the
slow-mode is shortened. In the minimum expressions in (33), the first term is ‘active’ (the lowest)
if the buffer level constraint on type 1 jobs is most restrictive. The second term is ‘active’ if the
constraint on type 2 jobs is most restrictive and the third term is ‘active’ if neither buffer constraint
is restrictive on the optimal process cycle.
Before the state feedback controller is adjusted to accommodate the buffer level constraints, we
first take a closer look at the (x1,x2)-plane. This plane can be divided into regions from which it
is either possible or impossible to reach the desired steady state process cycle.

Lemma 5.1. Regardless of the state feedback policy, the (x1,x2)-plane can be divided into regions
from which it is impossible to reach the steady state process cycle when in a certain mode, see
Figure 6. The regions marked with ①† and ②† indicate that if the trajectory enters that region
processing type 1 or type 2 jobs respectively, the trajectory eventually becomes infeasible (i.e. a
buffer constraint is violated). If the trajectory is on the bow tie curve shifted into the upper right
corner of the (x1,x2)-plane, the trajectory stays there.

Proof. It is easy to see that once the trajectory has crossed the dashed lines in Figure 6), a setup
to the other job type causes the buffer constraint to be violated. For the regions in or above the
upper-right bow tie, the proof is included in the feedback control law proof.

The optimal process cycle for a switching server with two product types and finite buffer capacity
has completely been defined. In addition, insight has been obtained about feasible and infeasible
areas in the (x1,x2)-plane. By using the theory presented in [11] the feedback controller as
presented in Proposition 4.1 can be modified by taking into account the buffer constraints.

Proposition 5.2. A feedback which stabilizes a trajectory to the optimal process cycle if started
from a feasible start point (see Figure 6) is

(u0,u1,u2) =







(①,µ1,0) if m = 1, x0 = 0, x1 > 0, x2 < xmax
2 −λ2σ12

(❷,0,0) if m = 1, x0 = 0, x1 > 0, x2 ≥ xmax
2 −λ2σ12

(①,λ1,0) if m = 1, x0 = 0, x1 = 0, x2 < x̄]
2

(❷,0,0) if m = 1, x0 = 0, x1 = 0, x2 ≥ x̄]
2

(❷,0,0) if m = 2, x0 > 0
(②,0,µ2) if m = 2, x0 = 0, x2 > 0, x1 < xmax

1 −λ1σ21
(❶,0,0) if m = 2, x0 = 0, x2 > 0, x1 ≥ xmax

1 −λ1σ21
(②,0,λ2) if m = 2, x0 = 0, x2 = 0, x1 < x̄]

1
(❶,0,0) if m = 2, x0 = 0, x2 = 0, x1 ≥ x̄]

1
(❶,0,0) if m = 1, x0 > 0.

(34)
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0 x1 →

x 2
→

xmax
1

x̄]
2

xmax
2

xmax
1 −λ1σ21

xmax
2 −λ2σ12

xmax
2 − x̂∗2

xmax
1 − x̂∗1

projection

λ1

µ2 −λ2

①† ①† ①† ① † ②†

②†

②†

Figure 6: Feasible and infeasible regions for trajectories, sub-
ject to buffer level constraints.

0

x∗2

x̄]
2

x(n)
2 |A =B

x(n)
2 |B=C

x(n)
2 |C=D

xmax
1 − x̂∗1

(projected)

xmax
1

(projected)

Figure 7: Evolution of x(n)
2

at start of ❷.

Remark 5.3. An informal description of this feedback is given by:

• Mode 1: ① at µ1 as long as x1 > 0 and x2 < xmax
2 −λ2σ12, then go to Mode 2.

• Mode 2: ① at λ1 as long as x2 < x̄]
2, then go to Mode 3.

• Mode 3: perform ❷, after σ12 go to Mode 4.

• Mode 4: ② at µ2 as long as x2 > 0 and x1 < xmax
1 −λ1σ21, then go to Mode 5.

• Mode 5: ② at λ2 as long as x1 < x̄]
1, then go to Mode 6.

• Mode 6: perform ❶, after σ21 go to Mode 1.

Dependent on the state of the system, the controller is in one of these modes, which follows
trivially from the mode description.

Proof. Similar to the proof of the case with infinite buffer capacities, we are interested where
the (n + 1)st start of ❷ takes place given from which coordinate the nth start of ❷ took place.
Setup for type 2 jobs can start at different places: on the axis between (0,0) and (0,xmax

2 −λ2σ12)
or on the line between (0,xmax

2 −λ2σ12) and (xmax
1 ,xmax

2 −λ2σ12). The latter set of start points
of ❷ is projected onto the vertical axis, in a way that the trajectory follows the same path in
the feasible (x1,x2)-plane for both the unconstrained and constrained situation. The projection
is shown in Figure 6. With a point (x1, xmax

2 −λ2σ12) we associate the point (0, x2) where x2 is
given by:

x2 =
µ2 −λ2

λ1
x1 +(xmax

2 −λ2σ12) (35)

and vice versa. Given x(n)
2 we are interested in x(n+1)

2 . In case x(n)
2 is chosen in such a way that

we do not suffer from the buffer constraints, we obtain (28) again. However, in case one or two
buffer constraints become active, the resulting x(n+1)

2 is larger, since switching earlier makes the
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system move along a line which is located higher in the (x1,x2)-plane, cf. Figure 6. For the case
one constraint becomes active, we introduce auxiliary variable Z whose value depends on which
constraint is active:

Z = min








µ2 −λ2
λ1

(xmax
1 −λ1σ)− x̂∗2

︸ ︷︷ ︸

is the smallest if xmax
1 active

,
µ1 −λ1

λ2
(xmax

2 −λ2σ)− x̂∗1
︸ ︷︷ ︸

is the smallest if xmax
2 active








. (36)

Four situations can be distinguished:

A : no active constraints, iteration as in (27);

B: no active constraints, iteration as in (25);

C : one active buffer constraint during iteration;

D: two active buffer constraints during iteration.

The endpoint of one iteration using the feedback law of Proposition 5.2 now becomes

x(n+1)
2 = max









x̄]
2 (A )

ρ1ρ2
(1−ρ1)(1−ρ2)

(x(n)
2 − x∗2)+ x∗2 (B)

x(n)
2 − 1−ρ1−ρ2

(1−ρ1)(1−ρ2)
·Z (C )

(1−ρ1)(1−ρ2)
ρ1ρ2

(

x(n)
2 − [xmax

1 − x̂∗1]
)

+[xmax
1 − x̂∗1] (D)









(37)

where the calligraphic capital refers to one of the four situations. The evolution of an arbitrary
point (0, x(n)

2 ) along the x1 = 0 axis where ❷ starts can now be visualized, see Figure 7. The
arrows indicate the direction in which x(n)

2 evolves. The distance between the arrows is a measure
for the rate of the evolution. First consider residing in region D . Note that for x(n)

2 > xmax
1 − x̂∗1

(projected), i.e. we start right from the upper right bow tie (Figure 6), we have divergence, since
(1−ρ1)(1−ρ2)

ρ1ρ2
> 1, cf. (30). When starting on the upper right bow tie, we can stay on it (if we

switch earlier than planned by this curve, the trajectory becomes infeasible, which can be seen on
geometrical grounds in Figure 6). This completes the proof of Lemma 5.1. For x(n)

2 < xmax
1 − x̂∗1

we move away from the upper right bow tie in the correct direction, i.e. towards the bottom left
in Figure 6, and we leave region D after a finite number of steps. If we are in C we also move
in the correct direction with equidistant jumps and therefore after a finite number of steps leave
region C . So after a finite number of steps we are in either region A or region B. From the proof
of Proposition 4.1, convergence to x̄]

2 follows.

The switching server with two job types and setup times now has a suitable controller, for which
convergence has been proven. In the next section, the controller is implemented in a case study,
where the hybrid fluid model has been replaced with a discrete event simulation and with stochas-
tic process times.

6 Case study: controller implementation in discrete

event workstation
The state feedback controller as presented in Proposition 5.2 has been implemented in a case
study. The derivation of the optimal process cycle had been based upon the hybrid fluid model,
as presented in (1)–(5). The controller uses measurements of the state to determine its control ac-
tions. Therefore, in some sense, the controller should be robust for disturbances in the model. In
this case study we implement the controller in a discrete event simulation of a switching server,
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where the hybrid fluid model has been replaced with a discrete event model, specified in lan-
guage χ , see [1]. The parameter settings and buffer level constraints used for the simulation are
presented in Table 1. The cost weighing factors c1 and c2 are equal to 1.
The condition for a slow-mode is evaluated:

c1λ1(ρ1 +ρ2)+(c2λ2 − c1λ1)(1−ρ2) = −
23
24 < 0 (38)

so a slow-mode occurs for type 1 jobs. Note that the slow-mode occurs for the job type with
highest cλ index and lowest cµ index, (cf. [5]). The duration of the slow-mode is computed
with τλ

1 = α1σ with α1 the positive real root from (19): α1 = 1/4. This completely defines the
optimal process cycle: x̄[

2 = 15, x̄]
2 = 18, ˆ̄x2 = 24, x̄]

1 = 27 and ˆ̄x1 = 45. The buffer level capacity
constraints did not influence the optimal periodic orbit.
The initial state of the system is also given in Table 1. At the start of the simulation, the server
processes type 2 jobs. Results of the simulation are shown in Figure 8. The trajectory goes from
light-gray to black, for better visual understanding. The first and second setup that take place,
are invoked by the buffer level constraint. That is why the buffer is not emptied before a setup to
the other job type takes place. After three setups, the trajectory touches the x1 = 0 axis below x̄]

2.
Then a slow-mode is performed until the buffer level of type 2 jobs reaches x̄]

2. From that point,
the trajectory stays on the optimal periodic orbit.

Table 1: Parameter settings for discrete event case study with controller implementation.

λ1: 9 jobs/hr. xmax
1 : 70 jobs

λ2: 3 jobs/hr. xmax
2 : 40 jobs

µ1: 24 jobs/hr. x0(0): 0 hrs.
µ2: 27 jobs/hr. x1(0): 50 jobs

σ12: 2 hrs. x2(0): 20 jobs
σ21: 2 hrs. m(0): 2

The optimal process cycle has been defined for a single switching server with two job types.
However, in many industrial environments and communication networks, workstations are cou-
pled and form a flowline. The flow of jobs through a series of workstations is similar to the flow
of jobs through one workstation, but what control actions are needed to make a flowline behave
as desired? The remainder of this paper focuses on control of a flowline of switching servers.

7 Flowline of switching servers: characteristics and

dynamics
We want to control a flowline of switching servers in such a way that the number of jobs in the
flowline is minimal. In general, an optimal process cycle for such a flowline is hard to determine,
but based on the results of Section 3, we know a lower bound on the work in process level for
a flowline. The remainder of this paper focuses on achieving this lower bound on the work in
process level for the entire flowline. What are the conditions / requirements for the workstations
to achieve this lower bound? Can we characterize the optimal process cycle? Is there a unique
solution for this optimization problem or are there more solutions? In this section, these questions
are addressed.
Consider the flowline consisting of workstations A and B, each consisting of two parallel buffers
and a switching server. The buffers have infinite capacity, store a specific job type and the contents
are denoted by x j

i (t), e.g. xB
1 (t) equals the number of jobs of type 1 that is stored in workstation B

at time t. Jobs arrive at workstation A with constant rates λ1 and λ2 for type 1 and type 2 re-
spectively. The maximum process rates are µ j

i , with i ∈ {1,2} and j ∈ {A,B}. Switching from
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Figure 8: Simulation results of controller implementation.

processing type 1 to type 2 jobs takes σ j
12 time units and σ j

21 vice versa. The system is schemati-
cally shown in Figure 9.
For stability reasons, the total utilization must not exceed 1 for each server: ∑i ρ j

i < 1 ∀ j ∈ {A,B}

with ρ j
i = λi/µ j

i . Unless indicated otherwise, superscript j ∈ {A,B} denotes the workstation
number and subscript i ∈ {1,2} represents a job type throughout the remainder of this paper.
Furthermore, we refer to this flowline as A+B.

λ1

λ2

µA
1

µA
2

µB
1

µB
2

xA
1

xA
2

xB
1

xB
2

A B

σA
12, σ A

21 σB
12, σ B

21

Figure 9: Switching server flowline overview.

The state and input vector for this flowline are similar to those of the single switching server
example. The state consists of the buffer levels, the remaining process times and the modes of
the servers:

x =
[
xA

1 xA
2 xB

1 xB
2 xA

0 xB
0 mA mB

]T
∈ R

6
+×{1,2}2 . (39)

The input vector consists of the rates at which the servers are processing the job types and the
action that has to be performed by the servers:

u =
[
uA

0 uB
0 uA

1 uA
2 uB

1 uB
2
]T

∈ {❶,①,❷,②}2 ×R
4
+. (40)

Possible actions of the servers are:
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u j
0 = ❶ : setup server j for type 1 jobs

u j
0 = ① : server j process type 1 jobs

u j
0 = ❷ : setup server j for type 2 jobs

u j
0 = ② : server j process type 2 jobs

and similar to the single switching server, the inputs are constrained by the state at each time
instant:
uA

0 ∈ {❶,❷} , uA
1 = 0, uA

2 = 0 for xA
0 > 0

uA
0 ∈ {①,❷} , 0 ≤ uA

1 ≤ µA
1 , uA

2 = 0 for xA
0 = 0, xA

1 > 0, mA = 1
uA

0 ∈ {①,❷} , 0 ≤ uA
1 ≤ λ1, uA

2 = 0 for xA
0 = 0, xA

1 = 0, mA = 1
uA

0 ∈ {❶,②} , uA
1 = 0, 0 ≤ uA

2 ≤ µA
2 for xA

0 = 0, xA
2 > 0, mA = 2

uA
0 ∈ {❶,②} , uA

1 = 0, 0 ≤ uA
2 ≤ λ2 for xA

0 = 0, xA
2 = 0, mA = 2

uB
0 ∈ {❶,❷} , uB

1 = 0, uB
2 = 0 for xB

0 > 0
uB

0 ∈ {①,❷} , 0 ≤ uB
1 ≤ µB

1 , uB
2 = 0 for xB

0 = 0, xB
1 > 0, mB = 1

uB
0 ∈ {①,❷} , 0 ≤ uB

1 ≤ min(uA
1 ,µB

1 ),uB
2 = 0 for xB

0 = 0, xB
1 = 0, mB = 1

uB
0 ∈ {❶,②} , uB

1 = 0, 0 ≤ uB
2 ≤ µB

2 for xB
0 = 0, xB

2 > 0, mB = 2
uB

0 ∈ {❶,②} , uB
1 = 0,0 ≤ uB

2 ≤ min(uA
2 ,µB

2 ) for xB
0 = 0, xB

2 = 0, mB = 2.
These constraints mean that if a server is busy with a setup, no jobs can be processed and after a
setup to a job type has been completed, only jobs of that specific type can be processed. Finally,
it is always possible to stay in the current mode, or switch to the other mode.
The discrete and continuous dynamics of the flowline look similar to the dynamics of the single
switching server and need no further explanation:

x j
0(t) := σ j

21, m j(t) := 1 for u j
0(t) = ❶ and m j(t) = 2 (41a)

x j
0(t) := σ j

12, m j(t) := 2 for u j
0(t) = ❷ and m j(t) = 1 (41b)

ẋ j
0(t) =

{

−1 for u j
0(t) ∈ {❶,❷}

0 for u j
0(t) ∈ {①,②}

(41c)

ẋA
1 (t) = λ1 −uA

1(t) (41d)
ẋA

2 (t) = λ2 −uA
2(t) (41e)

ẋB
1 (t) = uA

1 (t)−uB
1(t) (41f)

ẋB
2 (t) = uA

2 (t)−uB
2(t). (41g)

The goal is to minimize the time averaged weighted work in process level of the flowline. The
cost function J is defined as:

J = lim
t→∞

1
t

∫ t

0
g1
(
xA

1 (s)+ xB
1 (s)

)
+g2

(
xA

2 (s)+ xB
2 (s)

)
ds (42)

with gi : R+ → R+ strictly increasing functions. An important observation is that the switch
policy of workstation A does not affect the work in process level. Workstation A just moves
work from A to B, but the work remains in the flowline. Workstation B actually removes work
from the flowline. The switching policy of B therefore determines the wip level of the whole
system. In general, the most downstream workstation of a flowline determines the wip in the
system. From Section 3 the optimal process cycle of a single switching server is known. If it
is possible to have the most downstream workstation process at its optimal cycle and have the
other workstations make this possible, then optimal behavior for the complete flowline has been
achieved. The buffer levels of a job type can then virtually be added. For these lumped buffer
levels, the optimal cycle must be performed. The switching policy of the upstream workstations
must then accommodate these virtual lumped buffer levels. This idea is schematically shown in
Figure 10 (cf. Figure 1).
In this paper we consider the class of flowlines for which it is possible to achieve the wip level
of a single switching server. We investigate the conditions on the upstream workstations to make
this possible, characterize the class of workstations explicitly and define the optimal process
cycle. In Section 9 a state feedback controller is proposed for the flowline with two workstations.
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λ1

λ2

µB
1

µB
2
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1 + xB

1

xA
2 + xB

2

A B

σB
12, σ B

21

Figure 10: General idea of flowline behaving as single switching server.

Section 10 is an implementation of this controller in a discrete event simulation with disturbances
on the arrival times and process times.

8 Optimal process cycle of flowline: conditions and

derivation
The general form of an optimal process cycle for a single switching server is shown in Figure 3
and made explicit in Proposition 3.9. This optimal cycle must be performed by workstation B and
must also become the optimal cycle with respect to wip levels for A+B. If workstation A has to
switch between job types in such a way that it makes A+B behave like B stand alone, then some
observations can be made, which are given below. (Recall the notational aspects: τ is a period in
which jobs can be processed, the subscript indicates the job type. Superscript µ means processing
at maximum rate, whereas superscript λ means processing at incoming rate. Capital A or B is the
workstation identification.)

1. If the buffer level xB
i of job type i is 0, then xA

i must be 0 as well. Consequently, slow-
modes in A should completely overlap slow-modes in B, if occurring (see the conditions in
Section 3). Define θ−

i and θ+
i as the amount of time a slow-mode of job type i in A starts

earlier and ends later (respectively) than the corresponding slow-mode in B:
θ−

i + τλ B
i +θ+

i = τλ A
i , i ∈ {1,2} . (43)

The overlap requirement yields:
θ−

1 ≥ 0; θ+
1 ≥ 0; θ−

2 ≥ 0; θ+
2 ≥ 0. (44)

2. Without loss of generality, let time t = 0 be the start of σ B
21. From observation 1 follows that

at t = 0, A starts with a setup (if θ +
2 = 0) or is still in slow-mode of type 2 jobs (if θ +

2 > 0).
Therefore, σ A

21 starts at t ≥ 0. Similarly, σ A
12 can not start earlier than the start of σ B

12.

3. The period of the process cycle of A must be equal to the period of B. This period is denoted
by T .

4. From observations 1–3 follows:
θ+

2 +σ A
21 + τ µA

1 +θ−
1 = σ B

21 + τ µB
1 (45)

θ+
1 +σ A

12 + τ µA
2 +θ−

2 = σ B
12 + τ µB

2 . (46)

5. Buffer levels are not allowed to become negative. Therefore, if τ µB
i starts earlier than τ µA

i ,
the number of jobs B processes before τ µA

i starts may not exceed the number of jobs A
processes (in slow-mode) after B switched to the other mode:

µB
i (τ µB

i −θ−
i − τ µA

i ) ≤ λiθ+
i (47)
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or written differently:
σA

21 +θ+
2 −σ B

21 ≤ ρB
1 θ+

1 (48)
σA

12 +θ+
1 −σ B

12 ≤ ρB
2 θ+

2 . (49)

This restriction is also valid if τ µB
i starts after τ µA

i started, since then the left-hand sides
of (47)–(49) become negative, while the right-hand sides are always positive. Therefore,
these constraints may always be required.

6. The amount of jobs A processes of each type during one cycle must be equal to the number
of jobs that is processed by B in one cycle. These mass conservation equations follow
(with i ∈ {1,2}):

µA
i τ µA

i +λiτλ A
i = µB

i τ µB
i +λiτλ B

i = λiT. (50)

These observations have been summarized in Figure 11. The process cycles for workstations A
and B are presented. Note that the timeline for B is the same as in Figure 3. The overlapping
slow-modes (observation 1) are clearly visible. Note that the situation which observation 5 refers
to is visible for type 1 jobs in the figure: the amount of jobs workstation A processes during θ +

1
must at least equal the number of jobs that are processed by B before τ µA

1 starts again.

period T

σB
21 τ µB

1 τλ B
1 σB

12 τ µB
2 τλ B

2

θ+
2

σA
21 τ µA

1

θ−
1

τλ A
1

θ+
1

σA
12 τ µA

2

θ−
2

τλ A
2

Figure 11: The period of one cycle, T , divided into subsequent phases.

With the given observations and Figure 11 it is possible to derive conditions for server A which
must be obeyed to make A+B behave like B stand-alone with respect to work in process levels.
Remark 8.1. Observations 1–6 are also applicable for flowlines with more than two servers, e.g.
flowline A+B+C. In that case, first B has to make B+C behave like C stand-alone and secondly,
find a feasible trajectory for A to make A+B behave like B stand-alone. Similar reasoning goes
for larger flowlines.

Proposition 8.2. Workstation A can make flowline A+B perform like B stand-alone with respect
to work in process levels if and only if:

R2
[

τ µB
1 + τλ B

2 +σ B
21−σ A

21−T +R1(τλ B
1 −T )

]

+ τ µB
2 +σ B

12−σ A
12 ≥ 0 (51)

and

R1
[

τ µB
2 + τλ B

1 +σ B
12−σ A

12−T +R2(τλ B
2 −T )

]

+ τ µB
1 +σ B

21−σ A
21 ≥ 0 (52)

with R1 = max(ρA
1 ,ρB

1 ) and R2 = max(ρA
2 ,ρB

2 ).

Proof. The proof consists of two parts. First, if a periodic orbit of A makes A+B behave like B
stand-alone, it fulfills (43)–(50). During τ µA

i + θ−
i , A has to process µB

i τ µB
i − λiθ+

i = λi(T −

θ+
i − τλ B

i ) jobs. This takes at least λi(T −θ+
i − τλ B

i )/µA
i time units (if θ−

i = 0). This gives:

τ µA
i +θ−

i ≥ ρA
i (T −θ+

i − τλ B
i ). (53)
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Note that the mass conservation requirement has been replaced with inequality constraints. Com-
bining this result with (45) and (46) results in:

σB
21 −σ A

21 + τ µB
1 −θ+

2 ≥ ρA
1 (T −θ+

1 − τλ B
1 ) (54)

which can be rewritten as:

ρA
1 (θ+

1 + τλ B
1 −T)+ τ µB

1 −θ+
2 ≥ σ A

21 −σ B
21 (55)

and similar for the other job type:

ρA
2 (θ+

2 + τλ B
2 −T )+ τ µB

2 −θ+
1 ≥ σ A

12 −σ B
12. (56)

From (50) we know that:
τ µB

i −ρB
i (T − τλ B

i ) = 0. (57)
Adding this to (48) and (49) respectively results in:

ρB
1 (θ+

1 + τλ B
1 −T)+ τ µB

1 −θ+
2 ≥ σ A

21 −σ B
21 (58)

ρB
2 (θ+

2 + τλ B
2 −T)+ τ µB

2 −θ+
1 ≥ σ A

12 −σ B
12 (59)

which looks rather similar to (55) and (56). Combining the results (55), (58) and (56), (59) results
in:

max(ρA
1 ,ρB

1 )(θ+
1 + τλ B

1 −T )+ τ µB
1 −θ+

2 ≥ σ A
21 −σ B

21 (60a)
max(ρA

2 ,ρB
2 )(θ+

2 + τλ B
2 −T )+ τ µB

2 −θ+
1 ≥ σ A

12 −σ B
12. (60b)

These inequalities, together with θ +
1 ≥ 0 and θ +

2 ≥ 0, enclose a feasible area in the (θ +
2 , θ+

1 )-
plane (Figure 12).

θ+
1 →

θ+ 2
→

(60b)

(60a)

Figure 12: (θ +
2 , θ+

1 )-plane with feasible area (gray).

The intersection point of the two linear borders defined by (60) lies in the pos-pos quarter of this
plane. The intersection point is given by:

θ+
1 =

R2

[

τ µB
1 + τλ B

2 +σ B
21−σ A

21−T +R1(τλ B
1 −T )

]

+ τ µB
2 +σ B

12−σ A
12

1−R1 ·R2
(61a)

θ+
2 =

R1

[

τ µB
2 + τλ B

1 +σ B
12−σ A

12−T +R2(τλ B
2 −T )

]

+ τ µB
1 +σ B

21−σ A
21

1−R1 ·R2
(61b)

which are only both non-negative if (51) and (52) are fulfilled.
The second part of the proof is to show that conditions (51) and (52) are sufficient to guarantee
that A can make A+B behave like B stand-alone. For arbitrary θ +

i , the values for the processing
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intervals τ µA
i and τλ A

i can be computed. These can be solved from (43), (45), (46) and (50),
guaranteeing mass conservation and the requirement that the process cycle of A fits in the process
cycle of B for both job types:

τ µA
1 =

ρA
1 (σ B

12 + τ µB
2 + τλ B

2 −θ+
1 +θ+

2 +σ A
21)

1−ρA
1

(62)

θ−
1 =

σB
21 −θ+

2 −σ A
21 + τ µB

1 +ρA
1 (θ+

1 − τ µB
1 − τ µB

2 − τλ B
2 −σ B

21−σ B
12)

1−ρA
1

(63)

τ µA
2 =

ρA
2 (τ µB

1 + τλ B
1 +σ B

21−θ+
2 +θ+

1 +σ A
12)

1−ρA
2

(64)

θ−
2 =

σB
12 −θ+

1 −σ A
12 + τ µB

2 +ρA
2 (θ+

2 − τ µB
1 − τ µB

2 − τλ B
1 −σ B

21−σ B
12)

1−ρA
2

(65)

τλ A
1 = θ−

1 + τλ B
1 +θ+

1 (66)
τλ A

2 = θ−
2 + τλ B

2 +θ+
2 . (67)

If θ+
1 and θ+

2 are chosen in a way that τ µA
1 , θ−

1 , τ µA
2 and θ−

2 are non-negative and moreover,
the buffer levels do not become negative ((48) and (49)), then a feasible solution has been found.
From (66) and (67), it can easily be seen that τλ A

1 and τλ A
2 are also non-negative then. If (51)

and (52) hold, then (61) gives feasible values for θ +
1 and θ+

2 , since they are non-negative. In (61)
the period length T and the process intervals τ µB

i are substitued with:

τ µB
i = ρB

i (T − τλ B
i ) (follows from (50)) (68)

T = τ µB
1 + τ µB

2 + τλ B
1 + τλ B

2 +σ B
12 +σ B

21. (69)

Substituting (61) in (62)–(65) gives expressions for τ µA
1 , τ µA

2 , θ−
1 and θ−

2 :

τ µA
1 =

ρA
1 (1−R1)

(1−ρA
1 )(1−R1R2)(1−ρB

1 −ρB
2 )

[

(1−ρB
1 −ρB

2 )σ A
12

+R2(1−ρB
1 −ρB

2 )σ A
21 +(R2(1−ρB

1 )+ρB
1 )σ B

12 +(1−ρB
2 +R2ρB

2 )σ B
21

+(R2(1−ρB
1 )+ρB

1 ρB
2 (1−R2))τλ B

1 +(ρB
1 ρB

2 (R2 −1)+1−ρB
2 )τλ B

2

]

(70)

τ µA
2 =

ρA
2 (1−R2)

(1−ρA
2 )(1−R1R2)(1−ρB

1 −ρB
2 )

[

R1(1−ρB
1 −ρB

2 )σ A
12

+(1−ρB
1 −ρB

2 )σ A
21 +(1−ρB

1 +R1ρB
1 ))σ B

12 +(R1(1−ρB
2 )+ρB

2 )σ B
21

+(ρB
1 ρB

2 (R1 −1)+1−ρB
1 )τλ B

1 +(R1(1−ρB
2 )+ρB

1 ρB
2 (1−R1))τλ B

2

]

(71)

θ−
1 =

R1 −ρA
1

(1−ρA
1 )(1−R1R2)(1−ρB

1 −ρB
2 )

[

(1−ρB
1 −ρB

2 )σ A
12

+R2(1−ρB
1 −ρB

2 )σ A
21 +(ρB

1 +R2(1−ρB
1 ))σ B

12 +(1−ρB
2 +R2ρB

2 )σ B
21

+(R2(1−ρB
1 )+ρB

1 ρB
2 (1−R2))τλ B

1 +(ρB
1 ρB

2 (R2 −1)+1−ρB
2 )τλ B

2

]

(72)

θ−
2 =

R2 −ρA
2

(1−ρA
2 )(1−R1R2)(1−ρB

1 −ρB
2 )

[

R1(1−ρB
1 −ρB

2 )σ A
12

+(1−ρB
1 −ρB

2 )σ A
21 +(1−ρB

1 +R1ρB
1 )σ B

12 +(ρB
2 +R1(1−ρB

2 ))σ B
21

+(ρB
1 ρB

2 (R1 −1)+1−ρB
1 )τλ B

1 +(R1(1−ρB
2 )+ρB

1 ρB
2 (1−R1))τλ B

2

]

(73)
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Each expression in (70)–(73) consists of six terms. Recalling that 0 ≤ ρ j
i < 1, ∑i ρ j

i < 1 and
Ri = max(ρA

i , ρB
i ), one can easily verify that all six terms in each expression are non-negative.

Finally, (48) and (49) are checked, resulting in:

R1 −ρB
1

(1−R1R2)(1−ρB
1 −ρB

2 )

[

−(1−ρB
1 −ρB

2 )σ A
12 −R2(1−ρB

1 −ρB
2 )σ A

21

− (ρB
1 +R2(1−ρB

1 ))σ B
12 − (1−ρB

2 (1−R2))σ B
21

− (ρB
1 ρB

2 (1−R2)+R2(1−ρB
1 ))τλ B

1 − (ρB
1 ρB

2 (R2 −1)+1−ρB
2 )τλ B

2

]

≤ 0 (74)

and

R2 −ρB
2

(1−R1R2)(1−ρB
1 −ρB

2 )

[

−R1(1−ρB
1 −ρB

2 )σ A
12 − (1−ρB

1 −ρB
2 )σ A

21

− (1−ρB
1 (1−R1))σ B

12 − (ρB
2 +R1(1−ρB

2 ))σ B
21

− (ρB
1 ρB

2 (R1 −1)+1−ρB
1 )τλ B

1 − (ρB
1 ρB

2 (1−R1)+R1(1−ρB
2 ))τλ B

2

]

≤ 0. (75)

For these two inequalities, it can easily be verified that all terms at the left hand side are non-
positive, so the inequalities hold. With these results, it has been proven that (51) and (52) are
sufficient conditions to guarantee that workstation A can make A+B perform like B stand-alone
with respect to work in process levels.

When more than one upstream workstation is present, similar conditions can be derived for these
workstations. Each additional workstation adds two constraints similar to (51) and (52) to Propo-
sition 8.2. Notice, however, that for larger flowlines, checking the conditions for all workstations
in upstream direction might involve some iterations. In general, there is some freedom in the
choice of process interval lengths within all conditions as described in the observations earlier
in this section (the gray feasible area in Figure 12). The one choice may give feasible results
for other upstream servers, whereas the other choice might give infeasible results. Eliminating
this freedom and developing explicit relations has not been investigated in this study. To avoid
this issue, a way to find feasible trajectories for upstream servers all at once given the parameters
(µ and σ ) is to cast the problem into a linear program with design variables τ µ

1 , τλ
1 , τ µ

2 , τλ
2 , θ+

1
and θ+

2 for all servers. All constraints (43)–(50) are linear in the design variables. Any arbitrary
objective function results in a feasible solution, (unless the problem is infeasible according to (51)
and (52) and corresponding conditions for other workstations). In this way, for larger flowlines,
feasible trajectories can be found relatively easy. The linear program solver can also be used to
check if a feasible solution exists at all.
The desired (optimal) process cycle has been defined for the entire flowline now and conditions
for the upstream workstations have been derived. In the next section, we look for a controller that
steers the state x(t) to the desired periodic orbits from any arbitrary initial state x(0).

9 State feedback controller for switching server flow-

line
A state feedback controller that brings any arbitrary trajectory to the desired periodic orbits as
defined in sections 3 and 8 is presented in this section. The controller can be obtained using the
ideas presented in [11].

Lemma 9.1. Under conditions (51) and (52), i.e. workstation A can make A + B behave like B
stand-alone, the following inequality holds: R1 +R2 < 1.

Proof. Choose θ +
i in a way that they are as small as possible, but within the feasible area of
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Figure 12. The values for θ +
i are then:

θ+
1 = max(0, R2(τλ B

2 −T )+ τ µB
2 −σ A

12 +σ B
12) (76a)

θ+
2 = max(0, R1(τλ B

1 −T )+ τ µB
1 −σ A

21 +σ B
21). (76b)

Rewriting (51) and (52) gives:

(1−R1−R2)(τ
µB
1 + τ µB

2 +σ B
12)− (σ A

21 +σ A
12 +R1(τλ B

2 +σ B
21)+R2τλ B

2 ) ≥

(1−R2)(R1(τλ B
1 −T )+ τ µB

1 −σ A
21) (77a)

(1−R1−R2)(τ
µB
1 + τ µB

2 +σ B
21)− (σ A

21 +σ A
12 +R2(τλ B

1 +σ B
12)+R1τλ B

1 ) ≥

(1−R1)(R2(τλ B
2 −T)+ τ µB

2 −σ A
12). (77b)

Suppose that R1 +R2 ≥ 1, implying that the left hand sides of (77) are negative. Combining this
with (76), this results in θ +

1 < σ B
12 and θ+

2 < σ B
21, meaning that A and B are never working at

different job types simultaneously (cf. Figure 11) if working at the desired process cycles. A
consequence is that a virtual station can be put between workstations A and B, with maximum
process rates min(µA

1 ,µB
i ) and min(µA

2 ,µB
2 ), which does not influence the process cycles of A

and B (the virtual station paradigm has been elaborated in [7, Ch.8]). In Figure 13, the virtual
station (VS) has been put between the timelines of A and B. During τ VS

i , the virtual station pro-
cesses type i jobs (with maximum process rate min(µA

i ,µB
i )). The process intervals τVS

i start with
the first start of τ µ j

i and end at the same moment as θ +
i . For reasons of stability, the utilization of

the virtual station must not exceed 1: R1 +R2 < 1. This is in contradiction with our assumption,
so under conditions (51) and (52), R1 +R2 < 1.

period T

σB
21 τ µB

1 τλ B
1 σB

12 τ µB
2 τλ B

2

θ+
2

σA
21 τ µA

1

θ−
1

τλ A
1

θ+
1

σA
12 τ µA

2

θ−
2

τλ A
2

σVS
21 τVS

1 σVS
12 τVS

2

Figure 13: Virtual station between workstations A and B.

Proposition 9.2. The following state feedback controller steers the system to the desired (opti-
mal) periodic orbits, from any arbitrary initial state x(0):
Initially, the workstations have to get into the same mode m = (mA, mB). Without loss of gener-
ality, we adjust the mode of A to equal the mode of B (if necessary). This is done by means of the
following feedback:

(
uA

0 uB
0 uA

1 uA
2 uB

1 uB
2
)

=

{
(❶,∗,0,0,∗,∗) if m = (2,1)
(❷,∗,0,0,∗,∗) if m = (1,2)

(78)
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where ∗ means ‘unchanged value’. Immediately after this action (if necessary), the following
feedback is used:














uA
0

uB
0

uA
1

uA
2

uB
1

uB
2














T

=







(①,①,µA
1 ,0,µB

1 ,0) if m = (1,1), xA
0 = 0, xB

0 = 0, xA
1 > 0, xB

1 > 0
(①,①,µA

1 ,0,min(µA
1 ,µB

1 ),0) if m = (1,1), xA
0 = 0, xB

0 = 0, xA
1 > 0, xB

1 = 0
(①,①,λ1,0,µB

1 ,0) if m = (1,1), xA
0 = 0, xB

0 = 0, xA
1 = 0, xB

1 > 0
(①,①,λ1,0,λ1,0) if m = (1,1), xA

0 = xB
0 = xA

1 = xB
1 = 0, xA

2 < xA]
2

(①,②,λ1,0,0,µB
2 ) if m = (1,2), xA

0 = 0, xB
0 = 0, xA

1 = 0, xB
2 > 0

(①,②,λ1,0,0,0) if m = (1,2), xA
0 = 0, xB

0 = 0, xA
1 = 0, xB

2 = 0
(①,❶,µA

1 ,0,0,0) if m = (1,1), xA
0 = 0, xB

0 > 0, xA
1 > 0

(①,❶,λ1,0,0,0) if m = (1,1), xA
0 = 0, xB

0 > 0, xA
1 = 0

(①,❷,λ1,0,0,0) if m = (1,2), xA
0 = 0, xB

0 > 0, xA
1 = 0, xB

1 < xB]
1

(①,❷,λ1,0,0,0) if m = (1,1), xA
0 = xB

0 = xA
1 = xB

1 = 0, xA
2 ≥ xA]

2
(②,①,0,λ2,µB

1 ,0) if m = (2,1), xA
0 = xB

0 = xA
2 = 0,xB

1 > 0, xB
2 < xB]

2
(②,①,0,λ2,0,0) if m = (2,1), xA

0 = xB
0 = xA

2 = xB
1 = 0, xB

2 < xB]
2

(②,②,0,µA
2 ,0,µB

2 ) if m = (2,2), xA
0 = 0, xB

0 = 0, xA
2 > 0, xB

2 > 0
(②,②,0,µA

2 ,0,min(µA
2 ,µB

2 )) if m = (2,2), xA
0 = 0, xB

0 = 0, xA
2 > 0, xB

2 = 0
(②,②,0,λ2,0,µB

2 ) if m = (2,2), xA
0 = 0, xB

0 = 0, xA
2 = 0, xB

2 > 0
(②,②,0,λ2,0,λ2) if m = (2,2), xA

0 = xB
0 = 0,xA

2 = xB
2 = 0, xA

1 < xA]
1

(②,❶,0,λ2,0,0) if m = (2,2), xA
0 = xB

0 = 0,xA
2 = xB

2 = 0, xA
1 ≥ xA]

1
(②,❶,0,λ2,0,0) if m = (2,1), xA

0 = 0, xB
0 > 0, xA

2 = 0, xB
2 < xB]

2
(②,❷,0,µA

2 ,0,0) if m = (2,2), xB
0 > 0, xA

2 > 0
(②,❷,0,λ2,0,0) if m = (2,2), xB

0 > 0, xA
2 = 0

(❶,①,0,0,µB
1 ,0) if m = (1,1), xA

0 > 0, xB
0 = 0, xB

1 > 0
(❶,①,0,0,µB

1 ,0) if m = (2,1), xA
0 = xB

0 = xA
2 = 0,xB

1 > 0, xB
2 ≥ xB]

2
(❶,①,0,0,0,0) if m = (1,1), xA

0 > 0, xB
0 = 0, xB

1 = 0
(❶,①,0,0,0,0) if m = (2,1), xA

0 = 0, xB
0 = 0, xB

1 = 0, xB
2 ≥ xB]

2
(❶,❶,0,0,0,0) if m = (1,1), xA

0 > 0, xB
0 > 0

(❶,❶,0,0,0,0) if m = (2,1), xA
0 = 0, xB

0 > 0, xB
2 ≥ xB]

2
(❷,②,0,0,0,µB

2 ) if m = (2,2), xA
0 > 0, xB

0 = 0, xB
2 > 0

(❷,②,0,0,0,µB
2 ) if m = (1,2), xA

0 = 0, xB
0 = 0, xB

2 > 0, xB
1 ≥ xB]

1
(❷,②,0,0,0,0) if m = (2,2), xA

0 > 0, xB
0 = 0, xB

2 = 0
(❷,②,0,0,0,0) if m = (1,2), xA

0 = 0, xB
0 = 0, xB

2 = 0, xB
1 ≥ xB]

1
(❷,❷,0,0,0,0) if m = (2,2), xA

0 > 0, xB
0 > 0

(❷,❷,0,0,0,0) if m = (1,2), xA
0 = 0, xB

0 > 0, xA
1 = 0, xB

1 ≥ xB]
1
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in which xB]
1 = λ1θ+

1 , xB]
2 = λ2θ+

2 , xA]
1 = λ1(σ A

12 + τ µA
2 + τλ A

2 −θ+
2 ) and

xA]
2 = λ2(σ A

21 + τ µA
1 + τλ A

1 −θ+
1 ).

Remark 9.3. An informal description of this feedback is given by:

• If at t = 0 the modes m = (mA, mB) of the machines are unequal in the initial state, then
make A switch to the same mode as B:

m = (1,2) → uA
0 := ❷ → xA

0 := σ A
12; mA := 2 (80)

m = (2,1) → uA
0 := ❶ → xA

0 := σ A
21; mA := 1. (81)

• After initial switching (if necessary), the controller loops the following lines from top to
bottom. Based on the state of the system, the controller (trivially) starts in one of the lines

25 State feedback controller for switching server flowline



for each server.

Workstation A Workstation B
① until xA

1 = xB
1 = 0 ① until xB

1 = xA
1 = 0

① until xB
1 ≥ xB]

1 and mB = 2 ① until xA
2 ≥ xA]

2
perform ❷ perform ❷

② until xA
2 = xB

2 = 0 ② until xB
2 = xA

2 = 0
② until xB

2 ≥ xB]
2 and mB = 1 ② until xA

1 ≥ xA]
1

perform ❶ perform ❶

Note that the feedback always makes the servers process at the highest possible rate, obeying
Lemma 3.1.

Proof. In both the desired (optimal) trajectory and the transient, the system loops these modes m =
(mA,mB): (1,1) → (1,2) → (2,2) → (2,1) → (1,1) → . . . For the desired trajectory, the buffer
levels after leaving modes (mA,mB) are:

After mode (1,1) :









xA
1

xB
1

xA
2

xB
2









=









0
0

xA]
2

xB]
2









After mode (1,2) :









xA
1

xB
1

xA
2

xB
2









=









0
xB]

1
xA]

2 +λ2θ+
1

xB]
2 −µB

2 max(θ +
1 −σ B

12,0)









After mode (2,2) :









xA
1

xB
1

xA
2

xB
2









=









xA]
1

xB]
1
0
0









After mode (2,1) :









xA
1

xB
1

xA
2

xB
2









=









xA]
1 +λ1θ+

2
xB]

1 −µB
1 max(θ +

2 −σ B
21,0)

0
xB]

2









.

(82)

The duration of mode m = (1,1) equals xA]
2 /λ2, whereas the duration of mode (2,2) equals xA]

1 /λ1.
Furthermore, mode (1,2) always takes θ +

1 and mode (2,1) always takes θ +
2 (this follows directly

from the controller description).
Suppose that we enter mode (1,2) in the transient for the nth time (n > 1). The buffer levels are
at this point:

[
xA

1 xB
1 xA

2 xB
2
]T

=
[

0 0 xA]
2 +X (n) xB]

2

]T
(83)

where X (n) ≥ 0 represents the additional buffer content with respect to the steady state value,
when starting mode (1,2) for the nth time. Now we can wonder what the buffer levels are after
mode (2,2), and consequently after mode (1,1). So we would like to express X (n+1) = f (X (n)).
Instead of deriving the map f explicitly, we determine an easy to find upper bound for X (n+1) by
means of an alternative control strategy.
Consider the alternative control strategy that first goes through mode (1,2) during θ +

1 and then
stays in mode (2,2) during xA]

1 /λ1, as if it were on the desired orbit. The resulting buffer levels
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are then:
[
xA

1 xB
1 xA

2 xB
2
]T

=
[

0 0 X (n) xB]
2

]T
. (84)

Assume that A and B both process type 2 jobs at rate min(µ A
2 ,µB

2 ) to empty buffer xA
2 . This takes

another X (n)/(min(µA
2 ,µB

2 )−λ2) time units. The resulting buffer levels after this step are then:
[
xA

1 xB
1 xA

2 xB
2
]T

=
[

xA]
1 + λ1

min(µA
2 ,µB

2 )−λ2
X (n) xB]

1 0 0
]T

. (85)

With the original controller of Proposition 9.2, different values for the buffer levels are obtained.
However, the original controller processes at least as much jobs as the alternative controller, at
each time instant, because the original controller always processes jobs at the highest possible rate
(cf. Lemma 3.1). For this reason, we know that for the real controller at the end of mode (2,2),
[
xB

1 xA
2 xB

2
]
=
[

xB]
1 0 0

]

and for xA
1 :

xA]
1 ≤ xA

1 ≤ xA]
1 +

λ1
min(µA

2 ,µB
2 )−λ2

X (n). (86)

Completing the controller cycle for modes (2,1) and (1,1), similar reasoning leads to the follow-
ing result:

0 ≤ X (n+1) ≤
λ1

min(µA
2 ,µB

2 )−λ2
·

λ2
min(µA

1 ,µB
1 )−λ1

·X (n) (87)

or rewritten:
0 ≤ X (n+1) ≤

R1
1−R1

·
R2

1−R2
·X (n). (88)

Since R1 +R2 < 1 (result of Lemma 9.1), we can conclude:
lim
n→∞

X (n) = 0 (89)

which means that the system converges to the desired (optimal) periodic orbit (cf. (83) with the
result of (89)).

Convergence to the desired steady state process cycle has been proven. In the next section, we
show the robustness of this controller by means of an example where disturbances with respect
to the original hybrid fluid model occur.

10 Case study: controller implementation in switching

server flowline
Consider the switching server flowline consisting of two workstations, processing two job types.
A schematic overview of this flowline is given in Figure 9. The buffers have infinite capacity
and the system parameters are as given in Table 2. The inter-arrival times and process times are
exponentially distributed. This is a disturbance with respect to the original hybrid fluid model,
but a more realistic instance of reality than constant process times and arrival times. The state
feedback controller of Proposition 9.2 is implemented in a discrete event simulation. In this
discrete event simulation, the fluid model is abandoned, i.e. buffer levels only take on integer
(natural) values and processing jobs takes a real amount of time, contrary to the fluid model
approximation.
The optimal process cycle of workstation B does not contain a slow-mode, so the periodic orbit
has the pure bow tie shape (see Figure 4). The optimal process cycle can be characterized as
follows: τ µB

1 = 1 5
6 , τ µB

2 = 1 5
6 , which results in x]

2 = 9 1
3 and x]

1 = 27 1
3 . The mean number of jobs

in the system is 29 1
3 , which is 14 2

3 per job type (symmetric workstation with respect to process
rates and arrival rates). Using Little’s law, the mean flow time of both job types is 3 2

3 hours.
For workstation A, first conditions (51) and (52) are checked and they are fulfilled. The process
cycle of A is computed in the way as described in the second part of the proof of Proposition 8.2.
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Table 2: System parameters of flowline case study.

λ1: 4 jobs/hr. (exp.) µA
1 : 20 jobs/hr. (exp.) µB

1 : 20 jobs/hr. (exp.)
λ2: 4 jobs/hr. (exp.) µA

2 : 40 jobs/hr. (exp.) µB
2 : 20 jobs/hr. (exp.)

c1: 1 σ A
12: 0.5 hrs. σ B

12: 5.0 hrs.
c2: 1 σ A

21: 1.0 hrs. σ B
21: 0.5 hrs.

Table 3: Initial conditions for hybrid fluid model and stochastic discrete event simulations with
state feedback controller.

mA(0): 1 xA
1 (0): 25 jobs

mB(0): 1 xA
2 (0): 25 jobs

xA
0 (0): 0 hrs. xB

1 (0): 25 jobs
xB

0 (0): 0 hrs. xB
2 (0): 25 jobs

The process cycle of workstation A has the following characteristics: τ µA
1 = 11

12 , τλ A
1 = 4 7

12 ,
τ µA

2 = 7
9 , τλ A

2 = 1 7
18 , θ+

1 = 4 7
12 and θ+

2 = 5
12 .

For the controller implementation, the values of the buffers at which setup to the other job type
takes place have to be computed: xA]

1 = 9, xA]
2 = 7 2

3 , xB]
1 = 18 1

3 and xB]
2 = 1 2

3 .
First, a simulation with the original hybrid fluid model (with constant arrival and process rates)
and the controller has been carried out (with Matlab). Initial conditions for this simulation are
presented in Table 3. Simulation results are shown in Figure 14. These results are compared to a
discrete event simulation, which has been carried out in χ [1]. The same initial conditions have
been used (Table 3). Simulation results are shown in Figure 15 (trajectory of the system) and
Figure 16 (individual buffer levels). Notice that the discrete event simulation results look very
much like the hybrid fluid model results.
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Figure 14: Results of hybrid fluid model simulation with controller implementation.

A number of simulations have been carried out with the stochastic discrete event model. In
Table 4 the mean flow times of jobs and mean number of jobs in the system are listed, and the
standard deviation. Results have been obtained for 20 different simulations. To exclude the
transient effects, these simulations have been carried out with an initial point (almost) on the
desired optimal orbit. As can be seen in the table, the results differ from the theoretic values of
the hybrid fluid model. The differences are due to the variability on the inter arrival times and
exponential process times and the discrete event characteristics of the simulation.
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Remark 10.1. A different choice for the process cycle of workstation A may result in different
simulation output and system performances. Since there is some freedom to choose the process
cycle of A, the robustness for disturbances might be influenced. This is not investigated further
here.
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Figure 15: Trajectory of flowline with feedback controller implementation.
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Figure 16: Buffer levels for workstation A (left) and B (right).
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Table 4: Mean flow times (± standard deviation) and number of jobs for the two job types.

type 1 jobs type 2 jobs
flow time: 3.89±0.020 3.94±0.016
number of jobs: 15.53±0.082 15.75±0.063

11 Conclusions and recommendations for further re-

search
In this paper we studied switching servers with setup times. The optimal process cycle for a
single server with two job types has been derived, with respect to time averaged weighted work in
process levels. The analysis was based on a hybrid fluid model approximation of the workstation.
Under certain circumstances, which have been fully characterized, a slow-mode occurs: jobs are
processed at arrival rate after a buffer has been emptied, instead of immediate switching to the
other job type. This slow-mode represents a trade-off between losing capacity due to processing at
lower rates than the maximum rate and losing capacity due to relatively often switching between
job types.
For a single workstation with bounded buffer capacities, a controller has been proposed that
steers a trajectory to the optimal process cycle from any arbitrary start point. Convergence of this
controller to the desired periodic orbit has been proven mathematically. The controller has been
implemented successfully in a discrete event simulation study.
Switching servers are often placed in series. For such a flowline of switching servers, we want
to find an optimal process cycle and develop feedback controllers. If a flowline consists of more
than one workstation, only the most downstream server influences the work in process level, since
all upstream workstations simply move work within the system. The minimal work in process
level for a single switching server therefore is a lower bound on the work in process level for
a flowline of switching servers. In this paper, we investigated under which conditions upstream
workstations can make the most downstream workstation perform its optimal cycle. In that way,
the lower bound on the work in process level can be achieved for the entire flowline. The class of
flowlines that fulfill the conditions has been characterized.
For a flowline consisting of two workstations, a state feedback controller has been proposed. For
this controller, convergence to the desired process cycles has been proven mathematically. A
simulation study has been carried out for the flowline with two workstations. First, the controller
has been implemented in the hybrid fluid model. Next, the controller was used in a discrete event
simulation, with exponentially distributed inter arrival and process times. The controller performs
very well in this stochastic and discrete event environment.
Although the analysis in this paper has been performed for a single switching server and for a
flowline consisting of two workstations, the results are generally applicable for larger flowlines.
Some remarks about this issue have been made throughout this paper.
Within the current line of research, a lot of challenges are still to be treated. For situations where
we want to achieve the lower bound on the wip level of the most downstream workstation for
the entire flowline, it can be useful to derive explicit feasibility conditions for all servers at once,
instead of residing to a linear program. In the search for optimal process cycles for flowlines of
switching servers, a general optimal cycle for all flowlines is yet to be determined. The results
in this paper then are a special case of flowlines for which the optimal cycle for a single server
can be achieved for the entire flowline. In addition, the influence of finite buffer capacities on
flowlines of switching servers can be investigated. Another interesting topic is expanding the
servers to more than two job types. Challenge is then to find an optimal process cycle. Difficulty
is the fact that the sequence of process steps is not known beforehand, as it was in the case of two
job types. Finally, a completely different challenge is to define and determine optimal transient
behavior for controlled systems of switching servers and to develop controllers that yield optimal
transients.
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