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Abstract: In this paper we address the problem of designing simple global tracking controllers
for a kinematic model of a mobile robot and a simple dynamic model of a mobile robot. For
this we use a cascaded systems approach, resulting into linear controllers that yield global
K -exponential stability of the closed loop system.
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1. INTRODUCTION

In recent years the control of nonholonomic dynamic
systems has received considerable attention, in par-
ticular the stabilization problem. One of the reasons
for this is that no smooth stabilizing state-feedback
control law exists for these systems, since Brock-
ett’s necessary condition for smooth stabilization is
not met (Brockett, 1983). For an overview we re-
fer to the survey paper (Kolmanovsky and McClam-
roch, 1995) and references cited therein. In contrast to
the stabilization problem, the tracking control prob-
lem for nonholonomic control systems has received
little attention. In (Fierro and Lewis, 1995; Kanayama
et al., 1990; Micaelli and Samson, 1993; Murrayet
al., 1992; Oelen and van Amerongen, 1994) track-
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ing control schemes have been proposed based on
linearization of the corresponding error model. In
(Canudas de Witet al., 1996; Rui and McClam-
roch, 1995) the feedback design issue was addressed
via a dynamic feedback linearization approach. All
these papers solve the local tracking problem for some
classes of nonholomic systems. The only global track-
ing results that we are aware of are (Samson and Ait-
Abderrahim, 1991; Gusmak and Makarov, 1993; Jiang
and Nijmeijer, 1997b; Jianget al., 1998).
Quite recently, the results in (Jiang and Nijmeijer,
1997b) have been extended to arbitrary chained form
nonholonomic systems (Jiang and Nijmeijer, 1997a).
The proposed backstepping-based recursive design
turned out to be useful for simplified dynamic models
of such chained form systems, see (Jiang and Nijmei-
jer, 1997b; Jiang and Nijmeijer, 1997a). However, it is
clear that the technique used in (Jiang and Nijmeijer,
1997b) (and (Jiang and Nijmeijer, 1997a)) does not
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exploit the physical structure behind the model, and
then the controllers may become quite complicated
and computationally demanding when computed in
original coordinates.
The purpose of this paper is to show that the nonlinear
controllers proposed in (Jiang and Nijmeijer, 1997b)
can be simplified intolinear controllers for both the
kinematic model and an ‘integrated’ simplified dy-
namic model of the mobile robot. Our approach is
based on cascaded systems. As a result, instead of
exponential stability for small initial errors as in (Jiang
and Nijmeijer, 1997b), the controllers proposed here
yield globalK -exponential stability (cf. (Sørdalen and
Egeland, 1995)) of the closed loop system.
The organisation of the paper is as follows. Sec-
tion 2 contains some definitions, preliminary results,
the model of the mobile car, the tracking error dynam-
ics and the problem under consideration. In Section 3
we derive linear feedback controllers that solve the
global tracking problem. Section 4 shows how to ex-
tend our results for a dynamic extension of the mobile
robot. Section 5 contains the conclusions.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Preliminaries

To start with, we recall some basic concepts (see e.g.
(Khalil, 1996; Vidyasagar, 1993)).

Definition 1. A continuous functionÞ : [0; a/ →
[0;∞/ is said to belong toclassK if it is strictly
increasing andÞ.0/ = 0.

Definition 2. A continuous functionþ : [0; a/× [0; a/→
[0;∞/ is said to belong toclassK L if, for each fixed
s, the mappingþ.r; s/ belongs to classK with respect
to r and, for each fixedr , the mappingþ.r; s/ is de-
creasing with respect tos andþ.r; s/→ 0 ass→∞.

Consider the system
ẋ= f .t; x/ f .t;0/= 0 ∀t ≥ 0 (1)

where f .t; x/ is piecewise continuous int and locally
Lipschitz inx.

Definition 3. The system (1) isuniformly stableif for
eachž > 0 there isŽ = Ž.ž/ > 0, independent oft0,
such that

‖x.t0/‖ < Ž⇒ ‖x.t/‖ < ž; ∀t ≥ t0 ≥ 0:

Definition 4. The system (1) isglobally uniformly
asymptotically stable (GUAS)if it is uniformly stable
and globally attractive, that is, there exists a class
K L functionþ.·; ·/ such that for all initial statex.t0/:

‖x.t/‖ ≤ þ.‖x.t0/‖; t− t0/; ∀t ≥ t0 ≥ 0

Definition 5. The system (1) isglobally exponentially
stable (GES)if there existk > 0 and
 > 0 such that
for any initial state

‖x.t/‖ ≤ ‖x.t0/‖kexp[−
.t− t0/]:

A slightly weaker notion of exponential stability is the
following (cf. (Sørdalen and Egeland, 1995))

Definition 6. We call the system (1)globally K -
exponentially stableif there exist
 > 0 and a class
K functionk.·/ such that

‖x.t/‖ ≤ k.‖x.t0/‖/exp[−
.t− t0/] (2)

2.2 Cascaded systems

Consider the system{
ẋ = f1.t; x/+ g.t; x; y/y
ẏ = f2.t; y/

(3)

wherex ∈ IRn, y ∈ IRm, f1.t; x/ is continuously dif-
ferentiable in.t; x/ and f2.t; y/, g.t; x; y/ are conti-
nuous in their arguments, and locally Lipschitz iny
and.x; y/ respectively.
We can view the system (3) as the system

61 : ẋ= f1.t; x/

that is perturbed by the output of the system

62 : ẏ= f2.t; y/:

For the cascaded system (3) we have:

Theorem 7.(see (Panteley and Lor´ıa, 1998)). The cas-
caded system (3) is GUAS if the following three as-
sumptions hold:
• assumption on61: the systemẋ = f1.t; x/ is

GUAS and there exists a continuously differen-
tiable functionV.t; x/ : IR≥0 × IRn → IR that
satisfies

W.x/ ≤ V.t; x/;
@V
@t
+ @V
@x
· f1.t; x/ ≤ 0; ∀‖x‖ ≥ �;∥∥∥∥@V@x

∥∥∥∥‖x‖ ≤ cV.t; x/; ∀‖x‖ ≥ �;
whereW.x/ is a positive definite proper function
andc> 0 and� > 0 are constants,
• assumption on the interconnection:the function

g.t; x; y/ satisfies for allt ≥ t0:

‖g.t; x; y/‖ ≤ �1.‖y‖/+ �2.‖y‖/‖x‖;
where�1; �2 : IR≥0→ IR≥0 are continuous func-
tions,
• assumption on62: the systemẏ = f2.t; y/ is

GUAS and for allt0 ≥ 0:
∞∫

t0

‖y.t; t0; y.t0//‖dt ≤ �.‖y.t0/‖/;

where the function�.·/ is a classK function,

Lemma 8.If in addition to the assumptions in Theo-
rem 7 bothẋ= f1.t; x/ and ẏ= f2.t; y/ are globally
K -exponentially stable, then the cascaded system (3)
is globallyK -exponentially stable.
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PROOF. Evidently the bound (2) is satisfied fory.t/,
so it suffices to prove the same bound forx.t/.
Since all conditions of Theorem 7 are satisfied, sys-
tem (3) is GUAS andz = col.x; y/ satisfies the
bound‖z.t; t0; z0/‖ ≤ þ.‖z0‖; t − t0/, whereþ.·/ is
a classK L function. Then, for all initial conditions
z0 ≤ r the functiong.t; x; y/ can be upperbounded as
‖g.t; x; y/‖ ≤ cg, wherecg = cg.r / > 0 is a constant.
Now consider the subsystem

ẋ= f1.t; x/+ g.t; x; y/y (4)
By assumptionẋ = f1.t; x/ and ẏ = f2.t; y/ are
globallyK -exponentially stable, hence using converse
Lyapunov theory, cf. (Khalil, 1996), on that ball there
exist Lyapunov functionsV1.t; x/ and V2.t; y/ such
that

Þ1‖x‖2 ≤ V1 ≤ Þ2‖x‖2
V̇1 = @V1

@x
f1.t; x/ ≤ −Þ3‖x‖2

‖@V1

@x
‖ ≤ Þ4‖x‖

and
þ1‖y‖2 ≤ V2 ≤ þ2‖y‖2

V̇2 = @V2

@y
f2.t; y/ ≤ −þ3‖y‖2

‖@V2

@y
‖ ≤ þ4‖y‖

Taking the derivative ofV1.t; x/with respect to (4) we
obtain

V̇1≤−Þ3‖x‖2+ Þ4‖g.t; x; y/‖ ‖x‖ ‖y‖
≤−Þ3‖x‖2+ Þ4cg‖x‖ ‖y‖

≤−Þ3

2
‖x‖2+ Þ

2
4c2

g

2Þ3
‖y‖2

For the overall system consider the Lyapunov function
V.t; x; y/ := V1.t; x/+ ŽV2.t; y/

where Ž = Ž.r / = Þ2
4c2

g.r /
2Þ3

. It is easy to see that the
derivative of V along the solutions of (3) satisfies
V̇ ≤ −
V with


 = 1
2

min{Þ3

Þ1
;
þ3

þ1
} (5)

Using the bounds onV1.t; x/ from the last inequality
we conclude that

‖x.t; t0; x0; y0/‖2 ≤ 1
Þ1

V.t0; x0; y0/e
−
.t−t0/

hence forx.t/ the bound (2) is satisfied with
 defined
in (5) andk= max{Þ2; þŽ}. 2

2.3 A result from Model Reference Adaptive Control

Lemma 9.(cf. e.g. (Khalil, 1996; Sastry and Bodson,
1989)). Consider the system[

ė
�̇

]
=
[

Am bmw
T.t/

−
w.t/cT
m 0

][
e
�

]
(6)

wheree∈ IRn, � ∈ IRm, 
 > 0. Assume thatM.s/
1=cT

m·
·.sI− Am/

−1bm is a strictly positive real transfer func-
tion, i.e. Re[M.i!/] > 0 for all ! ∈ IR. Then�.t/ is
bounded and

lim
t→∞e.t/ = 0:

If in addition!.t/ and!̇.t/ are bounded for allt ≥ t0,
and there are positive constantsŽ andk such that

y

x

θ

ν ω

Fig. 1. The mobile car

t+Ž∫
t

!.−/!T.−/d− ≥ kI; ∀t ≥ t0 (7)

then the system (6) is GES.

Remark 10.Note that in the model reference adaptive
control problem the bound on!.t/ usually depends on
the initial state.e.0/; �.0//T. Therefore, in general
only global K -exponential stability can be claimed
for the model reference adaptive control problem.
However, when bounds on!.t/ are known apriori,
GES can be claimed instead.
The condition (7) is known as the persistence-of-
excitation condition.

2.4 Problem-formulation

A kinematic model of a wheeled mobile robot with
two degrees of freedom is given by the following
equations

ẋ = v cos�
ẏ = v sin�
�̇ = !

(8)

where the forward velocityv and the angular velocity
! are considered as inputs,.x; y/ is the center of the
rear axis of the vehicle, and� is the angle between
heading direction andx-axis (see Figure 1).
Consider the problem of tracking a reference robot as
done in (Kanayamaet al., 1990):

ẋr = vr cos�r

ẏr = vr sin�r

�̇r = !r :

Following (Kanayamaet al., 1990) we define the error
coordinates (cf. Figure 2) ẋe

ẏe

�̇e

 =
 cos� sin� 0
−sin� cos� 0

0 0 1

 xr − x
yr − y
�r − �


One can verify that in these coordinates the error
dynamics become

ẋe = !ye− v+ vr cos�e

ẏe = −!xe+ vr sin�e

�̇e = !r − !
(9)
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Fig. 2. The error dynamics

Our aim is to find appropriate velocity control lawsv
and! of the form

v = v.t; xe; ye; �e/

! = !.t; xe; ye; �e/
(10)

such that the closed-loop trajectories of (9,10) are
globallyK -exponentially stable.

3. CONTROLLER DESIGN

As mentioned in the introduction, our goal is to
find simple global tracking controllers for the sys-
tem (9). The approach used in (Jiang and Nijmei-
jer, 1997b) is based on the integrator backstepping
idea (Koditschek, 1987; Byrnes and Isidori, 1989;
Tsinias, 1989; Krsti´c et al., 1995) which consists of
searching a stabilizing function for a subsystem of (9),
assuming the remaining variables to be controls. Then
new variables are defined, describing the difference
between this desired dynamics and the real dynamics.
Subsequently a stabilizing controller for this ‘new sys-
tem’ is looked for.
This approach has the advantage that it can lead to
globally stabilizing controllers. A disadvantage, how-
ever, is that they may cancel or compensate for high
order nonlinearities yielding unnecessarily compli-
cated control laws. The main reason for this is that the
stability of a ‘new system’ is studied using a Lyapunov
function expressed in ‘new coordinates’. A result of
this is that the controller also is expressed in these
‘new coordinates’. When written in the original co-
ordinates usually complex expressions are obtained.
To arrive at simple controllers our approach is differ-
ent. We find inspiration in the recently developed stud-
ies on cascaded systems (Panteley and Lor´ıa, 1998;
Janković et al., 1996; Mazenc and Praly, 1996; Or-
tega, 1991; Sontag, 1989). Our main goal is then to
subdivide the tracking control problem into two sim-
pler and ‘independent’ problems: for instance, posi-
tioning and orientation. More precisely, we search for
a subsystem of the forṁy= f2.t; y/ that is asympto-
tically stable. In the remaining dynamics we then can
replace the appearance of thisy by 0, leading to the
systemẋ = f1.t; x/. If this system is asymptotically
stable we might be able to conclude asymptotic stabi-
lity of the overall system.

Consider the error dynamics (9):

ẋe= !ye− v+ vr cos�e (11)

ẏe=−!xe+ vr sin�e (12)

�̇e= !r − ! (13)
We can easily stabilize the mobile car’s orientation
change rate, that is the linear equation (13), by using
the linear controller

! = !r + c1�e (14)
which yields GES for�e, providedc1 > 0.
If we now set�e equal to 0 in (11,12) we obtain

ẋe = !r ye− v+ vr

ẏe = −!r xe
(15)

where we used (14).
Concerning the positioning of the cart, if we choose
the linear controller

v = vr + c2xe (16)
wherec2 > 0, we obtain for the closed-loop system
(15,16):[

ẋe

ẏe

]
=
[ −c2 !r .t/
−!r .t/ 0

][
xe

ye

]
(17)

which under some conditions on!r .t/, see Sec-
tion 2.3, is asymptotically stable. The following
proposition makes this result rigorous.

Proposition 11.Consider the system (9) in closed-
loop with the controller

v = vr + c2xe

! = !r + c1�e
(18)

wherec1 > 0, c2 > 0. If !r .t/, !̇r .t/, andvr .t/ are
bounded and there existŽ andk such that

t+Ž∫
t

!r .−/
2d− ≥ k ∀t ≥ t0

then the closed-loop system (9,18) is globallyK -
exponentially stable.

PROOF. Observing that sin�e= �e
∫ 1

0 cos.s�e/dsand

1− cos�e= �e
∫ 1

0 sin.s�e/dswe can write the closed-
loop system (9,18) as[

ẋe

ẏe

]
=
[ −c2 !r .t/
−!r .t/ 0

][
xe

ye

]
+
[
vr
∫ 1

0 sin.s�e/ds+c1ye

vr
∫ 1

0 cos.s�e/ds−c1xe

]
�e

�̇e = −c1�e

(19)

which is of the form (3), wherex= .xe; ye/
T, y= �e,

f2.t; y/ = −c1�e, f1.t; x/ =
[ −c2 !r .t/
−!r .t/ 0

][
xe

ye

]
andg.t; x; y/=

[
vr
∫ 1

0 sin.s�e/ds+ c1ye

vr
∫ 1

0 cos.s�e/ds− c1xe

]
.

To be able to apply Theorem 7 we need to verify the
three assumptions:
• assumption on61: Due to the assumptions on
!r .t/ we have from Lemma 9 thaṫx = f1.t; x/
is GES and therefore GUAS. From converse
Lyapunov theory (see e.g. (Khalil, 1996) or the
proof of Lemma 8) the existence of a suitableV
is guaranteed.
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• assumption on connecting term: Since|vr .t/| ≤
vmax

r for all t ≥ 0 we have:

‖g.t; x; y/‖ ≤ vmax
r

√
2+ c1‖x‖:

• assumption on62: Follows from GES of (13,14).
Therefore, we can conclude GUAS from Theorem 7.
Since both61 and62 are GES, Lemma 8 gives the
desired result. 2

Remark 12.It is interesting to notice the link be-
tween the tracking condition that the reference trajec-
tory should not converge to a point (or straight line)
and the well known persistance-of-excitation condi-
tion in adaptive control theory. More precisely, we
could think of (17) as a controlled system with state
xe, parameter estimation errorye and as regressor, the
referencetrajectory!r .

Remark 13.It is important to remark that the cas-
caded decomposition used above is not unique. One
may find other ways to subdivide the original system,
for which different control laws may be found.

4. A SIMPLIFIED DYNAMIC MODEL

In this section we consider the dynamic extension of
(9) as studied in (Jiang and Nijmeijer, 1997b):

ẋe = !ye− v+ vr cos�e

ẏe = −!xe+ vr sin�e

�̇e = !r −!
v̇ = u1

!̇ = u2

(20)

whereu1 andu2 are regarded as torques or generalized
force variables for the two-degree-of-freedom mobile
robot.
Our aim is to find a control lawu = .u1; u2/

T of the
form

u1 = u1.t; xe; ye; �e; v; !/

u2 = u2.t; xe; ye; �e; v; !/
(21)

such that the closed-loop trajectories of (20,21) are
globallyK -exponentially stable.
To solve this problem we first define

ve = v− vr

!e = !− !r

which leads to ẋe

v̇e

ẏe

=
 0 −1 !r .t/

0 0 0
−!r .t/ 0 0

 xe

ve

ye

+
0

1
0

.u1− v̇r /+

+
 vr

∫ 1
0 sin.s�e/ds ye

0 0
vr
∫ 1

0 cos.s�e/ds −xe

[ �e

!e

]
(22)

[
�̇e

!̇e

]
=
[

0 −1
0 0

][
�e

!e

]
+
[

0
1

]
.u2− !̇r / (23)

in which we again recognize a cascaded structure
similar to the one in the previous section. We only
need to findu1 andu2 such that the systems ẋe

v̇e

ẏe

 =
 0 −1 !r .t/

0 0 0
−!r .t/ 0 0

 xe

ve

ye

+
0

1
0

.u1− v̇r /

and [
�̇e

!̇e

]
=
[

0 −1
0 0

][
�e

!e

]
+
[

0
1

]
.u2− !̇r /

are globallyK -exponentially stable. In light of the
previous section, that is not too difficult.

Proposition 14.Consider the system (20) in closed-
loop with the controller

u1 = v̇r + c3xe− c4ve

u2 = !̇r + c5�e− c6!e
(24)

wherec3 > 0, c4 > 0, c5 > 0, c6 > 0. If !r .t/, !̇r .t/
andvr .t/ are bounded and there existŽ andk such that

t+Ž∫
t

!r .−/
2d− ≥ k ∀t ≥ t0

then the closed-loop system (20,24) is globallyK -
exponentially stable.

PROOF. The closed-loop system (20,24) can be writ-
ten as ẋe

v̇e

ẏe

=
 0 −1 !r .t/

c3 −c4 0
−!r .t/ 0 0

 xe

ve

ye

+
+
 vr

∫ 1
0 sin.s�e/ds ye

0 0
vr
∫ 1

0 cos.s�e/ds −xe

[ �e

!e

]
[
�̇e

!̇e

]
=
[

0 −1
c5 −c6

][
�e

!e

]
which is of the form (3). We again have to verify the
three assumptions of Theorem 7:
• assumption on61: From Lemma 9 we have

that61 is GES and therefore GUAS, where we
used the assumptions on!r .t/. The existence
of a suitableV again follows from converse
Lyapunov theory.
• assumption on connecting term: Since|vr .t/| ≤
vmax

r for all t ≥ 0 we have:

‖g.t; x; y/‖ ≤ vmax
r

√
2+ ‖x‖:

• assumption on62: Follows from GES of62.
Therefore we can conclude GUAS from Theorem 7.
Since both61 and62 are GES, Lemma 8 gives the
desired result. 2

5. CONCLUSIONS

In this paper we addressed the problem of designing
simple global tracking controllers for both a kinematic
and a simple dynamic model of a mobile robot. We
divided the tracking control problem into two simpler
and ‘independent’ problems. Using cascaded systems
theory we proved that it is possible to designlinear
controllers for both subsystems that yield global track-
ing.
An interesting further remark is the link between
the persistance-of-exictation condition and the non-
vanishing condition on the reference trajectory. It is in
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belief that a deeper understanding of this relationship
might lead to interesting conclusions on both domains
adaptive control and nonholonomic systems theory.
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