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Abstract

In this report we will present three approaches to model manufacturing systems in an aggre-
gate way leading to fast and effective (i.e., scalable) simulations that allow the development of
simulation tools for rapid exploration of different production scenarios in a factory as well as
in a whole supply chain. We will present the main ideas and show some validation studies.
Fundamental references are given for more detailed studies.



1 Introduction
Manufacturing systems can be modeled in several ways. In particular during the design of a
manufacturing system, discrete event modeling is an often used approach, cf. [Banks, 1998,
Cassandras and Lafortune, 1999]. Discrete event models often include a high level of detail.
This high level of detail can be used to investigate the effect of all kinds of variables on the
possible performance of the manufacturing system. However, when a manufacturing system
is in operation, this model usually contains too much detail to keep all parameters up to date
with the evolving current system. In addition, certain parameters can not even be measured.
Furthermore, running one scenario using a discrete event model takes several hours. Usually,
discrete event models are only tailer made for answering specific problems. These models
only contain part of the manufacturing system.
Another optionmight be to derive a less detailedmodel, in particular for manufacturing plan-
ning and control, or supply chain control. In this report we discuss three classes of models,
each at a different level of aggregation. We start with less detailed discrete event models based
of effective process times (EPT’s), where each workstation is modeled as a node in a queu-
ing network. Next, in particular for the purpose of planning and control, we abstract from
events and replace all discrete event queues with discrete time fluid queues. Additionally, the
throughput of each workstation is limited by a nonlinear function of the queue length, the
clearing function. Finally, we abstract from workstations and model manufacturing flow as a
real fluid using continuum models. These models are scalable and suitable for supply chain
control.

2 Effective Process Times
Building a discrete event model of an existing manufacturing system can be cumbersome,
as manufacturing systems are prone to disturbances. Even though many disturbances can
be modeled explicitly in highly detailed discrete event models, it is impossible to measure all
sources of variability that might occur in a manufacturing system. Additionally, highly de-
tailed discrete event models are unsuitable for decision making due to their time-consuming
simulation runs.
Instead of measuring detailed information, like raw process times, setup times, times to
failures, times between repairs, operator behavior, etc., one can also try to measure the clean
process time including other sources of additional waiting. This is the so-called effective process
time (EPT), which has been introduced in [Hopp and Spearman, 2000] as the time seen by
lots from a logistical point of view. In order to determine the EPT they assume that the
contribution of the individual sources of variability is known.
A similar description is given in [Sattler, 1996] where the effective process time has been
defined as all flow time except waiting for another lot. It includes waiting due to machine
down time and operator availability and a variety of other activities. In [Sattler, 1996] it was
also noticed that this definition of effective process time is difficult to measure.
Instead of taking the bottom-up view of [Hopp and Spearman, 2000], a top-down approach
can also be taken, as shown in [Jacobs et al., 2001, Jacobs et al., 2003], where algorithms have
been introduced that enable determination of effective process time realizations from a list of
events. That is, instead of measuring each source of disturbances individually and derive an
aggregate effective process time distribution, one can also derive this effective process time
distribution from manufacturing data directly. In the remainder of this section we illustrate
for several situations how these EPT’s can be measured from manufacturing data.

2.1 A single lot machine, no buffer constraints
Consider a workstation consisting of one machine, which processes single lots (i.e., no batch-
ing) and assume that the Gantt chart of Figure 1 describes a given time period.

• At t = 0 the first lot arrives at the workstation. After a setup, the processing of the lot
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Figure 1: Gantt chart of 5 lots at a single machine workstation.

starts at t = 2 and is completed at t = 6.

• At t = 4 the second lot arrives at the workstation. At t = 6 this lot could have been
started, but apparently there was no operator available, so only at t = 7 the setup for this
lot starts. Eventually, at t = 8 the processing of the lot starts and is completed at t = 12.

• The fifth lot arrives at the workstation at t = 22, processing starts at t = 24, but at
t = 26 the machine breaks down. It takes until t = 28 before the machine has been
repaired and the processing of the fifth lot continues. The processing of the fifth lot is
completed at t = 30.

From a lot’s point of view we observe:

• The first lot arrives at an empty system at t = 0 and departs from this system at t = 6.
Its processing took 6 units of time.

• The second lot arrives at a non-empty system at t = 4 and needs to wait. At t = 6, the
system becomes available and hence from t = 6 on there is no need for the second lot
to wait. At t = 12 the second lot leaves the system, so from the point of view of this lot,
its processing took from t = 6 till t = 12; the lot does not know whether waiting for an
operator and a setup is part of its processing.

• The third lot sees no need for waiting after t = 12 and leaves the system at t = 17, so it
assumes to have been processed from t = 12 till t = 17.

Following this reasoning, the resulting effective process times for lots are as depicted in Fig-
ure 1. Notice that only arrival and departure events of lots to a workstation are needed for
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Figure 1: EPT realizations of 5 lots at a single machine workstation.
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determining the effective process times. Furthermore, none of the contributing disturbances
needs to be measured.
In highly automated manufacturing systems, arrival and departure events of lots are being
registered, so for these manufacturing systems, effective process time realizations can be
determined rather easily. These EPT realizations can be used in a relatively simple discrete
event model of the manufacturing system, in this case a simple infinite FIFO queue. Such a
discrete event model only contains the architecture of the manufacturing system, buffers and
machines. The process times of these machines are samples from their EPT-distribution
as measured from real manufacturing data, or most often from the distribution fitted to
that data. There is no need for incorporating machine failures, operators, etc., as this is all
included in the EPT-distributions.
Furthermore, the EPT’s are utilization independent. That is, EPT’s collected at a certain
throughput rate are also valid for different throughput rates. Also, machines with the same
EPT-distribution can be added to a workstation. This makes it possible to study how the
manufacturing system responds in case a new machine is added, or all kinds of other what-
if-scenario’s.
Finally, since EPT-realizations characterize operational time variability, they can be used for
performancemeasuring as explained in [Ron and Rooda, 2005]. Note that Overall Equipment
Effectiveness (OEE), which is widely used to quantify capacity losses in manufacturing equip-
ment, directly relates to utilization, i.e., the fraction of time a workstation is busy. However,
the performance of manufacturing systems is not only determined by utilization, but also
by the variability in production processes. By only focusing on utilization one may overlook
opportunities for performance improvement by reduction of variability. These opportunities
are provided by measuring EPT’s.

2.2 A single batch machine, no buffer constraints
Effective process times for equipment that serves batches of jobs has first been studied in
[Jacobs, 2004, Jacobs et al., 2006]. Consider a workstation consisting of one machine, which
processes batches of jobs and assume that the Gantt chart of Figure 1 describes a given time
period. As we know from the previous section, only arrivals and departures from jobs matter
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Figure 1: Gantt chart of 4 lots (2 batches) at a batch machine.

for determining EPT’s, so in Figure 1 we already abstracted frommost disturbances. The only
remaining issue is how to deal with the batching. For that purpose we make a distinction
between the policy for batch formation and the EPT of a batch. An other way of putting this
is to assume that the buffer consists of two parts. A first part, B1, in which lots are waiting to
become batches, and a second part, B2, where batches are queuing in front of the workstation,
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as depicted in Figure 1. Taking this point of view we can interpret Figure 1 in the following

B1 B2 M
lots batches batches batches

Buffer

Figure 1: Model of batch formation and queuing in front of a batch machine

way. At t = 0 the first lot arrives at the workstation in buffer B1, waiting to become a batch
with the third lot. At t = 5 the second lot arrives at the workstation in buffer B1, waiting to
become a batch with the fourth lot. At t = 10 the third lot arrives at the workstation in buffer
B1, resulting in the first batch to be formed. So at t = 10 the first batch moves from buffer B1

to buffer B2. At t = 15 the fourth lot arrives at the workstation in buffer B1, resulting in the
second batch to be formed. So at t = 20 the second batch moves from buffer B1 to buffer B2.
When we now look at the system consisting of buffer B2 and the batch machineM, we have a
system as we studied in the previous example. A system to which batches arrive, and which
processes batches. The first batch arrives to this system at t = 10 and leaves the system at
t = 20, the second batch arrives to this system at t = 15 and leaves the system at t = 30.
Therefore, the first EPT runs from t = 10 till t = 20, the second EPT runs from t = 20 till
t = 30.
Notice that using this approach, EPT’s for batches only start as soon as a batch has been
formed, or to be more precise: the batch that finally will be processed. The period from t = 0
till t = 10, lot 1 was in the system and could have been processed as a batch of size 1. Therefore,
one could argue that from the point of view of this lot, its effective process time starts at t = 0.
Also, one might say that as soon as lot 2 has arrived, a batch consisting of lots 1 and 2 could
have been started, so the first EPT should have started at t = 5. This is not what we do, since
we view batch formation as part of the way the system is controlled, not as a disturbance. As
a result, we not only need to determine EPT’s for batches, we also need to characterize the
policy for batch formation. One way to deal with this is to include in the discrete event model
the policy for batch formation that is actually being used in the manufacturing system under
consideration. An other way to deal with this is to try to characterize the policy for batch
formation in one way or the other, i.e., derive some “effective batch formation policy”. The
latter is still subject of current research.
As mentioned above, EPT’s can also be used as performance measure. Notice that in case
of batching, EPT’s do not characterize capacity loss completely. Only capacity loss given the
batches is characterized, including variability. Capacity loss due to a bad policy for batch
formation is not captured in the EPT. This should be derived by analyzing the (effective)
batch formation policy. Notice that again only arrival and departure event of lots are needed
for determining the effective process times of batches.

2.3 A multi-machine workstation, no buffer constraints
So far, we only considered workstations consisting of a single machine. However, worksta-
tions consisting of several machines in parallel can also be dealt with, see e.g. [Jacobs et al., 2003,
Jacobs, 2004, Jacobs et al., 2006]. We do this in a similar way as we handled batching. That
is, we view the decision of which lot is served by which machine again as part of the control
system of the manufacturing system.
Consider a workstation consisting of two machines in parallel which both process single lots
(i.e., no batching) and assume that the Gantt chart of Figure 1 describes a given time period.
Note that we abstracted from most disturbances like we did when we considered batching.
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Figure 1: Gantt chart of 3 lots at a workstation with 2 machines in parallel.

• At t = 0 the first lot arrives at the workstation. This lot is processed by Machine 1 and
leaves this workstation at t = 15.

• At t = 5, the second lot arrives at the workstation. Even though Machine 2 is available,
or at least not serving any job, this job is also processed by Machine 1 and leaves the
workstation at t = 25.

• At t = 10, the third lot arrives at the workstation. This lot is processed by Machine 2 and
leaves the workstation of t = 30.

The way we view this system, is depicted in Figure 1. We assume that the buffer consists of

D

B2,1

B2,2

M1

M2

Buffer

Figure 1: Model of dispatching and queuing at a multi machine station

a dispatcher D which decides to which machine each lot will go. We assume that lots do not
wait in this dispatcher, but immediately move on to a buffer in front of the machine at which
they will finally be processed.
Using this abstraction, the effective process times as depicted in Figure 1 follow straightfor-
wardly for each separate machine. Notice again that the only data we need for determining
the EPT’s are arrival and departure event of lots. Also, we do not only need to determine the
EPT’s, but we also need to know the dispatching strategy. Either this policy is know from re-
ality and can be implemented in the discrete event model, or an “effective dispatching policy”
needs to be derived from manufacturing data. The latter is still subject of current research.
Furthermore, multi-machine workstations with equipment that serves batches can easily be
dealt with combining the results presented so far.

2.4 Finite buffers
In the preceding sections we assumed infinite buffers, or at least buffers that are large
enough. This enabled us to analyze workstations in isolation. If buffer sizes are small
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and can not be neglected, as for example in automotive industry, buffer sizes will explic-
itly be taken into account in the aggregate discrete event model. Therefore, the effect of
blocking will be explicitly taken into account by means of the discrete event model. There-
fore, this disturbance should not be included in the EPT. To take into account the effect
of blocking a third event is needed. So far, we only needed arrival and departure events
from lots. Or to be more precise: we needed actual arrival (AA) and actual departure (AD)
events. For properly dealing with blocking we also need possible departure (PD) events, see
also [Kock et al., 2006a, Kock et al., 2005, Kock et al., 2006c].
Consider a line of two machines in series, machine Mj−1 and machine Mj, and assume there
is no buffer between these two machines. Let the Gantt chart of Figure 1 describe a given
time period, where we again abstracted from most disturbances.

0 5 10 15 20 25 30

AA2 PD2 AD2

lot 1

lot 2

M
j−1: EPT 1 M

j−1: EPT 2

lot 1

lot 2

M
j
: EPT 1 M

j
: EPT 2

AA2 AD2

Machine M
j−1

Machine M
j

Figure 1: Gantt chart of 2 lots at two sequential, unbuffered machines.

• At t = 0, the first lot arrives at machine Mj−1. At t = 9, this lot has been completed and
moves to machine Mj. Both the possible and actual departure at machine Mj−1 are at
t = 9. Processing of the first lot at machine Mj completes at t = 22.

• At t = 10, the second lots arrives at machineMj−1. At t = 19 this lot has been completed,
but can not yet move to machine Mj. The possible departure for this lot is at t = 19. As
machineMj only becomes available at t = 22, the actual departure at machineMj−1 is at
t = 22. The actual arrival at machine Mj is at t = 22 for the second lot, and the actual
departure at machineMj is at t = 30.

From the measured events, the EPT’s follow readily. Since machine Mj−1 can not help it to
become blocked, the EPT for the second lot stops at t = 19, i.e., at the possible departure event.
If we denote the jth EPT realization at machine i as EPTi,j we obtain

EPTi,j = PDi,j − max
(
AAi,j,ADi−1,j

)
, (1)

where AAi,j < PDi,j ≤ ADi,j denote respectively the actual arrival, possible departure and
actual departure event at machine i for lot j. By measuring only these three events at each
machine, one is able to derive effective process times for each single job workstation in the
manufacturing system.

Multi lot machines
By means of the results presented above, one is able to deal with both finite and infinite
buffered multi-machine workstations serving batches of jobs. In particular multi might be
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one and batch sizes can also be one, so any kind of equipment can be dealt with which
processes a single job at the time.
However, certain machines can start serving the next job before the previous one has left the
machine. Typically these machines are some mini-factories themselves. For these machines
we can not use a simple queuing model. Therefore, for those machines, we can not use
the relation (1) and derive effective process times. A different aggregate model is needed for
those kind of machines. First attempts for an aggregate model for multiple lot machines have
been made in [Eerden et al., 2006, Kock et al., 2006b]. In particular these models can also
be used for aggregating parts of a manufacturing system. For the most recent results in this
area the interested reader is referred to http://se.wtb.tue.nl/~sereports .

3 Clearing function models
In the previous section we derived how less detailed discrete event models can be build by
abstracting from all kinds of disturbances like machine failure, setups, operator behavior,
etc. By aggregating all disturbances into one effective process time, a complex manufactur-
ing system can be modeled as a relatively simple queueing network. Furthermore, the data
required for this model can easily be measured from manufacturing data.
Even though this approach considerably reduces the complexity of discrete event models for
manufacturing systems, this aggregate model is still unsuitable for manufacturing planning
and control. Therefore, in this section we introduce a next level of aggregation, by abstracting
from events. Using the abstraction presented in the previous section we can view a worksta-
tion as a node in a queueing network. In this section we assume that such a node processes
a deterministic continuous stream of fluid. That is, we consider this queue as a so called
fluid queue. In order not to loose the steady state queueing relation between throughput
and queue length, we impose this relation as a system constraint, the clearing function as
introduced in [Graves, 1986].
As an example, consider a manufacturing system consisting of two infinitely buffered work-
stations. Assume that machine i has a mean effective process time te,i with a coefficient of

G B1 M1 B2 M2 E

u0 u1 u2

x1 x2 x3

te,1, ce,1 te,2, ce,2

Figure 1: Manufacturing system consisting of two workstations

variation ce,i, i.e., a standard deviation of ce,i · te,i for i ∈ {1, 2}. Let u0(k) denote the number of
jobs started during the kth time period. Let u1(k) and u2(k) denote the utilization of machine
1 and 2 respectively during the kth time period. Furthermore, let x1(k) and x2(k) denote the
buffer contents in workstations 1 and 2 respectively at the beginning of the kth time period
(i.e., the jobs in both buffer and machine), and let x3(k) denote the stored completed jobs or
backlog at the beginning of the kth time period. Finally, let d(k) denote the demand during the
kth time period. Then we can write down the following discrete time fluid queue dynamics
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for this system

x1(k + 1) = x1(k) + u0(k) −
1
te,1

u1(k)

x2(k + 1) = x2(k) +
1
te,1

u1(k) −
1
te,2

u2(k)

x3(k + 1) = x3(k) +
1
te,2

u2(k) − d(k).

(2)

Consider a workstation that consists of m identical servers in parallel that all have a mean
effective processing times te and coefficient of variation ce. Furthermore, assume that the
coefficient of variation of the interarrival times is ca and that the utilization of this workstation
is u < 1. Then we know from queuing theory [Takahasi and Sakasegawa, 1977] that in steady
state the mean number of jobs in this workstation is approximately given by

x =
c2a + c2e

2
·
u
√

2(m+1)

m(1 − u)
+ u. (3)

In Figure 1 this relation has been depicted graphically. In the left hand side of this figure one
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Figure 1: Effective clearing function of (3) with ca = ce = m = 1

can clearly see that for an increasing utilization, the number of jobs in this workstation in-
creases nonlinearly. By swapping axes, this relation can be understood differently. Depending
on the number of jobs in the workstation, a certain utilization can be achieved, or a certain
throughput. This has been depicted in the right hand side of Figure 1. For the purpose of
production planning, this effective clearing function provides an upper bound for the utiliza-
tion of the workstation depending on the number of jobs in this workstation. Therefore, in
addition to the model (2) we also have the constraints

c2a,1 + c2e,1
2

·
u1(k)2

1 − u1(k)
+ u1(k) ≤ x1(k)

c2a,2 + c2e,2
2

·
u2(k)2

1 − u2(k)
+ u2(k) ≤ x2(k).

(4)

The clearing function model for production planning consists of the model (2) together with
the constraints (4). When we want to use this clearing function model for production plan-
ning, we need the parameters ce and ca. In the previous section we explained how effective
process times can be determined for each workstation, which provides us with the parameter
ce for each workstation. Additionally, for each workstation the interarrival times of jobs can
also be determined from arrival events, which provides us with the parameter ca for each
workstation. Therefore, both parameters can easily be determined from manufacturing data.
However, when applying this approach for production planning, one should carefully derive
the effective process times. In particular if the manufacturing execution system authorizes
jobs for processing. In that case, the EPT of a lot can not start before it has been authorized.
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To illustrate this, consider the case depicted in Figure 1. Assume that processing times of the
workstations are exponentially distributed with means of respectively 0.21 and 0.23 hours.
Let an MPC production planning scheme be applied with time steps of one day (24 hours)
and a prediction horizon of five days. That is, consider a production planning scheme where
each day a planning for the next five days is generated of which only the desired production
levels for the first day are provided as targets (since the planning will be adjusted for the
modified circumstances the next day). For this planning the model (2) is used together with
the constraints (4) and the obvious constraints that buffer contents and utilizations have to
be nonnegative for each time period. We do allow for backlog, so x3 is allowed to become
negative. Assume that the goal is to minimize a linear cost function of the jobs in the system
where the following customer demand is given:

d(k) = 90 + 10 sin
kπ

25
.

That is, a periodic demand with a period of 50 days (1200 hours) where demand varies be-
tween 80 and 100 jobs per day. This means that the bottleneck requires a utilization between
77% and 96%. Finally, assume that the shop floor implementation of meeting the required
targets is by authorizing jobs equally distributed over time. So, if for a certain day a target of
96 jobs is set, every 15 minutes a new job is authorised.
Next, we consider two ways of determining EPT’s. For the first (incorrect) method, we use
(1) where the actual arrival event AA is the event of the arrival of a lot in the buffer. For the
second (correct) method, we also use (1) for determining the EPT’s, but in this case we use
for the actual arrival event AA the latest of the following two events: the arrival of a lot in the
buffer, or the authorization of that lot for processing. In the latter case we say that even when
a lot has completed service at the previous workstation, if it has not yet been authorized for
processing it can not join the queue for processing and therefore actually has not yet arrived
to that queue.
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Figure 2: Resulting wip levels using incor-
rect EPT measurements.
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Figure 2: Resulting wip levels using cor-
rect EPT measurements.

The difference in performance between these two ways of determining the actual arrival event
AA is depicted in Figure 2, where we see the evolution of the amount of jobs in the buffers
and of the backlog. At the left hand side of this figure we see that every now and then wip
levels explode. For example around t = 40000 we first see a backlog of about 400 lots and a
little later the buffer contents in the first workstation reaches almost 5000 lots. However, at
the right hand side of this figure we see that the wip in the first workstation remains between
1 and 3 lots, the wip in the second workstation stays even between 2 and 3 lots, and no backlog
occurs.
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An explanation for this large difference in behavior can be understood if one looks at the EPT
realizations. For the first method, the derived EPT’s are presented in Figure 3. Since we did
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Figure 3: Incorrect EPT measurements
(complete time horizon).
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Figure 3: Incorrect EPT measurements
(zoomed area).

not include any disturbances in our model, we know that the (mean) EPT’s of the worksta-
tions should be 0.21 and 0.23 respectively. However, this is not what we see in Figure 3. In
the left hand side of this figure we see large EPT realizations every now and then. Also, we
see periodic fluctuations in the EPT, implying that the realizations are utilization dependent,
which they should not be. Recall that EPT’s should be utilization independent. This periodic
behavior becomes even more clear when we zoom in on the first 7000 time units, as depicted
in the right hand side. Furthermore, we see that the EPT realizations are also a little bit too
large.
The explanation of these results is in the way EPT’s are determined and the effect that this
has on the production planning system. Assume that lots are waiting in the buffer and have
not yet been authorized for production. Then they have to wait, even when the machine is
idle. As a result the EPT realization becomes larger. But larger EPT realizations imply that
apparently less capacity is available at this machine. Therefore, for the next period less jobs
can be authorized for production. In this way the planning system enters a viscous circle
resulting in large excursions.
Indeed, if one uses as AA-event the moment when the lot has both arrived in the buffer and
been authorized for production better results are obtained, as can be seen in Figure 4. In
this figure we see correct estimation of the EPT, where small fluctuations are only due to
stochasticity. Also when we zoom in on the first 7000 time units, no utilization dependency
of EPT realizations can be found anymore.

4 Continuum models
4.1 A continuum of production stages

EPT and clearing function models can be developed for any arbitrary part of the production
line. In particular, they can also be used to describe the aggregate behavior of a whole factory,
replacing all the details of its production by e.g. a clearing function relation that determines
the outflux as a function of the current Work In Progress (WIP) in the factory. This will work
well, if the associated cycle times through the factory are small and hence the change in WIP
during a cycle time is also small. However, if the changes in influx are on a shorter timescale
than the cycle time, we need to keep track of the time already spent in the factory by a given lot
at a particular place in the production line. This can be done by adding delays into ordinary
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differential equation models or by modeling the flow of WIP through a factory explicitly via a
transport equation.
Specifically, the fluid models that use EPT and clearing functions approaches discussed in
the previous sections are really a misnomer. While individual lots are aggregated into a
continuum of products, we still consider individual machines or individual machine groups
whereas a true fluid is characterized by two continuous independent variables, a time variable
and a space variable. The appropriate spatial variable for a production flow characterizes the
production stages or the degree of completion. We denote this variable with x and arbitrarily
restrict it to the interval [0, 1]. Hence the fundamental variable that we consider is the prod-
uct density (lot density) ρ(x, t). Note that dW(0, t) = ρ(0, t)dx is the WIP at the beginning
of the factory, while dW(1, t) = ρ(1, t)dx is the WIP at the end of the production line. For
almost all manufacturing processes, especially for semiconductor fabs where lots leaving the
factory have yet to be tested for their functionality, the fundamental equation describing the
transport of a continuum of product through a continuum of production stages is given by a
conservation equation for the product ρ.

∂ρ(x, t)
∂t

+
∂F(ρ(x, t), x, t)

∂x
= 0 (5)

where F(ρ(x, t), x, t) is the flux at position x and time t which depends in a functional manner
on ρ and possibly on the exact location x and time t. The influx is then given by

F(ρ(0, t),0, t) = λ(t) (6)

the outflux is given by
F(ρ(1, t), 1, t) = µ(t) (7)

and an initial WIP distribution is characterized as

ρ(x,0) = ρ0(x) (8)

Note that equations 5, 6 and 8 form an initial boundary value problem for a partial differential
equation. If we are defining the flux as F(x, t) = ρ(x, t)v(x, t) with v the fluid velocity then
equation 6 is Little’s law ([Little, 1961]) averaged on timescales t and lengthscales x where λ(t)
is the average influx rate, ρ(x, t) the average WIP and v(x, t) is the inverse of the average cycle
time.
Equations 5, 6 and 8 are a deterministic description of the flow of products through a factory.
The resulting PDE is typically nonlinear and possibly nonlocal, however it is defined just on
one spatial dimension. The computational effort to solve such a PDE is minimal. Hence this
description is a candidate for a real time decision tool simulating e.g. the network of factories
that make up a complicated supply chain or that describe the possible production options for
a large company. The PDE models allow a user to explore different scenarios by varying the
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parameters that define the network of PDEs in real time. In addition, the PDE models are
inherently time dependent allowing the study of non-equilibrium or transient behavior. The
price paid for the convenience of fast time dependent simulations is that the PDE solutions
describe the average behavior of a certain factory under the conditions that define the simu-
lation. Many production scenarios are highly volatile and the variances of output of WIP are
as big or bigger than the means of the processes. In that case, a tool that predicts the mean
behavior is not very useful but one can argue that such production processes are inherently
unpredictable and that individual sample paths generated by a Discrete Event Simulation are
just as meaningless as the time evolution of the mean behavior. However, any process where
the time dependence of the mean by itself provides useful information is a candidate for a
successful description by partial differential equations. In the following we will present short
descriptions of the basic model and its refinements to capture more and more of the stochas-
ticity of the process and of the detailed decisions issues in production systems. References
to more in depth discussions are given. In section 5 we will present open problems and
directions for further improvements.
The fundamental reference for the idea ofmodeling production flow as a fluid is in [Armbruster et al., 2006a].
[Daganzo, 2003] uses the idea of discrete kinematic waves to describe the inventory replen-
ishment process in a supply chain. A recent paper ([Göttlich et al., 2005]) extends the idea to
supply chain networks.

4.2 Flux models
The fundamental modeling effort has been to find the right flux function F as a function
of the WIP ρ(x). Several first principle, heuristic and experimental attempts to find a good
flux model have been discussed. Almost all of them are quasi-static or adiabatic models
in the sense that the flux is not evolving in time but has a fixed functional relation to the
WIP in the factory (a state equation) usually describing the functional dependence of outflux
as a function of WIP in steady state. Hence any disturbance away from the state equation
through e.g. an increase in WIP caused by an increase in influx will lead to an instantaneous
relaxation to the new throughput given by the state equation. The flux is written as F = ρveq,
veq = veq(ρ) = 1

τ(ρ) with veq the steady state velocity and τ the average cycle time in steady state.
Typical models are

• A traffic flow model ([Greenshields, 1935]) with the equilibrium velocity

vLWeq = v0(1 −
ρ

ρmax
)

Here v0 is the "raw" velocity describing the flow through an empty factory, ρmax is the
density at which nothing moves any more in steady state and hence the density will
increase without bounds (cf. a traffic jam). Note that the velocity at stage x depends
only on the WIP at stage x. Such a property is valid for traffic models and for a-cyclic
production systems where every production step is performed on a single dedicated
machine set.

• A model describing the whole factory as an equivalent M/M/1 queue. In that case we
have the PASTA property and the cycle time becomes τ = 1

v0
(1 +W) with W the length

of the queue which here is W =
∫1
0 ρ(x)dx, i.e. total WIP. The equilibrium velocity

therefore becomes

vQ1
eq =

v0
1 +W

Notice that the M/M/1 model describes a re-entrant factory: Since the equilibrium ve-
locity is the same for all parts in the queue, any change in the length of the queue will
affect all WIP in the factory uniformly. This is a crude model of a highly re-entrant fac-
tory where any increase in starts will lead to a slowdown everywhere inside the factory.

• A more sophisticated re-entrant factory model is given through the use of integration
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datasets represent coefficients of variations c2 = 0.1, 1,6. Least squares interpolations are
made for an exponential clearing function.

kernels w(x, ξ)

vQ2
eq (x, t) =

v0
1 +

∫1
0 w(x, ξ)ρ(ξ, t)dξ

The kernels w(x, ξ) describe the influence of the competition for capacity from the
product located at stage ξ on the product located at position x. E.g. assuming a re-
entrant production with two passes through the same machines, then for x ∈ [0,0.5]

w(x, ξ) = 0.5δ(ξ − x) + 0.5δ(ξ − (x + 0.5)) and

vQ2
eq (x, t) =

v0
1 + 0.5ρ(x, t) + 0.5ρ(x + 0.5, t)

with v
Q2
eq (x, t) = v

Q2
eq (x + 0.5, t).

• Detailed discrete event simulations can be used to determine the state equation through
simulation. Given a DES model, we can determine average WIP in steady state for dif-
ferent throughputs. Assuming a clearing function model or a queuing model we can
then use least squares fits to parametrize the equilibrium throughput or the equilib-
rium velocity as veq = Φ(WIP).

Figure 4 shows three different clearing functions for a line of 100 identical machines and
an arrival process that is identical to the first machine process. The difference between the
three different curves is due to different levels of variances. Notice that the capacity of the
line, i.e. the horizontal asymptote for the clearing function as well as its curvature depends
crucially on the stochasticity of the line. The interpolation is a least squares fit to an ex-
ponential model for the throughput µ as a function of the WIP W, µ = µ∞(1 + exp(−kW)
([Asmundsson et al., 2002]).
It is obvious that the exponential decay is not a very good fit for moderate and high variances,
suggesting that a low order polynomial fit or a Pade approximation might work better. Nev-
ertheless, only a few sets of discrete event simulations are necessary to get a general outline
of the graph of the clearing function, allowing us to predict WIP and throughput times for
arbitrary influxes. However, it is worth noting here that a clearing function characterizes the
full state of a system — any change of the system may lead to a different clearing function.
While this is obvious for the addition or removal of machines in the factory, the state is also
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characterized by the variances of the machines and the policies in the factory, in particular by
dispatch policies.
The major advantage of partial differential equation models is the fact that they are able to
model time dependent processes, e.g. transients. Figure 4a) shows the average through-
put for a seasonally varying input (sinusoidal) with a period of about 1 year. The noisy line
comes from averaging 1000 discrete event simulations of a model of a semiconductor fac-
tory ([Perdaen et al., 2006]). The continuous line shows the PDE simulation for the same
experiment, where the PDE simulation is generated through a quasistatic model. The PDE
simulation is quite good due to the fact that the influx varies slowly. Figure 4(b) shows the
same experiment for a sinusoidal input that varies 10 times faster. Now the PDE simulation
seems to lag a bit relative to the discrete event simulation.

4.3 Higher order models and extensions
Moment expansions. The quasistatic or adiabatic model is the zero order equation of a hi-
erarchy of moment expansion models ([Armbruster et al., 2004a]). Moment expansions fol-
low the approach of turbulence modeling or gas-dynamic modeling of transport processes
([Cercignani, 1988]). Here the fundamental quantity is a probability density distribution
f (x, v, t) where

f (x, v, t)dxdvdt = Pr{ξ ∈ [x, x + dx], η ∈ [v, v + dv], τ ∈ [t, t + dt]}.

describes the probability to find a particle in an x-interval with a speed in a particular v-
interval in a certain time interval. The time evolution of this probability density leads to a
Boltzmann equation. That Boltzmann equation is equivalent to an infinite set of equations
for the time evolution of the moments of the probability distribution with respect to the
velocity v. As usual a heuristic cutoff is used to reduce the infinite set to a finite set. A two
moment expansion is given as

∂ρ

∂t
+

∂ρv
∂x

= 0

∂v
∂t

+ v
∂v
∂x

= 0.

Boundary conditions

λ(t) = ρ(0, t)v(0, t)

v(0, t) =
v0

1 +W(t)

reflect the idea that a lot that arrives at the end of the queue has an initial expectation of
a cycle time given by the length of the queue in front of it. Assuming that the velocity is
constant over the whole space interval we get that ∂v

∂t = 0 and hence v = veq(ρ) =
v0

1+W , i.e. we
have the explicit closure that leads us to the quasistatic approach.
Diffusion. The quasistatic approach incorporates the influence of the stochasticity, in partic-
ular the variances of the stochastic processes, only through a shift of the means (e.g. mean
capacity, mean cycle time etc). A typical model that includes the variances explicitly is given
through an advection diffusion equation

∂ρ

∂t
+

∂F
∂x

= 0 (9)

F = veqρ − D
∂ρ

∂x
(10)

where the advection process describes the deterministic evolution of the means and the dif-
fusion process, parametrized through the diffusion coefficient D, models the behavior of a
Brownian motion superimposed on these means. [Armbruster and Ringhofer, 2005] derive
such an equation from first principles, based on a transport process that randomly updates
the transport velocity from a density dependent probability distribution. To model the re-
entrant influence, the velocity is random in time but constant over all stages. A expansion
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Figure 4: Throughput as a function of time for a sinusoidally varying input.
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based on an infinite number of machines and an infinite number of velocity updates of the
associated Boltzmann equation leads to Equation 10.
It is easy to show the presence of diffusion in real factory data as well as in discrete event sim-
ulations. Any state of the art production facility will be able to determine the exact location
of any lot that goes through the factory at any given time. Figure 4 shows a crude approxima-
tions to the paths of 920 lots through a real INTEL factory. By starting all lots at the same
place and time, the resulting fan in Figure 4 is an indication of the diffusion process. Slicing
the data in Figure 4 at fixed times we can generate histograms of the number of lots as a
function of position in the factory. Figure 4 shows that, as expected from the Central Limit
Theorem, the distribution of WIP towards the end of the factory is reasonably well approxi-
mated by a normal distribution. Standard fitting procedures will allow us to determine the
state equation veq and the diffusion coefficient D in Equation 10, ([Armbruster et al., 2004b]).

4.4 Control of production lines
Having a differential equation model for a production line opens up the field of continuous
control (see also [Lefeber, 2004], [Göttlich et al., 2006]). While there are still many open
questions, two initial attempts have been successful.
Control via the push-pull point. The cycle time through a semiconductor fab is several weeks.
Hence, typically the starts into the fab are done "to plan" while the delivery out of the fab
is "to orders". This reflects itself in the dispatch policies at the re-entrant machines. At
the beginning of the factory we have a push policy, favoring lots requiring early production
stages over lots waiting for high production stages, whereas at the end of the factory we
have a pull policy which tries to affect output by favoring the final steps over earlier steps.
Somewhere in the middle of the factory there is a production stage where the push policy
changes into a pull policy. That stage is called the push-pull point and it is one of the few
possible control actuators inside the factory that might influence the output of the factory.
In [Perdaen et al., 2006] we have studied the use of changing the push-pull point to affect
the tracking of a demand signal in a discrete event simulation of a semiconductor fab. We
assume we have a demand curve as a function of time, and a time interval in which the
demand is of the order of magnitude of half of the total WIP of the factory. We then place the
push-pull point in such a way, that the demand over that time interval matches the total WIP
downstream from the push-pull point.
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Figure 4: Histograms of positions of the lots in the factory at time t = 20, t = 30 and t = 40.

The final result is that a push-pull control algorithm will not significantly improve the factory
output for an open system where the WIP is uncontrolled. If we are using the push-pull
algorithm together with a CONWIP policy, then the demand -outflux mismatch over a fixed
time interval is reduced by a factor of 5 −6, for a demand signal with a coefficient of variation
c = σ

µ = 0.4.
This control algorithm and its implementation have nothing to do per se with a continuum
model of the factory. However, a continuum description provides a framework to understand
the DES result: Since the average cycle time for a lot under a pull policy is shorter than for
a lot produced under a push policy, the associated average velocity for a pull policy is higher
than for a push policy. Assuming for this argument a uniform velocity in the factory in
steady state, the WIP profile ρ(x) = λ

v will be constant, independent of x and t. We consider
the upstream part of the production line as a homogeneous push line and the downstream
part as a homogeneous pull line, each with its own constant velocity with vpush < vpull. Since
the throughput is the same everywhere and since ρv = λ has to hold, we get a jump in the
WIP profile at the push-pull point by the amount

ρpush
ρpull

=
vpull
vpush

(11)

Figure 4(a) shows the constant throughput and the discontinuous WIP profile.
When we now instantaneously move the PPP upstream by an amount ∆x then the queues
that were just upstream of the PPP and hence had the lowest priority on the line move up
in priority and therefore speed up. Hence the product of ρpushvpull > λ, i.e. we create a flux
bump. Similarly we create a flux dip by moving the PPP downstream. Keeping the PPP at its
new location the flux bump is downstream from the PPP and hence moves downstream with
the constant speed vpull pulling a WIP bump with it until they both exit the factory. During
the time they exit they will increase the outflux. Figure 4(b) and (c) show this time evolution.
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Figure 4: Stages of creating a flux-bump.

After theWIP/flux bump has exited, the total WIP in the factory is lower and hence in order to
satisfy the same demand, the push pull point will have to move yet further upstream driving
it towards the beginning of the factory.
In contrast, the time evolution of the flux bump for the PPP-CONWIP policy is illustrated in
Figure 4.
As the CONWIP policy is implemented by matching the starts to the outflux, once the WIP
bump moves out of the factory, the starts will be increased to create a new WIP bump. In
that way, the total throughput will stay high until the PPP point is moved downstream again.
That will happen when the backlog has moved to zero and the sum of actual backlog and
actual demand has decreased. In that way we have a policy that reverts all the time to a match
between demand and outflux.
Creating an arbitrary WIP profile. One problem that represents a step to the practically more
interesting problems (see section 5) is the following: Given a WIP profile ρ1(x),0 ≤ x ≤ 1 and
a quasistatic model of a production system determined by veq = Φ(WIP), what is the influx
λ(t) to generate a desired new WIP profile ρ2(x), subject to a time evolution determined by
the PDE

ρt + veqρx = 0, x ∈ (0, 1) , t > 0.

λ(t) = v(t)ρ(0, t), t > 0.

An implicit analytical solution involves the simple idea of letting the initial profile travel out
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Figure 4: Stages of creating a flux-bump for a PPP-CONWIP policy.

through the right boundary while the new profile travels in through the left boundary.

ρ(x, t) =

{
ρ1(x −

∫t
0 v(s)ds) if

∫t
0 v(s)ds ≤ x ≤ 1

ρ2(1 + x −
∫t
0 v(s)ds) if 0 ≤ x <

∫t
0 v(s)ds ≤ 1.

(12)

From Equation 12 we can determine the influx λ(t) = v(t)ρ2(1 −
∫t
0 v(s)ds). The transit time

T for the initial profile ρ1(x) is defined by 1 =
∫T
0 v(s)ds. Note that Equation 12 is a general

solution for all time-dependent functions of velocity, especially including those based on the
load

∫1
0 ρ(x, t)dx. Furthermore it is an implicit solution as the density ρ(x, t) and hence the

influx λ(t) depend on the velocity v(ρ(x, t), x, t) and its history.
A feasible numerical method to find an explicit solution for ρ(x, t) and λ(t) consists of the
following steps:

1. Discretize in space and initialize ρ(xj,0) to ρ1(xj) for all space points j = 1..N.

2. Determine ρ(xj, tn + δt) by using a hyperbolic PDE solver and evaluate v = v(tn + δt).

Integrate
∫tn+δt
0 v(s)ds and set ρ(0, tn + δt) = ρ2(1 −

∫tn+δt
0 v(s)ds). Set λ(tn + δt) = v(tn +

δt)ρ(0, tn + δt). Repeat until
∫tn+δt
0 v(s)ds = 1

Figure 4(a) shows a starting profile ρ1(x) and an end profile ρ2(x). Figure 4(b) shows the
influx λ(t) that generates the new WIP-profile for the state equation v(t) = v0

1+
∫1
0 ρ(x,t)dx

.
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Figure 4: a) Two WIP-profiles ρ1(x) and ρ2(x) and b) the influx λ(t) that transforms ρ1 into ρ2

5 Conclusions and open problems
We have presented three approaches to aggregate modeling of production lines: Effective
processing times (EPT), clearing functions, and continuum models (PDEs). EPT is a tool
to separate waiting for the availability of a machine from all other sources of variability that
extend the processing time. EPT’s are easy to measure and allow the development of discrete
event simulations that aggregate many different and hard to characterize stochastic processes
into one processing time. Alternatively, we can use EPT’s to develop relatively simple queue-
ing networks. We have shown that EPT’s are utilization independent and that they can be
defined for machines that work in parallel, for production lines with finite buffers and for
batch processes.
The next level of aggregation treats the products as a continuum and in that way loses the
concept of an event. The resulting model consists of ordinary differential equations that re-
flect the queues in front of machines and their dynamics driven by the balance of influx and
outflux. Together with the loss of the event, clearing function models also lose the stochastic
behavior — a clearing function is a input-output relation that reflects the average behavior
of the system that it is modeling. Simple queues allow an exact determination of the clear-
ing function relationship but most networks require either off-line simulations or queueing
approximations to determine the shape of the clearing function numerically.
Continuum models treat the whole production process as a continuum in products and a
continuum in production steps. The resulting partial differential equations are typically hy-
perbolic and describe the movement of products through a factory as a WIP-wave. Different
levels of scale and accuracy have been presented. The lowest level of accuracy is represented
by a quasi-static approach that connects the PDE models to the clearing function models by
using the clearing function as a state equation. The major advantage of continuum models
is that they are scale independent, i.e. their simulation does not depend on the number of
lots produced nor the number of stages that the lot is going through. A second advantage is
that they allow the study of non-equilibrium and transient effects, something that can rarely
be done in queueing models. Like the clearing function approach they are deterministic and
typically represent the mean transport behavior, although the time evolution of higher order
moments can in principle be studied. PDE models can be extended to networks of factories
(suppy chains) ([Armbruster et al., 2006a], [Göttlich et al., 2005]) and they can be set up to
include policies (dispatch or global) ([Armbruster et al., 2006b]).
An interesting study for further research would be to compare the computational efforts as
well as the performance of the four modeling approaches.
A major open problem for the continuum model approach is the following:
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• In [Armbruster and Ringhofer, 2005] we have derived an advection diffusion equation
from first principles that describes the mean time evolution of a certain stochastic pro-
duction process. However, the process we used involved stochastically varying spatially
homogeneous velocities which are not easily related to the usual characterization of the
stochasticity of production. The latter is typically described through stochastically vary-
ing capacity reflecting the tool manufacturer’s characterization of a machine through
its time distribution for failure and its time distribution for repair. We are working on
developing PDEs whose parameters are determined by a priori given distributions for
those times.

Other open problems involve control and optimization of production:

• What is the influx λ(t) that moves a production line from an equilibrium state with
throughput d1 to a new equilibrium state with throughput d2 in shortest possible time.

• Given an initial WIP-profile ρ0(x, t0) and a demand signal d(t) for t0 ≤ t ≤ t0 + T for
some time interval T . What is the input λ(t) that minimizes the difference between the
output and the demand over that time interval.

We are currently exploring variational methods analogous to optimal control problems for
parabolic equations ([Göttlich et al., 2006]) to solve these optimal control problems.
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