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Abstract 
In this paper the problem of global trajectory traclc- 
ing for the kinematic model of a unicycle-type mo- 
bile robot is considered. It is assumed that some of 
the tracking error coordinates are not measurable. 
Using a cascaded systems approach we develop full 
order and reduced order observers, and introduce an 
observer based controller resulting in IC-exponential 
convergence of the tracking error. Simulations are 
provided to illustrate the results. 

1 Introduction 
In recent years the stabilization problem of non- 
holonomic systems has received considerable atten- 
tion. One of the reasons for this is that no sniooth 
time-invariant stabilizing state-feedback control law 
exists for these systems, since Brockett's necessary 
condition for smooth stabilization is not met [l]. For 
an overview we refer to the survey paper [a] and 
references cited therein. Although the stabilization 
problem for wheeled mobile robots is now well un- 
derstood, the tracking problem has received less at- 
tention. As a matter of fact, it is not clear that  
the current stabilization methodologies can be ex- 
tended easily to tracking problems. In [3, 4, 5 ,  6, 71 a 
linearization-based tracking control scheme was de- 
rived. The idea of input-output linearization was 
used in [SI. In [9] the trajectory stabilization prob- 
lem was dealt with by means of a flatness approach. 
A systematic exposition of the feedback linearization 
technique for wheeled mobile robot was presented in 
[lo]. All these papers solve che local tracking prob- 
lem. The first global tracking control law that we 
are aware of was proposed in [ll]. Another global 
tracking result was derived in [12] using integrator 
backstepping. Global tracking results yielding expo- 
nential convergence were presented in [13, 141 under 
a persistence of excitation assumption on the refer- 
ence. 

In this paper we elaborate on the results of [13] by 
considering the global state-tracking control prob- 
lem for a unicycle-type wheeled robot under output- 

feedback. It is allowed that not all position compo- 
nents of the tracking error can be measured. We 
solve this problem by means of linear dynamic con- 
trollers that yield global &exponential stability (cf. 
[15]), which is a uniform kind of stability and implies 
a certain robustness against disturbances. We arrive 
at our results by constructing both full- and reduced- 
order observers. The stability analysis is based on re- 
sults of cascaded systems. A somewhat complemen- 
tary problem of motion planning with measurements 
of the position coordinates hams been solved in [16]. A 
fuzzy PD controller using look-up tables for mobile 
robots is given in [17]. 

The organization of the paper is as follows. Sec- 
tion 2 presents definitions, preliminary results, and 
the problem under consideration, In Section 3 we 
obtain a cascade structure in the tracking-error dy- 
namics. In Section 4 we solve the global tracking 
problem by constructing a full order observer. In 
Section 5 we present a reduced order observer. The 
behavior of both controllers has been illustrated by 
means of computer simulations in Section 6. Sec- 
tion 7 concludes the paper. 

2 Preliminaries and Problem Formu- 
lat ion 

In order to  make this paper self-contained we recall 
some standard concepts of stability theory [HI. 

2.1 Preliminaries 

Definition 2.1. A continuous function a : [O,a) + 
[ O , c o )  is said to belong to  class K: (a  E K) if it is 
strictly increasing and a(0) = 0. 

Definition 2.2. A continuous function ,B : [O,a) x 
[ O , c a )  + [ O , c a )  is said to belong to  class ICC ( p  E 
ICC) if for each fixed s the mapping ,B(r,s) belongs 
to class K with respect to r' and if for each fixed r 
the mapping /3(r,s) is decreasing with respect to s 
and P(r,  s) + 0 as s -+ ca. 
Definition 2.3. The equilibrium point z = 0 of a 
non-autonornous system i = f ( t ,  z) is said to  be 
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globally uniformly asymptotically stable 
(GUAS) if a function /3 E KC exists such that for 
all ( to .x ( t0) )  E R+ x E', t 2 t o ,  Ilx(t0)ll 5 T 

llx(t)lI 5 P(II.(to)ll , t  - t o ) ,  (1) 

globally uniformly exponentially stable 
(GUES) if it is GUAS and (1) is satisfied with 

P ( r ,  s) = krepYs  k > 0 , y  > 0 

A notion that is equivalent to having both global 
uniform asyinptotic stability and local uniform ex- 
ponential stability (GUAS+LUES) is the following. 

Definition 2.4 ([15, Definition 21). The equilib- 
rium point z = 0 of a non-autonomous system 
x = f ( t ,  x) is said to be globally IC-exponentially 
stable if a function K E IC and a constant y > 0 exist 
such that for all ( t o , x ( t o ) )  E R+ x R" we have 

vt 2 t o  2 0. llx(t)ll 5 n(( lx( to) l l )e-r( t - to)  

Definition 2.5. A continuous function q5 : R+ + 
R is said to be persistently exciting (PE) if con- 
stants €1, € 2 ,  S > 0 exist such that for all t 2 0 

t+6 
€1 5 1 @(T)dT 5 €2. 

Theorem 2.6 ([19]). Comider the system 

When  q5(t) i s  PE, c1 > 0, c2 > 0, 11 > 0, 12 > 0 ,  
then the system, (2) is GUES. 
Theorem 2.7 ([20, Theorem 3.4.6 (v)]). The sys- 
tern :i. = A(t )z  is GUES if and only i f  it is GUAS. 

2.2 Cascaded Systems 
Consider a system Z = f ( t ,  z )  that can be written as 

(3) 
.41 = f l ( t ,  21)  + S ( t ,  21,Z2)22r 

2 2  = f i Z ( t ,  2 2 1 ,  

where z1 E E", 22 E Em, ( z 1 , z ~ )  = (0,O) is an 
equilibrium point of (3),  f l  ( t ,  2 1 )  is continuously dif- 
ferentiable in ( t ,  21) and f z ( t ,  za), g ( t ,  zl, 22)  are con- 
tinuous iii their arguments, and locally Lipschitz in 
z2 and (.I, z z ) ,  respectively. 

Assumption 2.8. Assume that continuous func- 
tions kl : R+ -+ R and k2 : E+ -+ R exist such 
that 

Then we can formulate the following corollary from 
a result presented in [21] (see also [13]). 

Corollary 2.9. Assume  that the subsystem i l  = 
f ~ ( t ,  21)  of ( 3 )  is GUES, the subsystem Z2 = f 2 ( t ,  2 2 )  

is globally IC-exponentially stable and g( t ,  z1, z2) sa- 
tisfies (4). Then the cascaded system (3) i s  globally 
IC-exponentially stable. 

2.3 Problem Formulation 

A kinematic model of the unicycle-type mobile robot 
is given by the following equations 

x =vcos8 ,  y = vsin0, 0 = w. 

Coordinates (2 ,  y ,  0) are shown in figure 1. The for- 
ward velocity U and the angular velocity w are con- 
sidered as inputs. 

Consider the problem of tracking a reference tra- 
jectory (x,, y,, B,, U,, w,) generated by the system 

x, = 'U, coso,, y, = U ,  sin@,, 0, = w,, 

where U, and w, are continuous functions of time. 

I 
Y 

Yrl 

I 

Fig. 1. 
5 ,  

b 
2 

The unicycle coordinates (z, y, e ) ,  reference position 
(zr,yrr 8,) and the new error coordinates ( z e r y e ,  0,) . 

Following [3] we express the error coordinates in 
the moving frame in the form 

and compute the error dynamics as 

x, = wy,  - 2, + U, COSB, 

ye = -wx, + 'U, sin0, 

0, = w, - w. 
( 5 )  

In certain pursuit navigation problems, particu- 
larly when one of position coordinates x,, ye differs 
substantially from the other, the measurements of 
the smaller coordinate cannot be accomplished ac- 
curately. Specifically, we assume that we are unable 
to measure the forward-error z,, so only values of 
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ye and 0, are available. The case of unmeasured ye 
can be addressed analogously. In the former case the 
available output is 

Y = [ye e e l T .  (61 

Then the dynamic output-feedback state-tracking 
control problem can be formulated as 
Find appropriate velocity control laws II and 
w of the form 

21 = v ( t , ~ e , o e i z ) i  ~ = = w ( t , Y e , O e , z ) ,  (7) 

where z is generated from the observer 

,i = f(t,Ye,Qc.,Z), (8) 

such that the closed-loop error system of (5, 
7, 8) is globally IC-exponentially stable. 

3 Important Observation 
Assume that we apply the control law 

w = w , + c , Q e .  (9) 

In this case, in combination with the error dynamics 
( 5 ) ,  we obtain the cascaded structure 

[;:I = [ -:, "a[;:]+[" 0 - c l x , + u , ~  0" 1 clye+ U,* 

.. 
i z = f z ( t , z z )  

Assume that uT is bounded. This being so, it is clea,r 
that g ( t ,  x1 , z2) satisfies Assumption 2.8. Further- 
more, the system &2 = f i ( t ,  z2) is GUES. As soon as 
we are able to find a control law for U such that the 
system 

is rendered GUES, we can conclude global K:- 
exponential stability of the resulting overall closecl- 
loop system by means of Corollary 2.9. 

This is precisely the approach used in [13], where 

U = U ,  + C Z X e ,  e:! > 0 

was used for rendering (10) GUES, assuming w, per- 
sistently exciting. Notice that, for any control law 

1/ = U, + c2xe - c3w,1Je, c a  > 0,c3 > -1 (11) 

the same result can be established (cf. Theorem 2.6). 

However, this approach can not only be used for 
studying the state-feedback problem, but also for 
studying the output-feedback problem. As 0, is 
still available for measurement, the output-feedback 
problem can be reduced in a similar way to the prob- 
lem of finding an output feedback for u such that the 
system 

[ [;:I = [-e, 71 [;:I + p 0  '3 (12) 
YI = Ye 

is rendered GUES. In that case we can again con- 
clude global K-exponential stability of the resulting 
overall closed-loop system by means of Corollary 2.9. 

4 Full-order Observer 
As explained in the previous section, the niain prob- 
lem we are interested in is stabilizing the system 
(12). From standard linear systems theory we know 
that this can be established by means of the dynamic 
output-feedback control law 

Y1= [o l ]k j  , 
with e 2  > 0 ,  c3 > -1, 11 > 0 ,  and l a  > -1. Us- 
ing this control law, the resulting closed-loop system 
(12, 13) is GUES, provided {,hat w, is persistently 
exciting (cf. Theorem 2.6). Ety a direct application 
of Corollary 2.9 we obtain the following 

Proposition 4.1. Consider the tracking error dy- 
namics ( 5 )  with output ( 6 )  in closed loop with the 
control laws (9, 13). Assume  w, persistently exciting 
(PE) and U, bounded. Then  the resulting closed-loop 
sys tem is  globally IC-exponentially stable. 

5 Reduced-order Observer 
Notice that (13b: 13c) is a full order observer for 
the system ( l a ) ,  i.e., even though we can measure 
ye we also have generated an estimate for y e .  It is 
also possible to  use a reduced order observer, i.e., to  
reconstruct only the unknown signal IC,. 

In order to find a reduced observer for the system 
(12) we try to estimate some linear combination of 
the measured and the unknown signals. To be pre- 
cise, we define a new variable z as 

2 = IC, - by1, 
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where b is a time-function still to  be determined in or- 
der to guarantee asymptotic stability of the reduced 
order observer. Differentiating z with respect to time 

f 2 ( t ,  zz)= -c .z2,  

1. c1ye +U,* 
si; 0 

-C lXe+Vr+ 

C l  ye+ U, 8, cos 0,-1 + lwr ( - Sl i e0e  - Cl,,> I along the dynamics (12) yields g ( t ,  z1,zz)= 

2 = W,Y, -t- (U, - W) - bye + bw,xe 

= bW,.(ze - by,) + b'w,ye + + (U, - V )  - bye To be able to apply Corollary 2.9 we need to  verify 
global uniform exponential stability (GUES) of the 
system i 1  = f l ( t ,  zl) ,  which can also be expressed as = bwrz + b2wr + W, - b ye + (w, - v ) .  ( ' >  

On defining the reduced order observer dynamics as re] = [ -C2 (c3 + 0 l ) w T ]  [;:I + [';;I &, (17a) 
Y e  -Wr 1. = bw,.i + (b2W, + w, - b )  Y e  + (.U, - w) \ " 'U  

fl ( t  ,211 G(t,El>ZZ) 

P7b)  
we obtain for the observation-error 2 = z - 2 

2 2  = -1w;zz. 
2 = bw,?. (I4) Solut,ions of the subsystem (17b) are given by 

Solutions of (14) satisfy 
- l  J,b ~ g ( ~ ) d 7  

~ 2 ( t )  = z z ( to )e  q t )  = qto)J0 b ( T ) W , ( T ) d T  

If we now take b = -lw, with 1 a positive constant 
and we furthermore assume that w, is PE ,  we have 
the existence of € 1  > 0, € 2  > 0, and 6 > 0 such that 

which enables us to  conclude that (14) is GUES. 

controller (1 1) : 

Proposition 5.1. Consider the trncking error dy- 
namics ( 5 )  with output ( 6 )  in closed-loop with the 
control l r m  

w = W ,  + clQe, C1 > 0, (Ea )  

We c m  conibine this reduced observer with the 

'U = + c22e - C Q W , ~ ~ ,  ~2 > 0, CY > -1, (15b) 

where 2, is  generated by the reduced order observer 

i, = 2 - 1wyye, 1 > 0 ,  (164 

(16b) 
1. = -1w;2+ (1"; + wr + 1b,)ye + (w, - w). 

If v, is  bounded and w, is  persistently exciting (PE), 
then the closed-loop system ( 5 ,  15, 16) i s  globally K -  
exponentially stuble. 

Proof. We can view the closed-loop system (5, 15, 
l G )  as a cascaded system, i.e., a system of the form 
(3) ,  where 

T 
ZI = [x, ye X, - 2.1 , 22 = B e ,  [ T' (CY ;1Iw, 0 

f l ( t ,  Z 1 )  = -U, 

Since wT is PE, the subsystem (17b) is GUES. Fur- 
thermore, the term g ( t , Z I , Z Z )  is bounded and the 
system tl = f i ( t , Z 1 )  is GUES. From Corollary 2.9 
we can conclude that the system 51 = f l ( t , z l )  is 
GUAS. Since it is a linear time-varying system The- 
orem 2.7 enables us to conclude that 51 = f i ( t ,  21) is 
GUES. Since also the system .& = f z ( t ,  zz) is GUES 
and boundedness of both U, and w, (cf: Defini- 
tion 2 . 5 )  guarantees that the condition on g ( t ,  z1 ,za)  

is met, Corollary 2.9 yields the desired result. 0 

6 Simulations 
With the purpose of illustrating the output-feedback 
state-tracking controllers derived in this paper, a 
number of simulations have been done. The simu- 
lations were carried out using MATHEMATICA. We 
considered the problem of tracking a circle with con- 
stant velocity, i.e., a reference trajectory that is given 
by U, = 1, w, = 1, where as in [la] we took for the 
initial error (ze(0) ,ye(0) ,Qe (0 ) )  = (-0.5 ,0.5 ,1). 
For comparison reasons we first simulated the state- 
feedback controller (9, 11) using the gains 

~1 = 5.9460, cz 1.3522, ~3 -0.4142. (18) 

We arrived at these gains by minimizing for the sys- 
tem (10) the costs 

and making the B,-dynamics (which enters as a per- 
turbation to this system) five times as fast. The re- 
sulting performance is depicted in figure 2. 

For studying the behavior of the full-order ob- 
server we simulated the full-order output-feedback 
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Fig. 2. Tracking errors and inputs for static state-feedback 
controller (9, 11) with controller gains (18). 

s 
6~ 

4 -  

2 1  

controller (9, 13) with the controller gains (18): 
where we used the observer gains 

:, 

11 = 6.6710, 12 = 34.3546. (19) 

We arrived at these gains by taking five times the 
eigenvalues of the corresponding linear closed-loop 
system (10). As an initial stsate-estimate we took 
( g e ( 0 ) ,  Oe(0)) = (0,O). The resulting performance is 
depicted in figure 3.  When we compare the behavior 

0 2 4 6 8 10 
Fig. 3. Tracking errors and inputs for full-order output- 

feedback controller (9, 13) with controller and observer 
gains (18, 19). 

with that of the state-feedback controller, as depicted 
in figure 2, we obtain a comparable tracking error 
performance. 

For studying the behavior of the reduced-order 
observer, we simulated the reduced-order output- 
feedback controller (15, 16) with the controller gains 
(18), where we used the observer gain 

1 = 24.74.61 (20) 

which guarantees that the error dynamics of the 
reduced-order observer (15, 16) converges as quickly 

- 
-5 

-10  
-15 

0 2 4 6 8 1 0  
Fig. 4. Tracking errors and inputs for reduced-order output- 

feedback controller (15, 16) with controller- and observer- 
gains (18, 20). 

as that of the full-order observer (13). The results are 
depicted in figure 4. The convergence of the track- 
ing error dynamics is again comparable to that of the 
previous two simulations. 

7 Concluding Remarks 
By means of the output-feedback we have solved the 
state-tracking control problem for the unicycle-type 
mobile robot with restricted measurability of track- 
ing error components. We arrived at our results by 
constructing both full- and reduced-order observers. 
Using the theory of cascaded systems, we were able 
to show global IC-exponential stability of the result- 

of stability which guarantees a certain robustness 
against disturbances. The theoretical results have 
been confirmed by simulations. We believe that the 
approach involved in our tracking controller design 
may be applicable to mobile robot navigation prob- 
lems with restricted knowledge of the scene. 

All our results assume the angular velocity of the 
reference to be persistently exciting. For this rea- 
son, our controllers are not capable of tracking e.g., 
straight lines. For the state-feedback problem there 
are two possible ways to overcome this problem. One 
way is to keep the control law for the forward veloci- 
ty w, but to redesign the control law for the angular 
velocity w by means of backstepping (starting from 
a virtual control Oe = 0). In that case we need that 
either U, or w, should not tend to zero. A second 
way to overcome the PE-problem is to use the con- 
cept of uG-PE as presented in [22]. Using this con- 
cept, GUAS of the resulting closed-loop system can 
be shown, where both the stabilization and tracking 
problem is solved by means of the same controller. 

ing tracking error dynamics. This is a uniform kind 
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As this are two ways to overcome the PE-problem 
for the state-feedback case, it is worth investigat- 
ing if these inodifications also apply to the output- 
feedback case. 
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