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Abstract

In this paper we study the tracking problem for the class of non-
holonomic systems in chained form. In particular, with as out-
puts the first and last state component of the chained form, we
suggest a solution for the output tracking problem by combin-
ing a time-varying state feedback controller with an observer
for the chained form system. For the stability analysis of the
“certainty equivalence type” of controller we use a cascaded
systems approach. The resulting closed loop system is globally
K -exponentially stable.

1 Introduction

In recent years a lot of interest has been devoted to (mainly)
stabilization and tracking of nonholonomic dynamic systems,
see e. g. [1, 6, 8, 15, 17]. One of the reasons for the attention
is the lack of a continuous static state-feedback control since
Brockett’s necessary condition for smooth stabilization is not
met, see [3]. The proposed solutions to this problem follow
mainly two routes, discontinuous and/or time-varying control.
For a good overview, see the survey paper [10] and the refer-
ences therein.
∗Corresponding author

It is well known that the kinematic model of several nonholo-
nomic systems can be transformed into achained form system.
The global tracking problem for chained form systems has re-
cently been addressed in [6, 7, 8, 14, 17, 20]. In this paper
we consider the output tracking problem for chained form sys-
tems. Our results are based on the construction of a time vary-
ing state-feedback controller in combination with an observer.
However, the stability analysis and design are based on results
for (time-varying) cascaded systems [18]. In the design we di-
vide the chained form into a cascade of two sub-systems which
we can stabilize independently of each other, and furthermore
the same cascade results also apply for the controller-observer
combination. Regarding the latter part, similar ideas were re-
cently presented for the combination of high-gain controllers
and high-gain observer for a class of triangular nonlinear sys-
tems [2], see also [12].

The organization of the paper is as follows. Section 2 con-
tains some definitions, preliminary results and the problem for-
mulation. Section 3 addresses the tracking problem based on
time-varying state feedback and in section 4 we design an ex-
ponentially convergent observer for the chained system. In sec-
tion 5 we combine the control law from section 3 with the ob-
server from section 4 in a “certainty equivalence” sense. This
yields a globallyK -exponentially stable closed loop system
under the condition of persistently exciting reference trajecto-
ries. Finally, section 6 concludes the paper.
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2 Preliminaries, problem formulation

2.1 Stability

To start with, we recall some basic concepts (see e.g. [9, 23]).

Definition 2.1 A continuous functionÞ : [0; a/→ [0;∞/ is
said to belong toclassK if it is strictly increasing andÞ.0/ =
0.

Definition 2.2 A continuous functionþ : [0; a/ × [0;∞/→
[0;∞/ is said to belong toclassK L if, for each fixed s, the
mappingþ.r; s/ belongs to classK with respect to r and, for
each fixed r, the mappingþ.r; s/ is decreasing with respect to
s andþ.r; s/→ 0 as s→∞.

Consider the system

ẋ= f .t; x/; f .t;0/ = 0 ∀t ≥ 0 (1)

where f .t; x/ is piecewise continuous int and locally Lipschitz
in x.

Definition 2.3 The system (1) isuniformly stableif for each
ž > 0 there isŽ = Ž.ž/ > 0, independent of t0, such that

‖x.t0/‖ < Ž⇒ ‖x.t/‖ < ž; ∀t ≥ t0 ≥ 0:

Definition 2.4 The system (1) isglobally uniformly asymptot-
ically stable (GUAS)if it is uniformly stable and globally at-
tractive, that is, there exists a classK L functionþ.·; ·/ such
that for all initial state x.t0/:

‖x.t/‖ ≤ þ.‖x.t0/‖; t− t0/; ∀t ≥ t0 ≥ 0

Definition 2.5 The system (1) isglobally exponentially stable
(GES) if there exist k> 0 and
 > 0 such that for any initial
state

‖x.t/‖ ≤ ‖x.t0/‖kexp[−
.t− t0/]:

A slightly weaker notion of exponential stability is the follow-
ing

Definition 2.6 ((cf. [21])) We call the system (1)globally K -
exponentially stableif there exist
 > 0 and a classK function
k.·/ such that

‖x.t/‖ ≤ k.‖x.t0/‖/exp[−
.t− t0/] (2)

2.2 Cascaded systems

Consider the system{
ż1 = f1.t; z1/+ g.t; z1; z2/z2

ż2 = f2.t; z2/
(3)

wherez1 ∈ IRn, z2 ∈ IRm, f1.t; z1/ is continuously differen-
tiable in.t; z1/ and f2.t; z2/, g.t; z1; z2/ are continuous in their
arguments, and locally Lipschitz inz2 and.z1; z2/ respectively.

We can view the system (3) as the system

61 : ż1 = f1.t; z1/

that is perturbed by the output of the system

62 : ż2 = f2.t; z2/:

From the proof presented in [18] one can conclude:

Theorem 2.7 (based on [18])The cascaded system (3) is
GUAS if the following three assumptions hold:

• assumption on61: the systeṁz1 = f1.t; z1/ is GUAS
and there exists a continuously differentiable function
V.t; z1/ : IR+ × IRn→ IR that satisfies

W.z1/ ≤ V.t; z1/;
@V
@t + @V

@z1
· f1.t; z1/ ≤ 0; ∀‖z1‖ ≥ �;∥∥∥ @V

@z1

∥∥∥‖z1‖ ≤ cV.t; z1/; ∀‖z1‖ ≥ �;

where W.z1/ is a positive definite proper function and c>
0 and� > 0 are constants,

• assumption on the interconnection: the function
g.t; z1; z2/ satisfies for all t≥ t0:

‖g.t; z1; z2/‖ ≤ �1.‖z2‖/+ �2.‖z2‖/‖z1‖;
where�1; �2 : IR+ → IR+ are continuous functions,

• assumption on62: the systeṁz2 = f2.t; z2/ is GUAS and
for all t0 ≥ 0:∫ ∞

t0

‖z2.t0; t; z2.t0//‖dt ≤ �.‖z2.t0/‖/;

where the function�.·/ is a classK function,

Lemma 2.8 (see [17])If in addition to the assumptions in The-
orem 2.7 botḣz1 = f1.t; z1/ andż2 = f2.t; z2/ are globallyK -
exponentially stable, then the cascaded system (3) is globally
K -exponentially stable.

2.3 A stability result

Theorem 2.9 Consider the linear time-varying SISO system

ż =



0 : : : : : : : : : 0

f .t/
...

...

0
...

...
...

...
...

...
...

...
0 : : : 0 f .t/ 0


z+


1
0
...
...
0

 v
y = [0 : : :0 1]z

(4)

where z∈ IRm (m≥ 2), y; v ∈ IR and f.t/ is a locally bounded
function.

Define

!.¦; t/ =
∫ t

¦

f .−/d−: (5)

Assume that there existŽ; ž1; ž2 > 0 such that for all t≥ t0:

ž1 ≤
∫ t+Ž

t
!.¦; t/2d¦ and

∫ t+Ž

t
!.¦; t/2m−2d¦ ≤ ž2: (6)
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Then there exist continuous K.t/ and L.t/ such that the
controller-observer combination

u = −K.t/x̂ (7)
˙̂x = A.t/x̂+ Bu+ L.t/.y−Cx̂/ (8)

yields global exponential stability of the closed-loop system.

Proof A complete proof can be found in [11]. The main idea
is as follows. First it is shown that the system (4) is uniformly
controllable and uniformly observable if and only if (6) is sat-
isfied. Then the result follows from standard linear systems
theory (cf [19]).

In general it takes some involving calculations to arrive at these
gainsK.t/ andL.t/. However, under an extra assumption we
can arrive at rather simple expressions.

Theorem 2.10 Consider again the system (4) which is such
that the condition (6) is satisfied. If in addition| f .t/| can
be upper bounded by a polynomial in t, then we have that
the controller-observer combination (7,8) yields globalK -
exponential stability of the closed-loop system in case we use

K.t/ = [k1.t0; t/ : : :km.t0; t/]

L.t/ = [ lm.t0; t/ : : : l1.t0; t/]

where

ki.t0; t/ = .−1/i l i.t0; t/

l i.t0; t/ =
m−i∑
j=0

!.t0; t/2 j+i−1

. j + i − 1/! j!
i = 1; : : : ;m

with ! as defined in (5).

Proof A complete proof can be found in [11]. The proof is
mainly based on the results of [4].

2.4 Problem formulation

The class of chained form nonholonomic systems we study in
this paper is given by the following equations

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 (9)
...

ẋn = xn−1u1

wherex= .x1; : : : ; xn/ is the state,u1 andu2 are control inputs.
Consider the problem of tracking a reference chained form

system:

ẋ1;d = u1;d

ẋ2;d = u2;d

ẋ3;d = x2;du1;d

...

ẋn;d = xn−1;du1;d

When we define the tracking errorxe= x− xd we obtain as
tracking error dynamics

ẋ1;e = u1− u1;d

ẋ2;e = u2− u2;d

ẋ3;e = x2u1− x2;du1;d (10)
...

ẋn;e = xn−1u1− xn−1;du1;d

The state-feedback tracking control problem then can be for-
mulated as to find appropriate control lawsu1 and u2 of the
form

u1 = u1.t; x; xd; ud/ and u2 = u2.t; x; xd; ud/ (11)

such that the closed-loop trajectories of (10,11) are globally
K -exponentially stable.

Assuming the output is given by

y=
[

x1

xn

]
(12)

we can formulate the output-feedback tracking problem as to
find appropriate control lawsu1 andu2 of the form

u1 = u1.t; y; xd; ud/ and u2 = u2.t; y; xd; ud/ (13)

such that the closed-loop trajectories of (10,13) are globally
K -exponentially stable.

3 The state feedback problem

The approach we use to solve our problem is based on the re-
cently developed studies on cascaded systems [5, 13, 16, 18,
22], and that of Theorem 2.7 in particular.

We search for a subsystem which, with a stabilizing control
law, can be written in the forṁz2 = f2.t; z2/ that is asymptoti-
cally stable. In the remaining dynamics we then can replace the
appearance of thisz2 by 0, leading to the systeṁz1 = f1.t; z1/.
If this system is asymptotically stable we might be able to con-
clude asymptotic stability of the overall system using Theo-
rem 2.7.

Consider the tracking error dynamics (10). We can stabilize
thex1;e dynamics by using the linear controller

u1 = u1;d− c1x1;e (14)

which yields GES forx1;e, providedc1 > 0.
If we now setx1;e equal to 0 in (10) we obtain

ẋ2;e = u2− u2;d

ẋ3;e = x2;eu1;d (15)
...

ẋn;e = xn−1;eu1;d

where we used (14).
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Notice that the system (15) can be seen as ann− 1 di-
mensional linear time-varying system of the form (4) with
f .t/ = u1;d.t/, x = [x2;e; x3;e; : : : ; xn;e]T, andu = u2− u2;d.
From Theorem 2.9 we know the conditions for finding a con-
troller that makes the closed-loop system GES. From Theo-
rem 2.10 we have an explicit expression under some more re-
strictive conditions.

This observation leads to the following

Proposition 3.1 Consider the system (10) in closed-loop with
the controller

u1 = u1;d− c1x1;e

u2 = u2;d− c2[k2.t0; t/; : : : ; kn.t0; t/]

 x2;e
...

xn;e

 (16)

where c1; c2 > 0 and

ki.t0; t/ = .−1/i
n−i∑
j=0

!.t0; t/2 j+i−2

. j + i − 2/! j!
i = 2; : : : ; n

with ! defined as

!.¦; t/ =
∫ t

¦

u1;d.−/d− = x1;d.t/− x1;d.¦/: (17)

If

• there existŽ; ž1; ž2 > 0 such that (6) is satisfied (where
m= n− 1) with ! as defined in (17),

• |u1;d.t/| can be upper bounded by a polynomial function
of t, and

• x2;d; : : : ; xn−1;d are bounded

then the closed-loop system (10,16) is globallyK -
exponentially stable.

Proof We can see the closed-loop system (10,16) as a system
of the form (3) where

z2 = x1;e

z1 = [x2;e; : : : ; xn;e]T

f1.t; z1/ = .A.t/− c2BK.t//z1

f2.t; z2/ = −c1z2

g.t; z1; z2/ = −c1[0; x2; x3; : : : ; xn−1]T

with

A.t/ =



0 : : : : : : : : : 0

u1;d.t/
...

...

0
...

...
...

...
...

...
...

...
0 : : : 0 u1;d.t/ 0


B=


1
0
...
0



To be able to apply Theorem 2.7 we need to verify the three
assumptions:

• assumption on61: Due to the assumptions onu1;d.t/ we
have from Theorem 2.10 thatẋ= f1.t; x/ is globallyK -
exponentially stable and therefore GUAS. In [11] the ex-
istence of a suitableV is guaranteed.

• assumption on connecting term: Sincex2;d; : : : ; xn−1;d are
bounded, we have

‖g.t; z1; z2/‖ ≤ c1

‖


0
x2;d

...
xn−1;d

‖ + ‖


0
x2;e

...
xn−1;e

‖


≤ c1M + c1‖z1‖

• assumption on62: Follows from GES oḟz2 = −c1z2.

Therefore, we can conclude GUAS from Theorem 2.7. Since
both61 and62 are GES, Lemma 2.8 gives the desired result.

Remark 3.2 Notice that for this result we used the controller
proposed in Theorem 2.10. It is clear that by using the
controller proposed in Theorem 2.9 a similar result can be
achieved. As a consequence we can drop the assumption that
|u1;d.t/| can be upper bounded by a polynomial function of t.
The price we have to pay is that the expressions for K.t/ and
L.t/ are more difficult to calcultate (since it involves determin-
ing the state-transition matrix8.t; t0/).

Remark 3.3 Notice that since

u1.t/ = u1;d.t/− c1x1;e.t0/exp.−c1.t− t0//

the conditions on u1;d.t/ are satisfied if and only if the condi-
tions on u1.t/ are satisfied.

Therefore, we can also see the closed-loop system (10,16) as
a system of the form (3) where

z2 = x1;e

z1 = [x2;e; : : : ; xn;e]
T

f1.t; z1/ = .A.t/− c2BK.t//z1

f2.t; z2/ = −c1z2

g.t; z1; z2/ = −c1[0; x2;d; x3;d; : : : ; xn−1;d]T

with

A.t/ =



0 : : : : : : : : : 0

u1.t/
...

...

0
...

...
...

...
...

...
...

...
0 : : : 0 u1.t/ 0


B=


1
0
...
0


So when we replace the controller (16) with the one given by
Theorem 2.9 we can copy the proof.

However, since the connecting term g.t; z1; z2/ now can be
bounded by a constant, we can claim not onlyK -exponential
stability, but even GES. More details can be found in [11].
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4 An observer

The observability property for chained form systems was con-
sidered in [1], in which a (local) observer was proposed in case
u1.t/ = −c1x1.t/. In this section we propose a globally ex-
ponentially stable observer for the chained system under an
observability condition which is related to the persistence of
excitation of the reference trajectory.

Proposition 4.1 Consider the chained-form system (9) with
output (12). Assume that

• There existŽ; ž1; ž2 > 0 such that (6) is satisfied where we
define

!.¦; t/ =
∫ t

¦

u1.−/d− = x1.t/− x1.¦/ (18)

• |u1.t/| can be bounded by a polynomial function of t.

Then the observer

x̂1 = x1
˙̂x2
˙̂x3
...
˙̂xn

 =


u2

x̂2u1
...

x̂n−1u1

− c3


ln.t0; t/

ln−1.t0; t/
...

l2.t0; t/

 x̃n

wherex̃= x̂− x, c3 > 0 is a constant and

li.t0; t/ =
n−i∑
j=0

[x1.t/− x1.t0/]2 j+i−2

. j + i − 2/! j!
i = 2; : : : ; n

guarantees that the state observation errorx̃ converges to zero
exponentially.

Proof The system (9) together with the observer (8) leads to
x̃1 = 0 and


˙̃x2
˙̃x3
...
˙̃xn

=


0 : : : : : : 0 −c3ln.t0; t/

u1.t/
...

...
...

0
...

...
...

...
...

...
... 0

...
0 : : : 0 u1.t/ −c3l2.t0; t/




x̃2

x̃3
...

x̃n



which according to Theorem 2.10 is globallyK -exponentially
stable.

Remark 4.2 Notice that by using Theorem 2.9 we can achieve
GES in a similar way at the expense of a more complicated
L.t/.

5 The output feedback problem

In section 3 we derived a state-feedback controller for track-
ing a desired trajectory, whereas in section 4 we derived an
observer for a system in chained form. We can also combine
these two results in a “certainty equivalence” sense:

Proposition 5.1 Consider the system (9) with output (12) in
closed-loop with the controller

u1 = u1;d− c1x1;e

u2 = u2;d− c2[k2.t0; t/; : : : ; kn.t0; t/]

 x̂2;e
...

x̂n;e

 (19)

where c1; c2 > 0 and [ x̂2;e : : : x̂n;e]T is generated from the ob-
server

˙̂x2
˙̂x3
...
˙̂xn

 =


u2− u2;d

x̂2;eu1;d
...

x̂n;eu1;d

− c3


ln.t0; t/

ln−1.t0; t/
...

l2.t0; t/

 .x̂n− xn/

(20)
where c3 > 0 is a constant and

ki.t0; t/ = .−1/i l i.t0; t/

l i.t0; t/ =
n−i∑
j=0

[x1;d.t/− x1;d.t0/]2 j+i−2

. j + i − 2/! j!
i = 2; : : : ; n

If

• there existŽ; ž1; ž2 > 0 such that (6) is satisfied with
!.¦; t/ = x1;d.t/− x1;d.¦/

• |u1;d.t/| can be upper bounded by a polynomial function
of t, and

• x2;d.t/; : : : ; xn−1;d.t/ are bounded

then the closed-loop system (10,19,20) is globallyK -
exponentially stable.

Proof Follows immediately from Theorems 2.10 and 2.7 along
the lines of the proofs of Proposition 3.1.

Remark 5.2 Similar to Remarks 3.2 and 3.3 we can claim even
GES instead ofK -exponential stability. Also, it is clear that a
similar result can even be achieved when we drop the assump-
tion that |u1;d.t/| can be upper bounded by a polynomial. The
only price we have to pay are more complex K.t/ and L.t/.

6 Conclusions

In this paper we considered the output tracking problem for
nonholonomic systems in chained form, by combining a time-
varying state feedback controller with an observer for the
chained form in a “certainty equivalence” way. The stability of
the closed loop system is showed by results from time-varying
cascaded systems. Under a condition of persistence of exci-
tation, we have shown globallyK -exponential stability of the
closed loop system.
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