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Keywords : chained form, output feedback control, track- Itis well known that the kinematic model of several nonholo-
ing, cascaded systems. nomic systems can be transformed intthained form system
The global tracking problem for chained form systems has re-
cently been addressed in [6, 7, 8, 14, 17, 20]. In this paper
Abstract we consider the output tracking problem for chained form sys-
tems. Our results are based on the construction of a time vary-
In this paper we study the tracking problem for the class of oy state-feedback controller in combination with an observer.
holonomic systems in chained form. In particular, with as outtowever, the stability analysis and design are based on results
puts the first and last state component of the chained form, j#¢ (time-varying) cascaded systems [18]. In the design we di-
suggest a solution for the output tracking problem by combigide the chained form into a cascade of two sub-systems which
ing a time-varying state feedback controller with an observgie can stabilize independently of each other, and furthermore
for the chained form system. For the stability analysis of thRe same cascade results also apply for the controller-observer
“certainty equivalence type” of controller we use a cascadggmbination. Regarding the latter part, similar ideas were re-
systems approach. The resulting closed loop system is globatly presented for the combination of high-gain controllers
K -exponentially stable. and high-gain observer for a class of triangular nonlinear sys-
tems [2], see also [12].

1 Introduction

In recent years a lot O.f interest has been devoted_ to (mainly)r organization of the paper is as follows. Section 2 con-
stablllzaucin gmg tgcl;gg oof non?ot!onomm dynfamlr:: SYSteM3ins some definitions, preliminary results and the problem for-
see €. 9. [1, 6, 8, : ]. One 0 the reasons for the attemmﬂlation. Section 3 addresses the tracking problem based on
is the lack of a continuous static state-feedback control SiNGifie-varying state feedback and in section 4 we design an ex-

Brockett's necessary condition for_smooth s_tabilization Is n Bnentially convergent observer for the chained system. In sec-
met, see [3]. The proposed solutions to this problem folloy, , 5 \ye compine the control law from section 3 with the ob-

mainly two routes, discontinuous and/or time-varying contr erver from section 4 in a “certainty equivalence” sense. This

For a good overview, see the survey paper [10] and the re‘cﬁrélds a globallyK -exponentially stable closed loop system

ences therein. under the condition of persistently exciting reference trajecto-
*Corresponding author ries. Finally, section 6 concludes the paper.




2 Preliminaries, problem formulation that is perturbed by the output of the system

2.1 Stability L1 = h(t, ).
To start with, we recall some basic concepts (see e.g. [9, 23fjrom the proof presented in [18] one can conclude:

Definition 2.1 A continuous functior : [0, a) — [0, c0) is 1 n€orem 2.7 (based on [18])The cascaded system (3) is
said to belong talassK if it is strictly increasing andx(0) = CGUAS if the following three assumptions hold:

0. e assumption onx;: the systene; = fi(t, z) is GUAS
and there exists a continuously differentiable function

Definition 2.2 A continuous functiorg : [0, a) x [0, c0) — V(t.z1): R, x R" - R that satisfies

[0, o) is said to belong talassK L if, for each fixed s, the
mappingp(r, s) belongs to clas& with respect to r and, for W(z1) < V(t, ),

each fixed r, the mapping(r, s) is decreasing with respect to % i % Cfi(tz) <0, Y|zl =,
s andj(r,s) - 0as s— . 1

Izl =cV(t, z0), Vizll =n,

v
071

Consider the system

where W(z,) is a positive definite proper function and=c

x=f(tx, ft0O=0 vt=0 @) O0andn > 0 are constants,

wheref (t, x) is piecewise continuous trand locally Lipschitz 4 assumption on the interconnection:the function
In X g(t, z1, z) satisfies for all t> tg:

Definition 2.3 The system (1) ianiformly stableif for each t. 2. )|l < 611 + O>( 2] | 2
e > Othere iss = §(¢) > 0, independent off such that 190, 21 2)1| = Gullizell) + &l Dl

whered, 07 : IR, — IR, are continuous functions,
[X(to)ll <d = IX(D|| <€, Vt=to>0.
e assumption orx,: the systeni, = f,(t, ) is GUAS and

Definition 2.4 The system (1) iglobally uniformly asymptot- for all tg > O:

ically stable (GUAS)f it is uniformly stable and globally at- o

tractive, that is, there exists a claksL function (-, -) such / IZ2(to, t, Z2(to)) At < k([ Z2(to) [1),
that for all initial state Xtg): to

IXO < BUIXE) ], t—1to), Vt>1to>0 where the functior (-) is a clasK function,

Lemma 2.8 (see [17])If in addition to the assumptions in The-
orem 2.7 bothyy = f1(t, z) andz = f,(t, z) are globallyK -
exponentially stable, then the cascaded system (3) is globally
K -exponentially stable.

Definition 2.5 The system (1) iglobally exponentially stable
(GES)if there exist k= 0 and y > 0 such that for any initial
state

X < lIx(to) [kexp[-y(t — to)].

A slightly weaker notion of exponential stability is the follow2.3 A stability result

in
9 Theorem 2.9 Consider the linear time-varying SISO system
Definition 2.6 ((cf. [21])) We call the system (Dlobally K - B B
exponentially stablé there existy > 0 and a clasK function o ... ... ... 0 1
k() such that fiy . : 0
IX(®)1I < k(IX(to)]}) expl-y(t — to)] @ z=1|90 " " S S B L
2.2 Cascaded systems 0 ... 0 f® 0 0
Consider the system y = [0...01]z
7 = htz)+gtz 22 where ze R™ (m> 2), y,v € Rand f(t) is a locally bounded
o ’ o (3) function.
= ftzn) ,
Define
wherez; € IR", z € IR™, fi(t, z) is continuously differen- w(o.t) = /t f(r)dr ()
tiable in(t, z;) and fo(t, ), g(t, z1, z) are continuous in their ’ . '

arguments, and locally Lipschitz m and(z, z,) respectively. Assume that there existe;, €, > 0 such that for all t> to:
We can view the system (3) as the system

t+8 ) t+3 .
e
Sz = fi(t, z1) €< /t w(o,t)°do  and [ w(o, 1) do <€y (6)



Then there exist continuous (§ and L(t) such that the  When we define the tracking errgg = x — X4 we obtain as

controller-observer combination tracking error dynamics
u = —K@OxX 7 Xpe = Uip—Ug
X = A®MX+Bu+Lt(y-CY (8) Yoo = Up—lag
yields global exponential stability of the closed-loop system. Xge = XoUp— XzdUid (10)

Proof A complete proof can be found in [11]. The main idea
is as follows. First it is shown that the system (4) is uniformly
controllable and uniformly observable if and only if (6) is sat-
isfied. Then the result follows from standard linear SystemsThe state-feedback tracking control pr0b|em then can be for-
theory (cf [19]). ®  mulated as to find appropriate control lawsand u, of the

) _ ) ) _ form
In general it takes some involving calculations to arrive at these

gainsK(t) andL(t). However, under an extra assumption we  y; = uy(t, X, Xq, Ug) and Uy = Ux(t, X, Xg, Ug) (11)
can arrive at rather simple expressions.

Xn,e = Xn—1U1 — Xn—1,dU1.d

Theorem 2.10 Consider again the system (4) which is sucﬁUCh that the closed-loop trajectories of (10,11) are globally

that the condition (6) is satisfied. If in additiorf (t)| can :;sfr:?nml?r:g zfib'uet'is b
be upper bounded by a polynomial in t, then we have that 9 P 9 y

the controller-observer combination (7,8) yields glod&l X1

exponential stability of the closed-loop system in case we use y= [ X } (12)
KO = [kito.1)...kn(lo. D] we can formulate the output-feedback tracking problem as to
L) = [lm(to,t)...l1(to, V)] find appropriate control laws; andu, of the form

where Up = Us(t, Y, Xg, Ug)  and Uz = Up(t, Y, X4, Ug)  (13)

ki(to,t) = (=D'li(to,t)

= w(te, 2T o1 m
I(t ,t) g s- i 5 e e ey
o ;(H-I—l)!l!

such that the closed-loop trajectories of (10,13) are globally
K -exponentially stable.

with w as defined in (5).

3 The state feedback problem

Proof A complete proof can be found in [11]. The proof is

mainly based on the results of [4]. m The approach we use to solve our problem is based on the re-
cently developed studies on cascaded systems [5, 13, 16, 18,
22], and that of Theorem 2.7 in particular.

2.4 Problem formulation We search for a subsystem which, with a stabilizing control

) _ law, can be written in the form, = f»(t, z) that is asymptoti-

The class of chained form nonholonomic systems we studydgly stable. In the remaining dynamics we then can replace the

this paper is given by the following equations appearance of this by 0, leading to the syste@m = f1(t, z1).

If this system is asymptotically stable we might be able to con-

X = u
,1 _ ! clude asymptotic stability of the overall system using Theo-
%2 = W rem2.7.
X3 = XU ) Consider the tracking error dynamics (10). We can stabilize
thexs e dynamics by using the linear controller
Xn = Xp-1la Up = Upd — CiXpe (14)
wherex = (xi, ..., Xa) is the statey; andu, are controlinputs. \which yields GES fox e, providedc; > 0.

Consider the problem of tracking a reference chained formif e now setx, . equal to 0 in (10) we obtain
system: ’

. Xoe = Ux—Ug
X1,d = Uid )
. X3e = XpeUid (15)
X2d = Uzd
X3d = XodUid
Xne = Xn-1eUid
Xnd = Xn—1.dU1d where we used (14).



Notice that the system (15) can be seen amanl di- e assumption ork;: Due to the assumptions an 4(t) we
mensional linear time-varying system of the form (4) with  have from Theorem 2.10 that= f(t, X) is globallyK -
f(t) = upg(t), X=[Xoes X3.es - - -» Xne] T, @ndu = Uy — Uz g. exponentially stable and therefore GUAS. In [11] the ex-
From Theorem 2.9 we know the conditions for finding a con- istence of a suitabl¥ is guaranteed.
troller that makes the closed-loop system GES. From Theo-

rem 2.10 we have an explicit expression under some more re? z;ssurgpélon 0?1 connecting term: Singg, .. .. Xn-1,4 are
strictive conditions. ounded, we have

This observation leads to the following 0 0
Proposition 3.1 Consider the system (10) in closed-loop with lgttz ) < ol X2.d | X2.e I
the controller T - : :

U = Upd—CiXie Xn—1.d Xn-1.e
Xo.e < aM+clzl|
U = Usa—Colka(to, 1), ... Kn(to, D] (16) .
2 = F2d—R2lR2lie, b - -5 Fallos e assumption orx,: Follows from GES of, = —¢12.
X
e Therefore, we can conclude GUAS from Theorem 2.7. Since
where G, ¢, > 0and both ¥; and X, are GES, Lemma 2.8 gives the desired result.
) [
ool to, t 2j+i—2 )
oty = (-1 Y S0P =2
j=0 J ) Remark 3.2 Notice that for this result we used the controller

proposed in Theorem 2.10. It is clear that by using the
controller proposed in Theorem 2.9 a similar result can be
t achieved. As a consequence we can drop the assumption that
w(o, 1) =/ Ura(Ddr =X14(0) = Xx1.a(@)- (7). ()| can be upper bounded by a polynomial function of t.
’ The price we have to pay is that the expressions f¢) kind
If L(t) are more difficult to calcultate (since it involves determin-
ing the state-transition matris (t, to)).

with w defined as

e there exists, €1, €2 > 0 such that (6) is satisfied (where

m=n— 1) with  as defined in (17), Remark 3.3 Notice that since
e |Ug 4(t)| can be upper bounded by a polynomial function UL(t) = Upa(t) — C1xe e(to) EXP(—Ci(t — to))
of t, and ' '

the conditions on yq4(t) are satisfied if and only if the condi-

® X2d:- .. Xn-1, are bounded tions on y(t) are satisfied.
then the closed-loop system (10,16) is global- Therefore, we can also see the closed-loop system (10,16) as
exponentially stable. a system of the form (3) where
Proof We can see the closed-loop system (10,16) as a system 2 = Xe
of the form (3) where zZ = [Xoer ... Xnel
5 = e fitz) = (AWM -CBKM)z
7 = [Xe ... %d" fo(t,z) = —ci»
fit,z) = (A®) —CBK(t)z 9t.z.22) = —cif0, Xoa, Xads -+ Xn-1.a] |
ft, ) = -Gz with
9t z1,2) = —cif0, %2, s, ..., 1] T 0 ... ... .. 07
with uL(t) : (1)
0 ... ... 07 Ab=| o . D | B=| .
. . 1 :
Upd(t) - : 0 : S o 0
A(t) = o . e : B=| . . 0 ... 0 w@® 0 ]
: . ) ) : 0 So when we replace the controller (16) with the one given by
0 0 d.(t) 0 Theorem 2.9 we can copy the proof.
L e 1, _

However, since the connecting terntt,gz1, ) how can be

To be able to apply Theorem 2.7 we need to verify the thr@unded by a constant, we can claim not dlyexponential
assumptions: stability, but even GES. More details can be found in [11].



4 An observer 5 The output feedback problem

The Observab”ity property for chained form Systems was COH:IL section 3 we derived a state-feedback controller for track-

sidered in [1], in which a (local) observer was proposed in cal§ @ desired trajectory, whereas in section 4 we derived an
ur(t) = —cix(t). In this section we propose a globally exobserver for a system in chained form. We can also combine

ponentially stable observer for the chained system undertBgSe two results in a “certainty equivalence” sense:
observability condition which is related to the persistence ptoposition 5.1 Consider the system (9) with output (12) in

excitation of the reference trajectory. closed-loop with the controller

» ) ) ol = Ud—CiXre
Proposition 4.1 Consider the chained-form system (9) with R2.e
output (12). Assume that Uz = Uzg—Colka(to, 1), ..., Kn(to, )] | : (19)

e There exisb, €1, €2 > 0 such that (6) is satisfied where we Rn.e
define where @, c; > 0 and[Rze...%ne | is generated from the ob-
. server
w(o, 1) =f u(mdr=xi () —xi(0)  (18) >:A<2 Uz — Uz,d In(to, )
o R3 X2 eU1,d lh-1(to,t) |
= : —C3 . (Xn — Xn)
e |uy(t)| can be bounded by a polynomial function of t. . . '
Ln Xn,eU1,d l2(to, 1)
Then the observer ] (20)
where ¢ > 0is a constant and
o= % kitt.) = (=D'li(to. 1) N
%2 Uy In(to, t) Lto.t) = ”i': [X1.a(®) - ?<1,d(to)_]2'+'*2 i=2....n
X3 XoUy In—1(to, t) | ’ = (J+i=2!j
= . —C3 . n
. : : If
Xn Kn-1lh l2(to, 1) e there exists, €1, e, > 0 such that (6) is satisfied with

w(o, 1) = X,d(1) — X1,4(0)

e |up 4(t)| can be upper bounded by a polynomial function
oft, and

whereX = X — X, G > 0is a constant and

n—i ) — t 2j+i-2 ]

ito, = 3 DA = Xy,
= (j+i=2!j! o Xo4(t), ..., Xn_1.4(t) are bounded

then the closed-loop system (10,19,20) is globdfly

guarantees that the state observation erkaronverges to zero exponentially stable.

exponentially. Proof Follows immediately from Theorems 2.10 and 2.7 along

the lines of the proofs of Proposition 3.1. ]
Proof The system (9) together with the observer (8) leads to
% =0 and Remark 5.2 Similar to Remarks 3.2 and 3.3 we can claim even
-0 0 —calnito.t) ] GES instead oK -exponential stability. Also, it is clear that a
1y R 3int’0, . similar result can even be achieved when we drop the assump-
>.fz ug(t) . : : >fz tion that|us q(t)| can be upper bounded by a polynomial. The
X3 _ 0 A : : X3 only price we have to pay are more compleg Kand L(t).
% N o : Xn .
0 0w —cstod) | 6 Conclusions

In this paper we considered the output tracking problem for
nonholonomic systems in chained form, by combining a time-
varying state feedback controller with an observer for the
chained form in a “certainty equivalence” way. The stability of
the closed loop system is showed by results from time-varying
Remark 4.2 Notice that by using Theorem 2.9 we can achievgiscaded systems. Under a condition of persistence of exci-
GES in a similar way at the expense of a more complicategtion, we have shown globalkg -exponential stability of the
L(D). closed loop system.

which according to Theorem 2.10 is globaly-exponentially
stable. ]
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