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Abstract

In this note we consider tracking control of rigid robot
systems under input constraints. Using the combination
of two controllers we are able to obtain globally asymp-
totically stable closed-loop error-dynamics while keeping
the applied actuator torques within in advance specified
bounds. This idea is also exploited successfully in case
only position measurements are available, or when para-
meter uncertainties call for an adaptive control scheme.

1 Introduction

In recent years there has been a strong interest in the
development of controllers for the regulation or tracking
of rigid robot manipulators. Starting with the computed
torque method several controllers have been designed,
which today also exploit the physical nature of the robot
system. Furthermore, several other aspects have been in-
corporated in modern robot controllers, as for instance,
the construction of adaptive controllers in case parameter
uncertainties are present in the manipulator model, or the
development of controller-observer combinations when ve-
locity measurements are not available for control, see e.g.
[1, 7] as well as references therein.

In the last few years some interest has arisen in the from
a practical perspective important question of designing
tracking controllers which respect actuator constraints. In
particular, for position control a bounded controller was
developed in [4], see also [3] for an alternative bounded
PD-like controller.

Sofar the tracking problem under input constraints has
only partially been solved in that a semi-global tracking

controller or controller-observer has been derived, see [1]
and [6].

The purpose of the present contribution is to develop
a globally bounded tracking controller for rigid robot sys-
tems. Our control scheme essentially combines a bounded
regulation controller with a local asymptotically stable
tracking controller, and in essence contains the earlier
mentioned results on bounded regulation. The idea of
using a combination of two controllers can be exploited
in various cases including the situation where only posi-
tion measurements are available or when an adaptation
mechanism is required.

The organisation of this note is as follows. Section 1
contains the problem formulation, preliminaries and no-
tation. In section 2 the key idea for the construction
of a globally bounded controller is explained. In respec-
tively sections 3, 4 and 5 the controller design with full
state measurements, controller design with only position
measurements and an adaptive controller design are con-
sidered in detail.

2 Problem formulation, prelimi-
naries and notation

We consider a rigid robot manipulator

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

where q is the n× 1 vector of joint displacements, τ is the
n×1 vector of applied torques, M(q) is the n×n symmet-
ric positive definite manipulator inertia matrix, C(q, q̇)q̇
is the n×1 vector of centripetal and Coriolis torques, and
G(q) is the n× 1 vector of gravitational torques obtained
as the gradient of the robot potential energy P (q), which
without loss of generality, is assumed to have an abso-
lute minimum at q = 0. We assume that the links are
connected with revolute joints.

Some properties of this system are [9]:
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• The matrix M(q) is symmetric and positive definite
for all q ∈ IRn.

• The matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric, that
is

xT (Ṁ(q)− 2C(q, q̇))x = 0 ∀x ∈ IRn

• The matrix C satisfies

C(q, x)y = C(q, y)x

• The matrices M(q), C(q, q̇) and G(q) are bounded
with respect to q, i.e:

0 < Mm ≤ ||M(q)|| ≤MM ∀q ∈ IRn
||C(q, x)|| ≤ CM ||x|| ∀q, x ∈ IRn
||G(q)|| ≤ GM ∀q ∈ IRn

Let Ck denote the set of k times continuously differen-
tiable functions.

We consider the problem of controlling the system (1)
towards any desired trajectory qd(t) ∈ C2, satisfying

||qd(t)|| ≤ B0, ||q̇d(t)|| ≤ B1, ||q̈d(t)|| ≤ B2 (2)

under input limitations

||τ(t)|| ≤ τmax ∀t ≥ 0

where || · || is some norm, e.g. || · ||∞.
A continuous function f : IR+ → IR+ is said to be a

class K function if

• f(x) is strictly increasing, and

• f(0) = 0.

Let F denote the set of strictly increasing C1 functions
f : IR → IR satisfying f(0) = 0 and f ′(x) > 0 for all
x ∈ IR. Some properties of this set, which can easily be
verified, are:

• Let f, g ∈ F . Then αf(βx) + γg(δx) ∈ F , provided
that αβ > 0 and γδ > 0.

• Let f, g ∈ F . Then (fg)(x) ≡ f(x)g(x) is positive
definite.

Let B denote the subset of f ∈ F for which f is bounded.
For instance f(x) = tanh(x) is an element of both B and
F , and f(x) = x is an element of F , but not of B.

Throughout we use the following notations for x ∈ IRn:

• f(x)∆= [f1(x1), . . . , fn(xn)]T where f ∈ F means
f1, . . . , fn ∈ F ,

•
√
x

∆=
[√
x1, . . . ,

√
xn
]T (xi ≥ 0)

• F (x)∆=
[∫ x1

0 f1(ζ1)dζ1, . . . ,
∫ xn

0 fn(ζn)dζn
]T

• f ′(x)∆=diag(f ′1(x1), . . . , f ′n(xn))

• f ′′(x)∆= [f ′′1 (x1), . . . , f ′′n (xn)]

The results of this note are established in [5], where
an essential ingredient in the analysis is the so-called Ma-
trosov theorem [2]. For completeness we give this impor-
tant result as it will be used in the proofs given in this
note.

Theorem 1.1 (Matrosov) Consider the system ẋ =
f(t, x) with f(t, 0) = 0 for all t ≥ 0. Let Ω ∈ IRn be
an open connected region in IRn containing the origin. If
there exist two C1 functions V : [0,∞) × Ω → IR, W :
[0,∞) × Ω → IR; a C0 function V ∗ : Ω → IR; three class
K functions a, b, c such that, for every (x, t) ∈ Ω× [0,∞)

M1. a(||x||) ≤ V (t, x) ≤ b(||x||)

M2. V̇ (t, x) ≤ V ∗(x) ≤ 0

M3. |W (t, x)| is bounded

M4. max(d(x,E), |Ẇ (t, x)|) ≥ c(||x||)

M5. ||f(t, x)|| is bounded

where E ≡ {x ∈ Ω|V ∗(x) = 0}; choosing α > 0 such that
B̄α

∆={x ∈ IRn| ||x|| ≤ α} ⊂ Ω, define for all t ∈ [0,∞)

V −1
t,α = {x ∈ Ω : V (t, x) ≤ a(α)},

then

1. For all x0 ∈ V −1
t,α , x(t) tends to zero uniformly in

0, x0 as t tends to infinity.

2. The origin is uniformly asymptotically stable.

Remark 1.2 Since M2 is a weaker condition than known
in standard Lyapunov theory, we have to make sure that
will not get stuck in E somewhere else but in the ori-
gin. Roughly speaking, the other conditions tell that near
E and away from zero, the rate of change of a second
auxiliary function W is of constant sign, becuase of M4.
However, W is bounded and therefore the system can only
converge to E if it converges to the origin.

Lemma 1.3 ([8]) Condition M4 of Theorem 1.1 is sa-
tisfied if the following conditions are satisfied:

M4’a. Ẇ (x, t) is continuous in both arguments and depends
on time in the following way: Ẇ (x, t) = g(x, β(t))
where g is continuous in both of its arguments, β is
also continuous and its image lies in a bounded set
K1.

M4’b. There exists a class K function, k, such that
|Ẇ (x, t)| ≥ k(||x||) for all x ∈ E and t ≥ 0.

Remark 1.4 Following [8] we will say that Ẇ (x, t) de-
pends on time continuously through a bounded function.
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2 Composite controllers

Suppose one can find a controller that steers the system
towards the origin, provided one starts within some (possi-
bly small) region of attraction. In case we want to extend
this controller to a global one, there are two ways to estab-
lish this. The first way is trying to modify the controller
in such a way that global asymptotic stability of the error-
dynamics is achieved. A second way consists of trying to
find a (global) controller that steers the system into the
region of attraction of the (locally) stabilizing controller.
As soon as we are in its region of attraction, we can switch
controllers and the composite controller then is a globally
stabilizing controller. This second approach results in an
easier problem, since we only have to find a controller that
steers our system into some prescribed region, so we seek
an ultimately uniformly bounded or practically stable con-
troller, whereas in the first approach we have to find an
asymptotically stable controller.

Therefore, in case we want to find a globally stabilizing
controller, we can seperate this problem into two problems
which are easier to solve. In case we are able to find both a
locally stabilizing controller with some region of attraction
and a controller that globally steers our system into that
region of attraction, the composite controller will be a
globally stabilizing one. Here the composition of both
controllers consists of using the global controller until the
system is inside the region of attraction of the stabilizing
controller and then switch to this stabilizing controller.

In case we want to find bounded globally stabilizing con-
trollers, the concept of composite controllers may become
more important. Not only can we separate our problem
into the two easier problems of finding both a locally sta-
bilizing controller with some region of attraction and a
bounded controller that globally steers our system into
that region of attraction, but also the stabilizing controller
does not neccessarily have to be a priori bounded. From
the stability analysis of the stabilizing controller we usu-
ally know that all signals will remain bounded. The only
problem is that those bounds depend on the initial con-
ditions. Since we only switch to our stabilizing controller
in case we are in a prescribed region, we can determine
in advance from this stability analysis an upperbound on
the control input of our stabilizing controller. Therefore
only the controller that steers our system into that region
has to be a priori bounded.

3 Using full state measurements

To solve the problem of tracking a desired trajectory qd ∈
C2 we propose the control law:

τ = M(q)q̈d + C(q, q̇)q̇d +G(q) − f1(ė)− f2(e) (3)

where e ≡ q−qd denotes the tracking error and f1, f2 ∈ F .
This control law results in the closed-loop system

M(q)ë+ C(q, q̇)ė+ f1(ė) + f2(e) = 0 (4)

Proposition 3.1 Consider the system (1) together with
the control law (3). If f2 ∈ C2 then the resulting closed-
loop system (4) is globally asymptotically stable.

Proof This proof is a straightforward extension of the
proof of Paden and Panja [8], where this proposition is
proved in case f1(ė) = Kdė and f2(e) = Kpe. To prove
this result we will use Matrosov’s theorem (Theorem 1.1).

Consider the function

V (t, e, ė) =
1
2
ėTM(q)ė+

√
F1(e)

T√
F1(e)

which satisfies condition M1 of Theorem 1.1. Calculating
its time-derivative along solutions of (4) results in

V̇ (t, e, ė) = −ėTf2(ė)

Therefore, with

V ∗(e, ė) = −ėT f2(ė) (5)

condition M2 has also been satisfied.
Since V (t, e, ė) is a decreasing function of time, we can

conclude that e and ė and from (2) also q and q̇ are
bounded. Since

ë = −M(q)−1[C(q, q̇)ė+ f1(ė) + f2(e)] (6)

which is a continuous function of e, ė, q and q̇, we know
that also ë and q̈ are bounded.

In anology with [8] we define W (t, e, ė) = V̈ (t, e, ė):

W (t, e, ė) = −ëTf2(ė)− ėT f ′2(ė)ë (7)

where ë is given by (6) and obviously condition M3 is
satisfied.

To verify condition M4 we use Lemma 1.3. Differenti-
ating (7) with respect to time results in

Ẇ (t, e, ė) = −(
d

dt
ë)T f2(ė)− 2ëTf ′2(ė)ë

−ėT f ′′2 (ė)ëT ë− ėT f ′2(ė)(
d

dt
ë)

Since f2 ∈ C2 we know that all arguments, except d
dt ë, are

continuous in the tracking error and depend continuously
on time through a bounded function. That d

dt ë is continu-
ous with respect to the tracking error and continuous with
respect to time through a bounded function follows from
differentiating (6) with respect to time and noticing that
both d

dtM(q) and d
dtC(q, q̇) are continuous with respect

to the tracking error and continuous with respect to time
through a bounded function.

Furthermore for (e, ė) ∈ {(e, ė)|V ∗(e, ė) = 0} =
{(e, ė)|ė = 0} it follows that

Ẇ (t, e, ė) = −2ëTf ′2(0)ë

Thus from Lemma 1.3 it follows that also the fourth con-
dition has been fulfilled.
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Because all signals remain bounded and the closed-loop
system (4) is a continuous function of those signals, the
fifth and last condition of Theorem 1.1 has also been sa-
tisfied.

Since for arbitrary initial conditions we can determine
α and Ω such that x0 ∈ V −1

0,α we can conclude from Ma-
trosov’s theorem that the origin is globally asymptotically
stable.

When we use

τ = M(q)q̈d + C(q, q̇)q̇d +G(q) − f1(ė)− f2(e) (8)

where f1, f2 ∈ B we almost have a bounded control law.
Every term of (8) is bounded, except for C(q, q̇)q̇d, since
q̇ is not a priori bounded. However, from the proof of
Proposition 3.1 we know that

||ė(t)||2 ≤ 2
Mm

V (0, e(0), ė(0))

which gives us a bound on (8), provided we know the
initial conditions. However, the control effort increases
as ||q̇(0)|| increases, and therefore (8), although it is a
globally asymptotically stable controller, is not a globally
bounded tracking controller.

How to obtain a globally bounded tracking controller?
Following section 2 we now proceed to construct a
bounded composite controller. That is, we have to seek
for a globally bounded controller that steers our system
into a region in which e and ė are within prescribed known
bounds. As soon as we are in that region, we can switch to
(8). Since we switch at a time ts at which e(ts) and ė(ts)
are within bounds that we know in advance, we also have
a bound on V (ts, e(ts), ė(ts)) in advance, from which an in
advance known bound on (8) follows. By using a globally
bounded controller to steer our system into the region in
which e and ė are within prescribed known bounds, the
resulting composite controller is a globally bounded con-
troller.

Fortunately, the problem of finding a globally bounded
controller that steers our system into a region in which e
and ė are within prescribed known bounds is not difficult
to solve. In case we want to control our system towards
the origin, e.g. qd(t) ≡ 0, we know that (8), i.e.

τ = G(q)− f1(ė)− f2(e)

where f1, f2 ∈ B, will do the job.
Therefore for all ε > 0 there exists a time ts ≥ 0 such

that ||q(t)||, ||q̇(t)|| ≤ ε for any t ≥ ts, and then also
||e(t)|| ≤ B0 + ε and ||ė(t)|| ≤ B1 + ε for any t ≥ ts.
Proposition 3.2 Consider the system (1). Then there
exists a switching time ts ≥ 0 such that given any t̃s ≥ ts
the composite controller

τ =

 G(q) − f1(q̇)− f2(q) t < t̃s

M(q)q̈d + C(q, q̇)q̇d +G(q)− f3(ė)− f4(e) t ≥ t̃s
(9)

results in a globally asymptotically stable closed-loop sys-
tem. Furthermore, if f1, f2 ∈ B we can determine a τmax
such that the controller (9) satisfies

||τ(t)|| ≤ τmax ∀t ≥ 0. (10)

Proof From Proposition 3.1 we know that for all ε > 0
there exists a time ts ≥ 0 such that ||e(t̃s)|| ≤ B0 + ε and
||ė(t̃s)|| ≤ B1 + ε. Furthermore we know that the first
phase controller is global and if f1, f2 ∈ B we can also
determine in advance a bound τmax,1 within which this
first phase controller will remain.

For our second phase, we know from Proposition 3.1
that our resulting closed-loop system is asymptotically
stable. Since ||e(t̃s)|| ≤ B0 + ε and ||ė(t̃s)|| ≤ B1 + ε,
we can determine a bound for V (t̃s, e(t̃s), ė(t̃s)). Since
V (t, e, ė) is a decreasing function of time, we can deter-
mine bounds on e(t), ė(t) for all t ≥ t̃s, from which also
bounds on q(t) and q̇(t) follow. Since f3 and f4 are con-
tinuous, we can determine a bound τmax,2 on τ for our
second phase.

Now it is obvious that

τmax = max{τmax,1, τmax,2}.

Remark 3.3 Notice that not necessarily f3, f4 ∈ B.

4 Using only position measure-
ments

In [6] Loria and Nijmeijer presented the controller

τ = M(q)q̈d +C(q, q̇d)q̇d +G(q)−Kpf(e)−Kdf(z) (11)

where Kp and Kd are n×n diagonal positive definite ma-
trices, z is generated from the observer

z = w +Be
ẇ = −Af(w +Be) (12)

and f(·) = tanh(·). The following was shown in [6]:

Proposition 4.1 Consider the system (1) together with
the control law (11) and observer (12). Then the resulting
closed-loop system is semi-globally stable, i.e. the resulting
closed-loop system is locally asymptotically stable but its
region of attraction can be arbitrarily enlarged by suitably
selecting the observer gains A and B.

Remark 4.2 The only properties of the function f(x) =
tanh(x) being used in the proof given in [6] are that ∀x ∈
IR:

• f ∈ F

• |f(x)| ≤ 1.
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• F (x)
f2(x) ≥ Γ > 0.

• 0 < f ′(x) ≤ ∆.

where F (x) =
∫ x

0 f(ζ)dζ and Γ, ∆ are constants. There-
fore other choices for f are also possible.

Proposition 4.1 is a semi-global result. In case we want
to extend this to a global result, we only need to find a
globally bounded controller that steers the system into a
specific region. Analogously with section 3 we can try to
find a globally bounded controller that steers our system
towards the origin, or more general, to a fixed point (qd, 0)
(position control):

Proposition 4.3 Consider the system (1) together with
the control law

τ = G(q)− f1( ˙̂e)− f2(e) (13)

where f1, f2 ∈ F , e = q − qd and ˙̂e is generated from the
observer

˙̂e = Lp,1e− Lp,2ê (14)

where Lp,1 and Lp,2 are n× n symmetric positive definite
matrices. Then the resulting closed-loop system is globally
asymptotically stable.

Proof see [5].

When we choose f1, f2 ∈ B we have that (13) is a globally
bounded control law that steers our system towards the
origin. Therefore:

Proposition 4.4 Consider the system (1). Then there
exists a switching time ts ≥ 0 such that given any t̃s ≥ ts
the composite control law

τ =


G(q)− f1(z1)− f2(q) t < t̃s

M(q)q̈d + C(q, q̇d)q̇d+
+G(q)−Kdf(z2)−Kpf(e) t ≥ t̃s

(15)

where z1 and z2 are given by

z1 = Lp,1q − Lp,2q̂
z2 = w +Be

(16)

and q̂ and w are generated from the reduced observers

˙̂q = Lp,1q − Lp,2q̂ t < t̃s
ẇ = −Af(w +Be) t ≥ t̃s

(17)

results in a globally asymptotically stable closed-loop sys-
tem. Furthermore, if f1, f2 ∈ B we can determine a τmax
such that the controller (15) together with the reduced ob-
server (16, 17) satisfies:

||τ(t)|| ≤ τmax ∀t ≥ 0

Proof Analogously with Proposition 3.2.

5 Adaptive Controller

In case some of the parameters are unknown, we may use
an adaptive controller. A useful property of the system (1)
is the following:

• There exists a reparametrization of all unknown pa-
rameters into a parameter vector θ ∈ IRp that enters
linearly in the system dynamics (1). Therefore, the
following holds:

M(q, θ)q̈ + C(q, q̇, θ)q̇ +G(q, θ) =
M0(q)q̈ + C0(q, q̇)q̇ +G0(q) + Y (q, q̇, q̇, q̈)θ

Consider the system (1) together with the controller

τ = M(q, θ̂)q̈r + C(q, q̇, θ̂)q̇r+
+G(q, θ̂)− f1(e)− f2(s1)

= M0(q)q̈r + C0(q, q̇)q̇r +G0(q)+
Y (q, q̇, q̇, q̇r, q̈r)θ̂ − f1(e)− f2(s1)

(18)

where q̇r = q̇d− f3(e), e = q− qd, s1 = q̇− q̇r = ė+ f3(e),
f1, f2, f3 ∈ F and θ̂ is an estimation for the vector of
unknown (but constant) system parameters.

The controller (18) results in the closed-loop system

M(q, θ)ṡ1 + C(q, q̇, θ)s1 + f1(e) + f2(s1) =
= Y (q, q̇, q̇r, q̈r)θ̃

(19)

where θ̃ ≡ θ̂ − θ. When we use the parameter update law

˙̃θ = −Γ0Y
T (q, q̇, q̇r, q̈r)s1 (20)

where Γ0 is a positive definite symmetric matric, we obtain

Proposition 5.1 Consider the system (1) together with
the controller (18) and the parameter update law (20).
Then the resulting closed-loop system (19) is globally
asymptotically stable with respect to e and ė.

Proof See [5].

Although the controller (18) is a globally asymptotically
stable controller, it is not a globally bounded tracking con-
troller. We can again contruct a globally bounded track-
ing controller along the lines of section 2. We have to
contruct a globally bounded controller that steers the sys-
tem (1) into a prescribed region. Therefore we consider a
controller that steers our system towards a desired fixed
position (qd, 0) (position control).

Proposition 5.2 Consider the system (1) together with
the control law

τ = G(qd)− f1(ė)− αf2(e) (21)

where e = q−qd and f1, f2 ∈ F . Then the resulting closed-
loop system is globally asymptotically stable, provided α is
choosen large enough.
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Proof See [5].

Remark 5.3 Analogously we can prove that the con-
troller

τ = G(qd)− f1( ˙̂e)− αf2(e)

where e = q − qd, f1, f2 ∈ F and ˙̂e is generated from the
observer (14) results in a globally asymptotically stable
closed-loop system, provided α is choosen large enough.

When we choose f1, f2 ∈ B and qd = 0, we know that
G(qd) = 0, so that (21) is parameter-independent and
globally bounded. Therefore:

Proposition 5.4 Consider the system (1). Then there
exists a switching time ts ≥ 0 such that given any t̃s ≥ ts
the composite control law

τ =


−f1(ė)− αf2(e) t < t̃s

M(q, θ̂)q̈r + C(q, q̇, θ̂)q̇r+
+G(q, θ̂)− f1(e)− f2(s1) t ≥ t̃s

(22)

where θ̂ is updated by (20), results in a globally asymptoti-
cally stable closed-loop system, provided that α is choosen
large enough. Furthermore, if f1, f2 ∈ B we can deter-
mine a τmax such that the controller (22) together with
the parameter-update-law (20) satisfies:

||τ(t)|| ≤ τmax ∀t ≥ t0

Proof Analogously with Proposition 3.2.

6 Conclusion

The result as presented in this note states that by using
a composite controller tracking can be achieved by using
bounded inputs. Although the result is seemingly of prac-
tical importance, a drawback still exists in that we use
a switching controller. Specifically at a certain time in-
stant we discontinuously change the control input which
is certainly not feasible in practice. However, we will show
in [5] that the here occuring discontinuous nature of the
proposed controllers can be overcome by introducing a
smooth time varying controller that is a weighted compo-
sition of the two controllers we use here. We will also give
in [5] simulations based on this idea, thereby providing
some possible choices for selection of functions fi in the
composite controllers.
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