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1. INTRODUCTION

In recent years a lot of interest has been devoted to the
stabilization and tracking of a wheeled mobile robot,
see e.g. (Bloch and Drakunov, 1996; Canudas de Wit
et al., 1996; Escobaret al., 1998; Fliesset al., 1995;
Jiang and Nijmeijer, 1997; Kanayamaet al., 1990;
Kolmanovsky and McClamroch, 1995; Samson and
Ait-Abderrahim, 1991; Walshet al., 1994). One of the
reasons for this is, undoubtedly, that no smooth time-
invariant stabilizing controller for this system exists,
which is a corollary from the fact that Brockett’s nec-
essary condition for smooth stabilization is not met,
see (Brockett, 1983). Many of the above references,
as well as (Coron, 1992; Escobaret al., 1998; Jiang,
1996; Jiang and Pomet, 1996; Lin, 1996; Pomet, 1992)
therefore aim at developing suitable time varying sta-
bilizing (tracking) controllers for mobile robots or
more general chained form nonholonomic systems.
In the present note we want to study the stabiliza-
tion and tracking problem for a wheeled mobile robot
under saturation constraints on the inputs. At this
point we exploit the normalization technique known
from adaptive control, see e.g. (Jiang and Praly, 1992;

Krstić et al., 1995), for solving the stabilization and
tracking problem under saturating velocities. Also,
for a simplified dynamic model of the mobile robot
(cf. (Jiang and Nijmeijer, 1997)) the same technique
turns out to be of great value. The proposed con-
troller design is inspired by previous work of Pomet,
(Pomet, 1992) (see also (Lin, 1996)) where for general
driftless systems time-varying stabilizing controllers
are developed. Our stabilizing and tracking controllers
for the kinematic model of the robot globally fulfill the
given input constraints, and for the dynamic extended
model semi-globally fulfill the given input constraints,
thus given the initial condition to belong to some com-
pact set, appropriate parameter tuning for the bounded
controller is possible.
A different approach using cascaded ideas for the
same problems can be found in (Panteleyet al., 1998).
The paper is organized as follows. In section 2 the
bounded state feedback stabilization problem for the
wheeled mobile robot is addressed, while in section
3 the bounded state feedback tracking problem is
investigated. Section 4 contains the conclusions.
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2. STABILIZATION VIA BOUNDED STATE
FEEDBACK

The purpose of this section is to show that it is not
difficult to extend Pomet’s method (Pomet, 1992) to
the kinematic model of a wheeled mobile robot under
saturation constraints on the control inputs. Then, we
employ the integrator backstepping idea to establish a
similar result for a simplified dynamic model of the
robot.

2.1 Kinematic model

The benchmark wheeled mobile robot considered by
many researchers (see, e.g., (Kolmanovsky and Mc-
Clamroch, 1995; Canudas de Witet al., 1996) and
references therein) is described by the following kine-
matic model:

ẋc = ¹ cos�

ẏc = ¹ sin�

�̇ = !

(1)

where ¹ is the forward velocity,! is the steering
velocity. .xc; yc/ is the position of the mass center of
the robot moving in the plane and� denotes its heading
angle from the horizontal axis. Here, the velocities¹
and! are subject to the following constraints:

|!| ≤ !max ; |¹| ≤ ¹max (2)

where!maxand¹maxare arbitrary positive constants.
The stabilization problem to be addressed, is to con-
struct a time-varying state-feedback law of the form

! = Þ1.t; �; xc; yc/ ; ¹ = Þ2.t; �; xc; yc/ (3)

in such a way that (2) holds and the zero solution of
the robot system (1) in closed-loop with (3) is globally
uniformly asymptotically stable (GUAS).
We follow (Pomet, 1992) to achieve our control objec-
tive. First, define a setBFr of continuous and bounded
functions indexed by a parameterr > 0, i.e.

BFr = {� : IR→ IR | � is continuous and
−r ≤ �.x/ ≤ r ∀x ∈ IR} (4)

and a corresponding set of saturation functionsSr , i.e

Sr= {� : IR→ IR ∈ BFr | s�.s/ > 0 for all s 6= 0}(5)

Examples of nontrivial functions inSr include for
instance

�.x/= 2rx
1+x2 ; �.x/= rx2

1+x2 ; �.x/= 2r
³

arctan.x/ (6)

Denote

x = .�; xc; yc/
T (7)

Introduce a Lyapunov function candidate

V1.t; x/= 1
2

(
�+"1g1.x2

c+ y2
c/cost

)2+ 1
2x2

c+ 1
2 y2

c (8)

for (1) in closed-loop with (3) which is written in more
compact form

ẋ = f1.x/! + f2.x/¹ (9)

In (8) "1 > 0 is a design parameter to be chosen later
andg1 is a smooth (i.e., of classC∞) function inBF1

with the property thatg1.s/ = 0 if and only if s= 0.
It is direct to verify that the conditions of (Pomet,
1992, Theorem 2) hold for such choice of Lyapunov
functionV1 in (8). Using the controller design scheme
proposed in (Pomet, 1992), we obtain the time-varying
state feedback laws

! = "1g1.x
2
c+ y2

c/sint−
−h"2

(
�+ "1g1.x

2
c + y2

c/cost
)

(10)

:= Þ1.t; �; xc; yc/

¹ = −h"3

(
[xc cos�+ yc sin�] ×

×[1+ 2"1.�+ "1g1 cost/g′1 cost]
)

(11)

:= Þ2.t; �; xc; yc/

where"2 and"3 are two positive design parameters,
h"2 ∈ S"2, h"3 ∈ S"3 andg′1 := dg1

ds .x
2
c+ y2

c/.
We establish the following result.

Proposition 1.The equilibriumx = 0 of the closed-
loop system (1), (10) and (11) is globally uniformly
asymptotically stable (GUAS) for any positive"1,
"2 and "3. In particular, given any saturation levels
!max> 0, ¹max> 0 as in (2), we can always tune"1,
"2 and"3 so that (2) holds whilex= 0 is GUAS.

PROOF. Noticing that

Þ1.t;�;xc;yc/= "1g1.x
2
c+ y2

c/sint− h"2

(
L f1V1.t;x/

)
;

Þ2.t;�;xc;yc/=−h"3

(
L f2 V1.t; x/

)
;

the time derivative ofV1 as defined in (8) satisfies:

V̇1.t; x/=−
(

L f1 V1.t; x/
)
h"2

(
L f1 V1.t; x/

)
−

−
(

L f2 V1.t; x/
)
h"3

(
L f2 V1.t; x/

)
(12)

The proof is completed along the same lines of
(Pomet, 1992, Proof of Theorem 1) using LaSalle’s
invariance principle. We can meet (2) choosing"1+
"2 ≤ !max and"3 ≤ ¹max. 2

2.2 Dynamic model

In the preceding subsection we have solved the sta-
bilization problem for the kinematic model (1) of the
benchmark wheeled robot with saturating velocities.
In this subsection, we demonstrate that the same con-
trol task can be achieved for a simplified dynamic
model of the robot with saturation on the control
torques.
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More precisely, we consider the following dynamic
extension of the robot (1), see also (Jiang and Nijmei-
jer, 1997):

ẋc = ¹ cos�

ẏc = ¹ sin�

�̇ = !

!̇ = u1

¹̇ = u2

(13)

whereu1 andu2 are generalized torque-inputs subject
to the constraints:

|u1| ≤ u1;max ; |u2| ≤ u2;max (14)

with u1;max> 0 andu2;max> 0 arbitrary positive con-
stants.
Introduce two new variables! and¹ as

! = !− Þ1.t;�;xc;yc/; ¹ = ¹− Þ2.t;�;xc;yc/ (15)

with Þ1.t; �; xc; yc/ andÞ2.t; �; xc; yc/ as defined in
(10) and (11).
Consider the positive definite proper Lyapunov func-
tion candidate for system (13)

V2.t; X/ = "4 log.1+V1.t;�;xc;yc//+ 1
2!

2+ 1
2¹

2 (16)

whereX := .xT; !; ¹/T = .xc; yc; �; !; ¹/
T and"4 >

0 is a design parameter to be chosen later.
In view of (12) and (15), differentiatingV2 along the
solutions of system (13) yields

V̇2.t;X/=−
[(

L f1 V1.t; x/
)
h"2

(
L f1 V1.t; x/

)
+

+
(
L f2V1.t; x/

)
h"3

(
L f2V1.t; x/

)]
+ "4

1+V1.t;x/

+ "4.�+ "1g1 cost/
1+ V1.t; x/

!+

+ "4.xc cos�+yc sin�/.1+2"1.�+"1g1 cost/g′1 cost/
1+V1.t;x/

¹+
+ !.u1− Þ̇1/ + ¹.u2− Þ̇2/ (17)

where

Þ̇1= @Þ1

@t
+ @Þ1

@�
!+

(
@Þ1

@xc
cos�+ @Þ1

@yc
sin�

)
¹

Þ̇2= @Þ2

@t
+ @Þ2

@�
!+

(
@Þ2

@xc
cos�+ @Þ2

@yc
sin�

)
¹

Therefore, we choose the time-varying control laws as

u1=−h"5.!/+ Þ̇1− "4.�+ "1g1 cost/
1+ V1.t; x/

(18)

u2=−h"6.¹/+ Þ̇2−
− "4.xc cos�+yc sin�/.1+2"1.�+"1g1 cost/g′1 cost/

1+V1.t;x/
(19)

where"6 > 0 and"6 > 0 are design parameters and
h"5 ∈ S"5, h"6 ∈ S"6.
We are now ready to state the result.

Proposition 2.The equilibriumX = 0 of the closed-
loop system (13), (18) and (19) is GUAS for any
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Fig. 1. Stabilization of the kinematic model with
initial conditions [xc.0/; yc.0/; �.0/]T =
[−0:5;0:5;1]T.

positive values of"i, 1 ≤ i ≤ 5. In particular, given
any saturation levelsu1;max> 0, u2;max> 0 as in (14)
and any compact set�1 in IR5, we can always tune our
design constants"i .1≤ i ≤ 6/ so that (14) holds for
all trajectories starting in�1.

PROOF. Under the choice of (18) and (19) for the
torques inputs, it holds

V̇2.t; X/=−
[(

L f1 V1.t; x/
)
h"2

(
L f1 V1.t; x/

)
+

+
(

L f2 V1.t; x/
)
h"3

(
L f2 V1.t; x/

)]
"4

1+V1.t;x/

−!h"5.!/− ¹h"6.¹/ (20)

The first part of Proposition 2 readily follows from
LaSalle’s invariance principle as in the proof of Propo-
sition 1.
The second statement is more or less direct from the
expressions (18) and (19) of the control lawsu1 and
u2. 2

2.3 Simulations

To support our results, we simulated with MATLAB TM

the wheeled mobile robot (1) in closed-loop with the
controller (10, 11) with"1 = 1 andg1.s/ = h"2.s/ =
h"3 = tanh.s/, which guarantees that|!.t/| ≤ 2 and
|¹.t/| ≤ 1 for all t ≥ 0. The resulting performance is
depicted in Figure 1.
From the initial condition [xc.0/; yc.0/; �.0/]T =
[−0:5;0:5;1]T we see a very slow convergence to the
origin, which is a well known consequence from using
Pomet’s method (cf. (M’Closkey and Murray, 1997)).
If we then consider the simple dynamic extension
(13) in closed-loop with the controller (18, 19) where
we additionally use"4 = 1, and h"5.s/ = h"6 =
tanh.s/ the resulting performance if we start from the
initial condition [xc.0/; yc.0/; �.0/; !.0/; ¹.0/]T =
[−0:5;0:5;1;0;0]T is depicted in Figure 2.
Again we see a very slow convergence to the origin.
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Fig. 2. Stabilization of the dynamic model with initial
conditions [xc.0/; yc.0/; �.0/; !.0/; ¹.0/]T =
[−0:5;0:5;1;0;0]T.

3. TRACKING VIA BOUNDED STATE
FEEDBACK

3.1 Kinematic model

In this section, we address the tracking problem for
the robot (1) under a constraint on the velocities. To
quantify the saturation level, it is assumed that the
reference trajectory.xr ; yr ; �r / satisfies

ẋr = ¹r cos�r

ẏr = ¹r sin�r

�̇r = !r

(21)

where!r and¹r are bounded reference velocities.
The objective is to find time-varying state-feedback
controllers of the form

! = !∗.t; �; xc; yc/ ; ¹ = ¹∗.t; �; xc; yc/ (22)

such thatxc.t/− xr .t/, yc.t/− yr .t/ and�.t/− �r .t/
tend to zero ast→ +∞ while guaranteeing the fol-
lowing property:

|!.t/| ≤ !max ; |¹.t/| ≤ ¹max for all t ≥ 0 (23)

where!max> supt≥0 |!r .t/| and¹max> supt≥0 |¹r .t/|
are arbitrary.
As in (Jiang and Nijmeijer, 1997) (see also (Kanayama
et al., 1990)), consider the following tracking errors xe

ye

�e

 =
 cos� sin� 0
−sin� cos� 0

0 0 1

 xr − xc

yr − yc

�r − �

 (24)

Obviously, for any value of�, .xe; ye; �e/ = 0 if and
only if .xc; yc; �/ = .xr ; yr ; �r /.
It can be directly checked, the tracking error dynamics
of the robot satisfy

ẋe = !ye − ¹ + ¹r cos�e

ẏe = −!xe + ¹r sin�e

�̇e = !r − ! :

(25)

We show next that the following control laws solve our
tracking problem:

!= !r + ½1¹r ye

1+ x2
e+ y2

e

1∫
0

cos.s�e.t//ds+ h½2.�e/

:= þ1.t; �e; xe; ye/ (26)

¹= ¹r cos�e + h.½3/.xe/ := þ2.t; �e; xe/ (27)

where½1, ½2, ½3 are positive design parameters and
h½1 ∈ S½1, h½2 ∈ S½2.

Proposition 3.Assume that!r and ¹r are bounded
and uniformly continuous over [0;∞/. If either!r .t/
or ¹r .t/ does not converge to zero, then the zero equi-
librium of the closed-loop system (25), (26) and (27)
is globally asymptotically stable. In particular, given
any !max> supt≥0 |!r .t/| and ¹max> supt≥0 |¹r .t/|,
we can always tune our design parameters½1, ½2 and
½3 so that the condition (23) is met.

PROOF. Consider the positive definite and proper
Lyapunov function candidate

W1.xe; ye; �e/ = ½1

2
log.1+ x2

e+ y2
e/ +

1
2
�2

e (28)

DifferentiatingW1 along the solutions of the closed-
loop system (25), (26) and (27) yields:

Ẇ1.xe; ye; �e/ = −½1xeh½3.xe/

1+ x2
e+ y2

e
− �eh½2.�e/ ≤ 0 (29)

Therefore, the trajectories.xe.t/; ye.t/; �e.t// are uni-
formly bounded on [0;∞/. It follows, as in (Jiang and
Nijmeijer, 1997), by direct application of Barb˘alat’s
lemma (Khalil, 1996) that

lim
t→∞[xe.t/h½3.xe.t//+ �e.t/h½2.�e.t/] = 0 (30)

which, in turn, gives

lim
t→∞.|xe.t/| + |�e.t/|/ = 0 (31)

It remains to prove thatye.t/ goes to zero ast→∞.
Indeed, this fact can be established by mimicking the
arguments used in the proof of (Jiang and Nijmeijer,
1997, Proposition 2).
The last statement of Proposition 3 is more or less
direct. 2

3.2 Dynamic model

We extend the tracking result from subsection 3.1 to
the simplified dynamic model (13) of the robot. The
tracking error dynamics are described by

ẋe = !ye − ¹ + ¹r cos�e

ẏe = −!xe + ¹r sin�e

�̇e = !r − !

!̇ = u1

¹̇ = u2

(32)
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whereu1 andu2 are torque-inputs subject to the con-
traint:

|u1| ≤ u1;max ; |u2| ≤ u2;max (33)

whereu1;max and u2;max are two arbitrary saturation
levels satisfying the property

u1;max > sup
t≥0
|!̇r .t/| ; u2;max > sup

t≥0
|¹̇r .t/| : (34)

Contrary to the kinematic model (25) considered in
the subsection 3.1,! and¹ are not the actual control
inputs to the dynamic model (32) of the robot. Con-
sequently, the tracking control laws obtained in (26)
and (27) cannot be implemented in the present situ-
ation. To invoke integrator backstepping (see (Krsti´c
et al., 1995)) for the purpose of designing our true
tracking controllers subject to (33), we introduce two
new variables

!e= !− þ1.t;�e;xe;ye/; ¹e= ¹− þ2.t;�e;xe/ (35)

where þ1 and þ2 are defined as in (26) and (27),
respectively.
Consider the positive definite and proper Lyapunov
function candidate for system (32)

W2.t; Xe/= ½4 log.1+W1.t; xe; ye; �e//+
1
2
!2

e+
½5

2
log.1+ ¹2

e/ (36)

where Xe := .xe; ye; �e; !e; ¹e/ and ½4; ½5 > 0 are
two design parameters to be chosen later.
Using (29), the time derivative ofW2 along the solu-
tions of (32) satisfies

Ẇ2.t; Xe/=−
(
½1xeh½3.xe/

1+ x2
e+ y2

e
+ �eh½2.�e/

)
½4

1+W1

+
( −½1xe

1+ x2
e+ y2

e
¹e− �e!e

)
½4

1+W1
+

+!e.u1− þ̇1/+ ½5¹e

1+ ¹2
e
.u2− þ̇2/ (37)

where

þ̇1= @þ1

@t
+ @þ1

@xe
.!ye− ¹+ ¹r cos�e/+

+@þ1

@ye
.−!xe+ ¹r sin�e/+ @þ1

@�e
.!r − !/

þ̇2= @þ2

@t
+ @þ2

@xe
.!ye− ¹+ ¹r cos�e/+ @þ2

@�e
.!r−!/

= ¹r!esin�e+ ¹̇r cos�e+
+
(
½1¹r ye

1+x2
e+y2

e

∫ 1
0 cos.s�e.t//ds+ h½2.�e/

)
¹r sin�e+

+ h′½3
.xe/ .!ye− ¹+ ¹r cos�e/

Let ½6 > 0, ½7 > 0 be design parameters. By making
the following choice of tracking control laws for the
torquesu1 andu2

u1=−h½6.!e/+þ̇1+ ½4�e

1+W1
+ ½5¹e

1+ ¹2
e
¹r sin�e (38)

u2=−h½7.¹e/+ ½1½4xe.1+¹2
e/

½5.1+W1/.1+x2
e+y2

e/
+ ¹̇r cos�e+

+h′½3
.xe/ .!ye− ¹+ ¹r cos�e/

+
[
½1¹r ye

1+x2
e+y2

e

∫ 1
0 cos.s�e.t//ds+h½2.�e/

]
¹rsin�e (39)

with h½6 ∈ S½6, h½7 ∈ S½7, it follows from (37) that

Ẇ2.t; Xe/=−
(
½1xeh½3.xe/

1+ x2
e+ y2

e
+ �eh½2.�e/

)
½4

1+W1
−

−!eh½6.!e/− ¹eh½7.¹e/ (40)

We are now in a position to state our tracking result
for the dynamic model (32).

Proposition 4.Assume that!r , !̇r , ¹r and ¹̇r are
bounded over [0;∞/. If either !r .t/ or ¹r .t/ does
not converge to zero, then the zero equilibriumXe =
0 of the closed-loop system (32), (38) and (39) is
globally asymptotically stable. In particular, given any
u1;max> supt≥0 |!̇r .t/| andu2;max> supt≥0 |¹̇r .t/| and
any compact set�2 in IR5, we can always tune our
design parameters½1 to ½7 so that the condition (33)
is also met for all trajectories starting from�2.

PROOF. As in the proof of Proposition 3, the first
part of Proposition 4 follows from (40) together with
a straightforward application of Barb˘alat’s lemma
(Khalil, 1996).
The second part of Proposition 4 is more or less direct
from the expressions of the time-varying feedbacks
(38) and (39). 2

3.3 Simulations

To support our results, we simulated the closed-
loop system (25, 26, 27). The desired trajectory has
been given to be!r .t/ = 1, ¹r .t/ = 1, i.e. a circle.
Using ½1 = 1 and h½2.s/ = h½3 = tanh.s/, which
guarantees us that|!.t/| ≤ 3 and |¹.t/| ≤ 2 for all
t ≥ 0, we obtained starting from the initial condi-
tion [xe.0/; ye.0/; �e.0/]T = [−0:5;0:5;1]T the per-
formance as depicted in Figure 3.
We see that the control inputs obviously remain within
their bounds and yield a quick convergence to the
desired trajectory.
Next, we simulated the closed-loop system (32, 38,
39) where½4 = ½5 = 1 andh½6.s/ = h½7 = tanh.s/,
where we want to track the same desired trajectory
again. The resulting performance if we start from the
initial condition [xe.0/; ye.0/; �e.0/; !e.0/; ¹e.0/]T=
[−0:5;0:5;1;1;1]T is depicted in Figure 4.
We see an even quicker convergence of the tracking
errors than in the previous case for the kinematic
model.

4. CONCLUSIONS

(Semi-)global solutions for the stabilization and track-
ing problem for the kinematic and simplified dynamic
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Fig. 3. Tracking of the kinematic model with initial
errors [xe.0/; ye.0/; �e.0/]T = [−0:5;0:5;1]T.
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Fig. 4. Tracking of the dynamic model with ini-
tial errors [xe.0/; ye.0/; �e.0/; !e.0/; ¹e.0/]T =
[−0:5;0:5;1;1;1]T.

model of a wheeled mobile robot with input satura-
tions are derived. On the basis of these results it be-
comes plausible that the same problems admit similar
solutions if a complete dynamic model for the mobile
robot is considered. Further research in this direction
is however, still needed.
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Krstić, M., I. Kanellakopoulos and P. Kokotovi´c
(1995).Nonlinear and Adaptive Control Design.
John Wiley and Sons.

Lin, W. (1996). Time-varying feedback control of non-
affine nonlinear systems without drift.Systems
and Control Letters29, 101–110.

M’Closkey, R.T. and R.M. Murray (1997). Expo-
nential stabilization of driftless nonlinear con-
trol systems using homogeneous feedback.IEEE
Trans. Automatic Control42(5), 614–628.

Panteley, E., E. Lefeber, A. Lor´ıa and H. Nijmeijer
(1998). Exponential tracking control of a mobile
car using a cascaded approach. In:IFAC Work-
shop Motion Control. Grenoble. pp. 221–226.

Pomet, J. B. (1992). Explicit design of time-varying
stabilizing control laws for a class of controllable
systems without drift.Systems and Control Let-
ters18, 147–158.

Samson, C. and K. Ait-Abderrahim (1991). Feedback
control of a nonholonomic wheeled cart in carte-
sian space. In:Proc. IEEE Int. Conf. Robotics Au-
tomation. Sacramento, USA. pp. 1136–1141.

Walsh, G., D. Tilbury, S. Sastry, R. Murray and J.P.
Laumond (1994). Stabilization of trajectories for
systems with nonholonomic constraints.IEEE
Trans. Automatic Control39(1), 216–222.

320


