A Robust Observer with Gyroscopic Bias Correction for Rotational Dynamics

Erjen Lefeber, Marcus Greiff, Anders Robertsson
A.A.J.Lefeber@tue.nl, Greiff@merl.com

IFAC World Congress, Yokohama, July 2023



Introduction

Motivation
e Attitude estimation for aerospace applications
e Often derived using attitude kinematics [1]
e Design estimator targeted for UAV estimation
e Joint estimation of gyroscopic rates and biases
Contributions
e Result for attitude dynamics (using torques)

e Observer with uniform stability properties

e Produces filtered attitude rates for control

e Extension of result in [1] to include torques and known inertia for UAV applications
e Proof of uniform LES (ULES) and uniform almost GAS (UaGAS) by Matrosov theory [2]

[1] - Mahony, Hamel, and Pflimlin, “Nonlinear complementary filters on the special orthogonal group” 2008

[2] - Loria, Panteley, Popovic, et al., “A nested Matrosov theorem and persistency of excitation for uniform convergence in stable rionautonomous systems” 2005
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Setting and Definitions

e The motion of a rotating rigid body configured on R € SO(3) is governed by the dynamics

R = RS(w)

(1a)
Jow = S(Jw)w + 7,

(1b)

where J = JT > 0 is the inertia matrix and 7 € R® is the total moment vector in the body frame
e Measured outputs

Yo=w+b yi=R"v i=1,...,n, (2)

where b is an unknown constant, and v; denote n known inertial directions (n=2, but wlog n = 3)

Consider the outputs (2). Design an observer/filter which produces estimates R, &, and b such that
the point (1,0, 0) of the estimation error dynamics (R, &, b), given by

R=RRT OG=0—w b=b-b, (3)
is almost globally and locally exponentially stable.



Observer Design - Step #1

Angular momentum estimator

e Estimation errors

R=RRT {=0— RJw
e Observer update
R=Rs (J—lRTé— kRFk> (= Rr— keRJ'F,

where kg > 0, k¢ > 0, and

fk = Z kiS(’%TVi)RTVi = Z k,-S(I%Tv,-)y;.
i=1

i=1

(4)

(52)

(5b)

Consider the observer (5) in closed-loop with the attitude dynamics. If the weights k; are chosen such
that 37, kiviv;' has distinct eigenvalues \;, i.e., A3 > A2 > A1 > 0, then the estimation errors (4) are

UaGAS and ULES towards (1,0).



Observer Design - Step #2

Gyroscopic bias estimator [1]

e Estimation errors
b=bh-»b R=RR' (6)

e Observer update
b= Kb i R = RS(yo — b — keFy) (7)

with ks >0, ke >0, J = JT >0 and # as in (5b) previously.

Consider the observer (7) in closed-loop with the kinematics. If w and W are bounded and the weights
ki are chosen such that > ! | kivivi' has distinct eigenvalues \;, i.e., A3 > X2 > A1 > 0, then the
estimation errors (6) are UaGAS and ULES towards (1,0).

[1] - Mahony, Hamel, and Pflimlin, “Nonlinear complementary filters on the special orthogonal group” 2008



Observer Design - Step #3
Convex combination of the observers from Step #1 and Step #2 and some additional terms
e Estimation errors
R=RR" {=0-RJw b=b-b,
e Observer update

b= keFi — atkoka JR [0 — RI(yo — b)]

k= Rs (e 'RTE= (1= a)(vo — b) — knfi)
0=Rr— keRJ ™ F — (1 — a)keka[l — RI(yo — b)]
O=J"RT,

with ky >0, ko >0, ky >0, kg >0, k; >0, 0 < o < 1, and F as defined in (5b) previously.

(92)
(9b)

(9¢)
(9d)

Consider the observer (9) in closed-loop with the dynamics. If k; are chosen such that > 7 kiv;v;' has

distinct eigenvalues \;, then the estimation errors are UaGAS and ULES towards (1,0, 0).



Observer Design - Step #3

Using the Lyapunov function from Step #1 and #2

n ) . 5 .
Step #1: V= kz %HRV[- v,-H +%ZT£ (10a)
2
2 1.t-
Step #2 V(#Q) kb i — Vi =+ Eb b (10b)
2
Step #3: Viy3) = kgkbz ud HRV, - VH + (1-a)b b+ —ozé 7 (10¢)
Differentiation along the error dynamics yields
Vigs) = —kekskg ||Fi]l; — (1 — a)kekskal|L][3 <O, (11)

yielding boundedness of both ?k and -"r-k, and the proof is completed with a Matrosov result [2].

[2] - Loria, Panteley, Popovic, et al., “A nested Matrosov theorem and persistency of excitation for uniform convergence in stable rionautonomous systems” 2005



Observer Design - Step #3

Properties
e Approaches the observers in step #1 and step #2 if o — {1,0}
e Potential to get the best of both (smooth rate estimates and bias estimates)
e All measurement noise passes through an integrator = impacts noise-error gain
e Uniform stability properties = robustness to bounded perturbations [3]

Implementation aspects

e Possible to get slow error decays (e.g., if @ — {0,1}), needs to be tuned with care

e Not strictly implementable as written (R is not known)

But there is a remedy!

3] - Khalil, Nonlinear Systems 2002



Observer Design - Step #4

Making the estimator implementable
e In the estimate update (9) of Proposition 3, we require R which is not known

e Here, we can replace instances of R in the estimate update by

n -1 4
R= (Z ki V,'V,-T> Z k,-v,-y,-T. (12)
i=1 i=1

Consider the observer _(9) in closed-loop with the dynamics. If the observer is defined as in Proposition
3 with R replaced by R, then the estimation errors are UaGAS and ULES towards (1,0, 0).

This is only used on the right-hand-side of the ODE, and thus this (potentially noisy) reconstruction of
R is solely used to define the innovations of the observer, and filtered through the integrators.



Simulations - Qualitative

Qualitative simulation result

e Observer in Proposition 4

estimate [rad/s]

Attitude rate and

e Discrete-time implementation (500Hz) L
L. . . . 3 4 5 6 7 8 9 10
e This is an ideal setting, no noise Time [s]

e Dense inertia matrix

e Large initial estimation errors

Bias and bias
estimate [rad/s]

L. ) 0 1 2 3 4 5 6 7 8 9 10
Proof of UaGAS/ULES, but initial transients Time [s]
decay with rates similar to the local errors

e The transient system response depends on the
observer tuning, can be made slow if
a € (0,1) is close to end-points

logio (V1)

Lyapunov function




Simulations - Quantitative

Parameters: 6 = {Ro, wo, b, Ro, &, Eo} sampled uniformly for each MC run

e Movement: significant, driven by 7(t) = (sin(t + 1), sin(2t + 2),sin(3t +3)) " € R®
o Noise: sampled at 500 Hz with &; ~ A/(0,0.1%/), where

yo(hk) = w(hk) + b(hk) + do(hk)

7i(hk) = R(hk) " vi + &;(hk) i=1,...,3,
yi(hk) = yi(hk)/l|7i(hk)|)2 i=1,...,3,

Measure: Average L>-norms over different time intervals

Nmc b
1 ; 1/2
RMSEz, () = (= O [ Ix(0)lBde) "
i=1 2

Signals: attitude error W(R) = T (I — R), attitude rate error & and bias error b



Simulations - Quantitative

e Parameters: 0 = { Ry, wo, b, I’i\’o,@o, Eo} sampled uniformly for each MC run

e Movement: significant, driven by 7(t) = (sin(t + 1), sin(2t + 2),sin(3t +3)) T € R®
e Noise: sampled at 500 Hz with §; ~ A/(0,0.1%/)

e Measure: Average Ly-norms over different time intervals

o Signals: attitude error W(R) = 1 Tr(/ — R), attitude rate error & and bias error b

Table: RMSEs of transient and stationary errors categorized by signals and observers.

Measure ‘ RMSELg([O,T])(X) ‘ RMSEEZ([T—I,T])(X)

Signal [W(R)| @ | b | wR) | @ | b

Prop. 1 | 0.560 | 2.571 | 2.629 | 3.043-10~° | 0.022 | 0.178
Prop. 2 | 0.577 | 2.463 | 2.401 | 2.718-107° | 0.177 | 0.016
Prop. 4 | 0.570 | 2.389 | 2.226 | 2.809-10~° | 0.021 | 0.016




Simulations - Quantitative

e Parameters: 0 = { Ry, wo, b, Ro, G, Eo} sampled uniformly for each MC run
e Movement: significant, driven by 7(t) = (sin(t + 1),sin(2t + 2),sin(3t +3))" € R3
e Noise: sampled at 500 Hz with §; ~ A(0,0.1%/)

e Measure: Average Lr-norms over different time intervals

Table: RMSEs of transient and stationary errors categorized by signals and observers.

Measure ‘ RMSELg([O,T]}(X) ‘ RMSEEZ([T—I,T])(X)

Signal [W(R)| @ | b | wR) | @ | b

Prop. 1 | 0.560 | 2.571 | 2.629 | 3.043-107° | 0.022 | 0.178
Prop. 2 | 0.577 | 2.463 | 2.401 | 2.718-107° | 0.177 | 0.016
Prop. 4 | 0.570 | 2.389 | 2.226 | 2.809-10~° | 0.021 | 0.016

Relatively small differences in the transients, but significant differences in the stationary errors & and
b. The observer in Proposition 4 is less impacted by noise in these errors.



Simulations - Tuning
Observer tuning

e Express local perturbation about identity error .
R~ 1+ 5(E) (13)
LS =B é )

3(A(4))

e Consider noise §; € R® on the measurements, as

Yo = w + b+ do, yi = RT(I + S(6:))vi. (14) 2 e
al| ® XMA)witha —1
o A() with o = 03

e Under a stationary rotation R, we get a linear system

X = A% + B6. (15)

from measurement noises §' = (¢ , 41,05 , 45 ) € RY?
to the local estimation errors X' = (¢€7,&07,b") € R®.

w)) with a — 0 |,

. max oG (i
Tune based on the spectrum of A, and the properties of the —— maxo(G(iw)) with & — 1
— ——max o (G(iw)) with o = 0.3 .
system G(s) = (sl — A) LB. For example, we get a balanced o _min UEGEW;; e o :

10?2

spectrum and good attenuation of the measurement noise 1w 10t 107
S .. Frequency [rad/s|
with o = 0.3 when fixing the other controller parameters. reaneney fedrs

Parameter o

Parameter o



Conclusions

Summary
e Observer for angular momentum (step #1)
e Combined with result by Mahony [1] (step #3)
e Addressing implementation aspects (step #4)
e Robust attitude observer, demonstrated both in theory and simulations
e Code for discrete-time implementation with quaternions and RK4
e Additional mathematical details in extended arXiv paper [4]
Main insights
e We can take a “convex combination” of observers

e Proofs come with uniform stability properties

[1] - Mahony, Hamel, and Pflimlin, “Nonlinear complementary filters on the special orthogonal group” 2008

[4] - Lefeber, Greiff, and Robertsson, “A Robust Observer with Gyroscopic Bias Correction for Rotational Dynamics” 2023
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