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Introduction

Motivation

• Attitude estimation for aerospace applications

• Often derived using attitude kinematics [1]

• Design estimator targeted for UAV estimation

• Joint estimation of gyroscopic rates and biases

Contributions

• Result for attitude dynamics (using torques)

• Observer with uniform stability properties

• Produces filtered attitude rates for control
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Takeaway

• Extension of result in [1] to include torques and known inertia for UAV applications

• Proof of uniform LES (ULES) and uniform almost GAS (UaGAS) by Matrosov theory [2]

[1] - Mahony, Hamel, and Pflimlin, “Nonlinear complementary filters on the special orthogonal group” 2008

[2] - Loŕıa, Panteley, Popovic, et al., “A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems” 2005
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Setting and Definitions

• The motion of a rotating rigid body configured on R ∈ SO(3) is governed by the dynamics

Ṙ = RS(ω) (1a)

Jω̇ = S(Jω)ω + τ, (1b)

where J = J⊤ > 0 is the inertia matrix and τ ∈ R3 is the total moment vector in the body frame.

• Measured outputs

y0 = ω + b yi = R⊤vi i = 1, . . . , n, (2)

where b is an unknown constant, and vi denote n known inertial directions (n=2, but wlog n = 3).

Problem

Consider the outputs (2). Design an observer/filter which produces estimates R̂, ω̂, and b̂ such that
the point (I , 0, 0) of the estimation error dynamics (R̃, ω̃, b̃), given by

R̃ = R̂R⊤ ω̃ = ω̂ − ω b̃ = b̂ − b, (3)

is almost globally and locally exponentially stable.



Observer Design - Step #1

Angular momentum estimator

• Estimation errors

R̃ = R̂R⊤ ℓ̃ = ℓ̂− RJω (4)

• Observer update

˙̂R = R̂S
(
J−1R⊤ℓ̂− kR r̃k

)
˙̂ℓ = Rτ − kℓRJ

−1 r̃k (5a)

where kR > 0, kℓ > 0, and

r̃k =
n∑

i=1

kiS(R̂
⊤vi )R

T vi =
n∑

i=1

kiS(R̂
⊤vi )yi . (5b)

Proposition (1)

Consider the observer (5) in closed-loop with the attitude dynamics. If the weights ki are chosen such
that

∑n
i=1 kiviv

⊤
i has distinct eigenvalues λi , i.e., λ3 > λ2 > λ1 > 0, then the estimation errors (4) are

UaGAS and ULES towards (I , 0).



Observer Design - Step #2

Gyroscopic bias estimator [1]

• Estimation errors

b̃ = b̂ − b R̃ = R̂R⊤ (6)

• Observer update

˙̂b = kb r̃k
˙̂R = R̂S(y0 − b̂ − kR r̃k) (7)

with kb > 0, kR > 0, J = J⊤ > 0 and r̃k as in (5b) previously.

Proposition (2)

Consider the observer (7) in closed-loop with the kinematics. If ω and ω̇ are bounded and the weights
ki are chosen such that

∑n
i=1 kiviv

⊤
i has distinct eigenvalues λi , i.e., λ3 > λ2 > λ1 > 0, then the

estimation errors (6) are UaGAS and ULES towards (I , 0).

[1] - Mahony, Hamel, and Pflimlin, “Nonlinear complementary filters on the special orthogonal group” 2008



Observer Design - Step #3

Convex combination of the observers from Step #1 and Step #2 and some additional terms

• Estimation errors

R̃ = R̂R⊤ ℓ̃ = ℓ̂− RJω b̃ = b̂ − b, (8)

• Observer update

˙̂b = kb r̃k − αkbkαJR
⊤[ℓ̂− RJ(y0 − b̂)] (9a)

˙̂R = R̂S
(
αJ−1R⊤ℓ̂− (1− α)(y0 − b̂)− kR r̃k

)
(9b)

˙̂ℓ = Rτ − kℓRJ
−1 r̃k − (1− α)kℓkα[ℓ̂− RJ(y0 − b̂)] (9c)

ω̂ = J−1R̂⊤ℓ̂, (9d)

with kb > 0, kα > 0, kb > 0, kR > 0, kℓ > 0, 0 < α < 1, and r̃k as defined in (5b) previously.

Proposition (3)

Consider the observer (9) in closed-loop with the dynamics. If ki are chosen such that
∑n

i=1 kiviv
⊤
i has

distinct eigenvalues λi , then the estimation errors are UaGAS and ULES towards (I , 0, 0).



Observer Design - Step #3

Using the Lyapunov function from Step #1 and #2

Step #1: V(#1)= kℓ

n∑
i=1

ki
2

∥∥∥R̃vi − vi
∥∥∥2
2
+

1

2
ℓ̃⊤ℓ̃ (10a)

Step #2: V(#2)= kb

n∑
i=1

ki
2

∥∥∥R̃vi − vi
∥∥∥2
2
+

1

2
b̃⊤b̃ (10b)

Step #3: V(#3) = kℓkb

n∑
i=1

ki
2

∥∥∥R̃vi − vi

∥∥∥2
2
+

kℓ
2
(1− α)b̃⊤b̃ +

kb
2
αℓ̃⊤ℓ̃ (10c)

Differentiation along the error dynamics yields

V̇(#3) = −kℓkbkR ∥r̃k∥22 − α(1− α)kℓkbkα∥δ̃L∥22 ≤ 0, (11)

yielding boundedness of both ˙̃rk and ¨̃rk , and the proof is completed with a Matrosov result [2].

[2] - Loŕıa, Panteley, Popovic, et al., “A nested Matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems” 2005



Observer Design - Step #3

Properties

• Approaches the observers in step #1 and step #2 if α → {1, 0}
• Potential to get the best of both (smooth rate estimates and bias estimates)

• All measurement noise passes through an integrator ⇒ impacts noise-error gain

• Uniform stability properties ⇒ robustness to bounded perturbations [3]

Implementation aspects

• Possible to get slow error decays (e.g., if α → {0, 1}), needs to be tuned with care

• Not strictly implementable as written (R is not known)

But there is a remedy!

[3] - Khalil, Nonlinear Systems 2002



Observer Design - Step #4

Making the estimator implementable

• In the estimate update (9) of Proposition 3, we require R which is not known

• Here, we can replace instances of R in the estimate update by

R̄ =

(
n∑

i=1

kiviv
⊤
i

)−1 n∑
i=1

kiviy
⊤
i . (12)

Proposition (4)

Consider the observer (9) in closed-loop with the dynamics. If the observer is defined as in Proposition
3 with R replaced by R̄, then the estimation errors are UaGAS and ULES towards (I , 0, 0).

Remark

This is only used on the right-hand-side of the ODE, and thus this (potentially noisy) reconstruction of
R is solely used to define the innovations of the observer, and filtered through the integrators.



Simulations - Qualitative

Qualitative simulation result

• Observer in Proposition 4

• Discrete-time implementation (500Hz)

• This is an ideal setting, no noise

• Dense inertia matrix

• Large initial estimation errors

Takeaway

• Proof of UaGAS/ULES, but initial transients
decay with rates similar to the local errors

• The transient system response depends on the
observer tuning, can be made slow if
α ∈ (0, 1) is close to end-points
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Simulations - Quantitative

• Parameters: θ = {R0, ω0, b, R̂0, ω̂0, b̂0} sampled uniformly for each MC run

• Movement: significant, driven by τ(t) = (sin(t + 1), sin(2t + 2), sin(3t + 3))⊤ ∈ R3

• Noise: sampled at 500 Hz with δi ∼ N (0, 0.12I ), where

y0(hk) = ω(hk) + b(hk) + δ0(hk)

ȳi (hk) = R(hk)⊤vi + δi (hk) i = 1, . . . , 3,

yi (hk) = ȳi (hk)/∥ȳi (hk)∥2 i = 1, . . . , 3,

• Measure: Average L2-norms over different time intervals

RMSEL2([a,b])(x) =
( 1

NMC

NMC∑
i=1

∫ b

a

∥x (i)(t)∥22dt
)1/2

.

• Signals: attitude error Ψ(R̃) = 1
2
Tr(I − R̃), attitude rate error ω̃ and bias error b̃



Simulations - Quantitative

• Parameters: θ = {R0, ω0, b, R̂0, ω̂0, b̂0} sampled uniformly for each MC run

• Movement: significant, driven by τ(t) = (sin(t + 1), sin(2t + 2), sin(3t + 3))⊤ ∈ R3

• Noise: sampled at 500 Hz with δi ∼ N (0, 0.12I )

• Measure: Average L2-norms over different time intervals

• Signals: attitude error Ψ(R̃) = 1
2
Tr(I − R̃), attitude rate error ω̃ and bias error b̃

Table: RMSEs of transient and stationary errors categorized by signals and observers.

Measure RMSEL2([0,T ])(x) RMSEL2([T−1,T ])(x)

Signal Ψ(R̃) ω̃ b̃ Ψ(R̃) ω̃ b̃

Prop. 1 0.560 2.571 2.629 3.043·10−5 0.022 0.178
Prop. 2 0.577 2.463 2.401 2.718·10−5 0.177 0.016
Prop. 4 0.570 2.389 2.226 2.809·10−5 0.021 0.016



Simulations - Quantitative

• Parameters: θ = {R0, ω0, b, R̂0, ω̂0, b̂0} sampled uniformly for each MC run

• Movement: significant, driven by τ(t) = (sin(t + 1), sin(2t + 2), sin(3t + 3))⊤ ∈ R3

• Noise: sampled at 500 Hz with δi ∼ N (0, 0.12I )

• Measure: Average L2-norms over different time intervals

Table: RMSEs of transient and stationary errors categorized by signals and observers.

Measure RMSEL2([0,T ])(x) RMSEL2([T−1,T ])(x)

Signal Ψ(R̃) ω̃ b̃ Ψ(R̃) ω̃ b̃

Prop. 1 0.560 2.571 2.629 3.043·10−5 0.022 0.178
Prop. 2 0.577 2.463 2.401 2.718·10−5 0.177 0.016
Prop. 4 0.570 2.389 2.226 2.809·10−5 0.021 0.016

Takeaway

Relatively small differences in the transients, but significant differences in the stationary errors ω̃ and
b̃. The observer in Proposition 4 is less impacted by noise in these errors.



Simulations - Tuning
Observer tuning

• Express local perturbation about identity error

R̃ ≈ I + S(ϵ̃) (13)

• Consider noise δi ∈ R3 on the measurements, as

y0 = w + b + δ0, yi = R⊤(I + S(δi ))vi . (14)

• Under a stationary rotation R, we get a linear system

˙̃x = Ax̃ + Bδ. (15)

from measurement noises δ⊤ = (δ⊤0 , δ⊤1 , δ⊤2 , δ⊤3 ) ∈ R12

to the local estimation errors x̃⊤ = (ϵ̃⊤, ω̃⊤, b̃⊤) ∈ R9.

Takeaway

Tune based on the spectrum of A, and the properties of the
system G(s) = (sI − A)−1B. For example, we get a balanced
spectrum and good attenuation of the measurement noise
with α ≈ 0.3 when fixing the other controller parameters.
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Conclusions

Summary

• Observer for angular momentum (step #1)

• Combined with result by Mahony [1] (step #3)

• Addressing implementation aspects (step #4)

• Robust attitude observer, demonstrated both in theory and simulations

• Code for discrete-time implementation with quaternions and RK4

• Additional mathematical details in extended arXiv paper [4]

Main insights

• We can take a “convex combination” of observers

• Proofs come with uniform stability properties

[1] - Mahony, Hamel, and Pflimlin, “Nonlinear complementary filters on the special orthogonal group” 2008

[4] - Lefeber, Greiff, and Robertsson, “A Robust Observer with Gyroscopic Bias Correction for Rotational Dynamics” 2023
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