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Abstract— We consider the control of flowlines consisting of
switching servers, through which different types of jobs flow.
Switching from one job type to an other takes time. Examples
of such flowlines can be found in manufacturing industry, food
processing industry, communication networks, and traffic flow.

The optimal process cycle with respect to work in process
levels for a single switching server with two job types is known
from previous work. This optimal work in process value is
an absolute lower bound on average work in process levels
for larger flowlines. In this study we derive conditions for
workstations in a flowline that have to be met in order to achieve
this minimal work in process level for the whole flowline. Based
on these conditions, the class of flowlines is characterized that
can behave as if it were a single switching server.

A state feedback controller is proposed that steers a trajec-
tory to the desired trajectories for all servers in the flowline,
from any arbitrary start point. Convergence to the desired
process cycles is proven mathematically. Although the analysis
is performed with a hybrid fluid model, the controller has
successfully been implemented in a discrete event case study.

I. INTRODUCTION

Consider a flowline of servers that processes different

types of jobs. Only one job type can be processed at a

time, and switching from one type to a different type takes

time. One can find this kind of systems for example in

manufacturing industry, food processing industry, traffic flow

or (data) communication systems. In this paper we use a

fluid model (ODE) approach, where switching between the

job types causes jumps in the state variables. The dynamics

are therefore hybrid: both discrete event and continuous

dynamics. This hybrid model is used to develop a feedback

controller. This controller is required in order to meet cus-

tomer’s demand and constraints from processing capacities.

In a lot of literature, first a control policy is determined

and then the behavior of the controlled system (either open

loop or closed loop) is studied and sometimes optimized,

e.g. see [2], [7]. Clearing policies or threshold services are

mostly considered in this area. In [8] a new approach was

used. First, the minimal period during which the network

is able to serve all jobs during that period is determined.

This period corresponds with a specific process cycle. The

durations of the different phases were implemented in a

controller, actually a feed-forward controller. A disadvantage

of this approach is that it can not compensate for disturbances

and it does not reduce the number of jobs in the system, if

it were initially larger than necessary. In this study however,

we first optimize the desired behavior and then propose a

controller which makes a trajectory converge to this behavior.
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In general, the work in process (wip) levels are to be

kept low, since both semi-finished jobs and storage space are

expensive. But how to keep the wip levels low? We try to find

optimal process cycles for flowlines with switching servers.

In [3] the optimal process cycle (with respect to wip levels)

for a single switching server processing two job types with

setup times has been derived. This optimal wip level is an

absolute lower bound on the average wip level for flowlines,

since any other process cycle for a single machine results

in higher wip levels, not to mention the work in process

levels of the other workstations of a flowline. But suppose

that the servers of a flowline have been chosen in a way that

it is actually possible to make the whole flowline behave

as if it were a single switching server. Then the minimal

wip level for a single switching server becomes the minimal

wip level for the whole flowline. In this study we derive

the optimal process cycle for a class of flowlines consisting

of switching servers that can globally behave as a single

switching server. The class of flowlines for which this is

possible is characterized. Loosely speaking, it is the class of

flowlines for which the most downstream workstation is the

‘bottleneck’. Once we know that we have a feasible set of

workstations, a state feedback controller can be developed

that actually makes the flowline behave as if it were a single

server. This controller has to make the trajectories of the

system converge to the desired (optimal) behavior for the

whole flowline from any arbitrary start point.

The remainder of this paper is organized as follows. First,

an example of a flowline consisting of two switching servers

is presented. This system is used throughout the whole paper

to derive and to explain all notions and insights. In Section II,

hybrid fluid model dynamics of the system are presented and

we define the desired (optimal) process cycle of the system

by looking at the optimal cycle of the most downstream

workstation. Next, in Section III, we derive conditions for

the upstream workstations to achieve the desired process

cycle for the whole flowline. In addition, we characterize

the class of flowlines that fulfills these conditions. In Sec-

tion IV a state feedback controller is proposed which steers

a trajectory to the desired trajectory from any arbitrary start

point. Convergence to the desired trajectory by means of the

feedback controller is proven mathematically. In a discrete

event simulation, the feedback controller is implemented to

show its proper working. The discrete event character can be

regarded as a disturbance to the fluid model and the controller

seems to handle this well. Section VI concludes the paper

with some remarks and suggestions for further research. We

stress that the theory and methods presented in this paper are

generally applicable for larger flowlines, with more than two

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

ThC03.5

1-4244-0989-6/07/$25.00 ©2007 IEEE. 3618



servers. Some remarks regarding this are made throughout

the paper.
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Fig. 1. Switching server flowline overview.

II. FLOWLINE EXAMPLE

Consider the flowline consisting of workstations A and B,

each consisting of two parallel buffers and a switching server.

The buffers have infinite capacity, store a specific job type

and the actual contents are denoted by x
j
i (t), e.g. x

A
2
(t) equals

the number of jobs of type 2 that is stored in workstation A

at time t. Jobs arrive at A with constant rates λ1 and λ2 for
type 1 and type 2 respectively. The maximum process rate

at which machine j processes type i jobs is µ
j

i . Switching

from processing type 1 to type 2 jobs takes σ
j
12
time units

and σ
j
21
vice versa. The system is shown in Fig. 1.

Partial utilizations ρ
j

i are defined as: ρ
j

i = λi

µ
j
i

. For sta-

bility reasons, total utilizations must not exceed 1 for each

server: ∑i ρ
j

i < 1 ∀ j ∈ {A,B}. Unless indicated otherwise,
superscript j ∈ {A,B} denotes the workstation number and
subscript i ∈ {1,2} represents a job type throughout the re-
mainder of this paper. Furthermore, we refer to this flowline

as A + B.

A. State, input and dynamics

The state of the system consists of the four buffer

levels, xA
1
, xA
2
, xB
1
and xB

2
, the remaining setup times for

both servers, xA
0
and xB

0
, and the job type a server is

set up for or processing, mode mA and mB. The re-

maining setup times xA
0
and xB

0
equal zero if a server is

busy processing jobs. The complete state is defined as:

x =
[

xA
1

xA
2

xB
1

xB
2

xA
0

xB
0

mA mB
]T

∈R
6
+×{1,2}2.

Note that the buffer levels are real-valued, since we use a

fluid model approximation. The symbol R+ denotes a non-

negative real number.

Jobs can be processed at any rate smaller than the maxi-

mum rate. The rates at which jobs are processed, uA
1
≤ µA

1
,

uA
2
≤ µA

2
, uB
1
≤ µB

1
and uB

2
≤ µB

2
are inputs of the system.

A controller can use these inputs to process jobs at a

desired rate. Other inputs are the required activities of the

workstations, uA
0
and uB

0
. Possible activities are:

u
j
0
= ¶: setup server j for type 1 jobs

u
j
0
= ¬: server j process type 1 jobs

u
j
0
= ·: setup server j for type 2 jobs

u
j
0
= ­: server j process type 2 jobs

The complete input vector of the system is now given by:

u =
[

uA
0

uB
0

uA
1

uA
2

uB
1

uB
2

]T
∈ {¶,¬,·,­}2 × R

4
+.

The inputs are constrained by the state at each time instant:

uA
0
∈ {¶,·} , uA

1
= 0, uA

2
= 0 for xA

0
> 0

uA
0
∈ {¬,·} , 0≤ uA

1
≤ µA

1
, uA
2

= 0 for xA
0

= 0, xA
1

> 0, mA = 1

uA
0
∈ {¬,·} , 0≤ uA

1
≤ λ1, uA

2
= 0 for xA

0
= 0, xA

1
= 0, mA = 1

uA
0
∈ {¶,­} , uA

1
= 0, 0≤ uA

2
≤ µA

2
for xA

0
= 0, xA

2
> 0, mA = 2

uA
0
∈ {¶,­} , uA

1
= 0, 0≤ uA

2
≤ λ2 for xA

0
= 0, xA

2
= 0, mA = 2

uB
0
∈ {¶,·} , uB

1
= 0, uB

2
= 0 for xB

0
> 0

uB
0
∈ {¬,·} , 0≤ uB

1
≤ µB

1
, uB
2

= 0 for xB
0

= 0, xB
1

> 0, mB = 1

uB
0
∈ {¶,­} , uB

1
= 0, 0≤ uB

2
≤ µB

2
for xB

0
= 0, xB

2
> 0, mB = 2

uB
0
∈ {¬,·} , 0≤uB

1
≤min(uA

1
,µB
1
),uB
2

= 0 for xB
0
=xB
1
=0, mB=1

uB
0
∈ {¶,­} , uB

1
= 0,0≤uB

2
≤min(uA

2
,µB
2
) for xB

0
=xB
2
=0, mB=2

In words, these constraints mean that if a server is busy

with a setup, no jobs can be processed. Moreover, after a

setup to a job type has been completed, only jobs of that

specific type can be processed. Finally, it is always possible

to stay in the current mode, or switch to the other mode.

Inputs uA
0
and uB

0
generate events in the system, causing

jumps in the state variables. The dynamics of the system are

therefore hybrid. The jumps in state variables that can take

place are:

x
j
0
:= σ

j
21

, m j := 1 for u
j
0
= ¶ and m j = 2 (1)

x
j
0
:= σ

j
12

, m j := 2 for u
j
0
= · and m j = 1 (2)

The following dynamics also apply for the system:

ẋ
j
0
(t) =

{

−1 for u
j
0
(t) ∈ {¶,·}

0 for u
j
0
(t) ∈ {¬,­}

(3)

ẋA
i (t) = λi −uA

i (t) (4)

ẋB
i (t) = uA

i (t)−uB
i (t) (5)

B. Desired periodic orbit for most downstream workstation

Our goal is to minimize the time averaged weighted wip

level of the flowline. The cost function J is defined as:

J = lim
t→∞

1

t

∫ t

0

c1(x
A
1 (s)+ xB

1 (s))+ c2(x
A
2 (s)+ xB

2 (s))ds (6)

with c1 and c2 weighing factors for type 1 and type 2 jobs

respectively.

The process cycle for a single switching server that mini-

mizes the weighted wip level is known from [3]. This mini-

mum wip level for a single server is the absolute lower bound

for the wip level of a flowline of switching servers, since any

other process cycle than the optimal cycle yields more wip,

not to mention the additional wip in the other workstations.

However, if this absolute lower bound on the wip for one

single server can be achieved for the whole flowline, the

lower bound of the isolated workstation becomes the actual

wip level for the whole flowline. Therefore in this study,

we try to characterize the (sub)class of flowlines that can

behave as if they were single switching servers, with respect

to wip levels. Then the most downstream workstation is the

bottleneck that determines both the throughput, flow time and

wip-level of jobs in the system. A schematic impression of

this idea is shown in Fig. 2. The buffer lengths of a specific

job type are virtually summed up and for these lumped buffer

levels, we try to make them behave as the optimal process

cycle for a single switching server.
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Fig. 2. General idea of flowline behaving as single switching server.

In [3] it is shown that for a single server, optimal work-

in-process levels are reached if the server works with a fixed

process cycle. If the most downstream workstation works at

this cycle (as shown in Fig. 2) and the other workstations

can make this final workstation do so, a minimal work in

process level for the total flowline has been achieved.

We want to minimize the time averaged costs with respect

to buffer levels. In [5] a lower bound on the costs for

switching servers with both setup times and setup costs has

been defined. In [3] it has been shown that this lower bound

can actually be achieved in case of two job types.

In general the optimal process cycle for a single switching

server with two job types and both setup times and setup

costs looks as shown in Fig. 3 (see also [3]). In the left-

hand side graph, x1 and x2 have been plotted against each

other (the periodic orbit). The right-hand side graphs show

the buffer levels over time, with the slopes of the lines

annotated to them. During τ
µ
i , job type i is processed at

maximum rate µi, while during τλ
i job type i is processed

at its incoming rate. The buffer stays empty during τλ
i . This

so-called slow-mode may seem counterintuitive because it

means that capacity is lost due to processing at lower rates

than the maximum rate. An explanation for this is that in fact

there is a trade-off between losing capacity due to processing

at lower rates and losing capacity due to relatively often

switching in time. Setup costs also contribute to this trade-

off. Conditions for the occurrence of slow-modes are given

in [3] for situations with linear costs on buffer levels and

without setup costs. In that case, one of the slow-modes

does not exist (τλ = 0). Two slow-modes may occur in cases
where setup costs or non-linear costs on buffer levels are

involved.

Now we know the shape of the optimal process cycle

of the most downstream workstation. Given such optimal

cycle, we can investigate when an upstream workstation can

make the whole line behave as if it were only this final

workstation. In the next section, this desired behavior of

upstream workstations is analyzed.

III. PERIODIC ORBIT OF UPSTREAM

WORKSTATIONS

Given the periodic orbit of the most downstream work-

station, as presented in Section II-B, a feasible periodic

orbit for the upstream workstation has to be found, in order

to make the whole flowline behave like the final server

stand-alone, with respect to wip levels. In this section, the

properties and conditions for a feasible periodic orbit for

0 x1→

x
2
→

time →

x
2
→

x
1
→

σ21 τ
µ
1

τλ
1

σ12 τ
µ
2

τλ
2

¶ ¬ ¬ · ­ ­

¬

¬

·

­

­ ¶

λ 1 λ
1
−

µ
1 λ 1

λ
2
−

µ
2λ2

Fig. 3. General form optimal process cycle for a switching server
processing two job types, with setup times and setup costs. Left: periodic
orbit. Right: buffer levels over time, with slopes of the lines.

upstream workstations are explained for the flowline example

of Section II. Extensions to larger flowlines (with more than

two workstations) are discussed where applicable.

The optimal process cycle of workstation B must become

the optimal cycle for A+B. We assume that the period length

T of the periodic orbit of workstation B equals the length of

one process cycle in A. In Fig. 4 time lines for the process

cycles of A and B are shown. If A + B has to behave like B

stand-alone, some observations can be made:

period T

σB
21

τ
µB
1

τλ B
1

σB
12

τ
µB
2

τλ B
2

θ+
2

σA
21

τ
µA
1

θ−

1

τλ A
1

θ+
1

σA
12

τ
µA
2

θ−

2

τλ A
2

Fig. 4. The period of one cycle, T , divided into subsequent phases.

1) If the buffer level xB
i of job type i is 0, then xA

i must

be 0 as well. Consequently, slow-modes in A should

completely overlap slow-modes in B, if occurring. De-

fine θ−

i and θ+
i as the amount of time a slow-mode of

job type i in A starts earlier and ends later (respectively)

than the corresponding slow-mode in B, see Fig. 4. The

overlap requirement yields:

θ−

1
≥ 0; θ+

1
≥ 0; θ−

2
≥ 0; θ+

2
≥ 0. (7)

2) From observation 1 follows that at t = 0, A starts with a
setup (if θ+

2
= 0) or is still in slow-mode of type 2 jobs

(if θ+
2

> 0). Therefore, σ A
21
starts at t ≥ 0. Similarly, σ A

12

can not start earlier than the start of σ B
12

3) From observations 1–2 follows:

θ+
2

+ σA
21+ τ

µA
1

+ θ−

1
= σB

21+ τ
µB
1

(8)

θ+
1

+ σA
12+ τ

µA
2

+ θ−

2
= σB

12+ τ
µB
2

. (9)

4) Buffer levels are not allowed to become negative. There-

fore, if τ
µB
i starts earlier than τ

µA
i (cf. τ

µB

1
and τ

µA

1
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in Fig. 4), the number of jobs B processes before τ
µA
i

starts may not exceed the number of jobs A processes

(in slow-mode) after B switched to the other mode:

µB
i (τ

µB
i −θ−

i − τ
µA
i ) ≤ λiθ

+
i (10)

or written differently:

σA
21+ θ+

2
−σB

21 ≤ ρB
1 θ+
1

(11)

σA
12+ θ+

1
−σB

12 ≤ ρB
2 θ+
2

(12)

This restriction is also valid if τ
µB
i starts after τ

µA
i

started, since then the left-hand sides of (10)–(12)

become negative, while the right-hand sides are positive.

5) The amount of jobs A processes of each type during

one cycle must be equal to the number of jobs that is

processed by B in one cycle. These mass conservation

equations follow (i ∈ {1,2}):

µA
i τ

µA
i + λiτ

λ A
i = µB

i τ
µB
i + λiτ

λ B
i = λiT. (13)

With these observations it is possible to derive conditions for

server A which must be obeyed to make A+B behave like B

stand-alone. Note that observations 1–5 are also applicable

for flowlines with more than two servers, e.g. flowline A +
B +C, where firstly, B has to make B +C behave like C

stand-alone and secondly, find a feasible trajectory for A to

make A + B behave like B stand-alone.

Proposition 3.1: Workstation A can make flowline A + B
perform like B stand-alone with respect to work-in-process
levels if and only if:

R2

[

τ
µB
1

+ τλB
2

+σB
21−σA

21−T+R1(τ
λB
1

−T )
]

+ τ
µB
2

+σB
12−σA

12 ≥ 0

(14)
and

R1

[

τ
µB
2

+ τλB
1

+σB
12−σA

12−T+R2(τ
λB
2

−T )
]

+ τ
µB
1

+σB
21−σA

21 ≥ 0

(15)

with R1 =max(ρA
1
,ρB
1
) and R2 =max(ρA

2
,ρB
2
).

Proof: The proof goes in two parts. First, if a pe-

riodic orbit of A makes A + B behave like B stand-alone,

it fulfills (7)–(13). During τ
µA
i + θ−

i , A has to process

µB
i τ

µB
i −λiθ

+
i = λi(T − θ+

i − τλ B
i ) jobs. This takes at least

λi(T −θ+
i − τλ B

i )/µA
i time units (if θ−

i = 0). This gives:

τ
µA
i + θ−

i ≥ ρA
i (T −θ+

i − τλ B
i ). (16)

Note that the mass conservation requirement has been trans-

lated into inequality constraints now. Combining this result

with (8) and (9) results in:

σB
21−σA

21+ τ
µB

1
−θ+
2
≥ ρA

1 (T −θ+
1
− τλ B
1 ) (17)

ρA
1 (θ

+
1

+ τλ B
1 −T )+ τ

µB
1

−θ+
2
≥ σA

21−σB
21 (18)

and similar for the other job type:

ρA
2 (θ

+
2

+ τλ B
2 −T)+ τ

µB
2

−θ+
1
≥ σA

12−σB
12. (19)

From (13) we know that:

τ
µB
i −ρB

i (T − τλ B
i ) = 0. (20)

Adding this up with (11) and (12) results in:

ρB
1 (θ

+
1

+ τλ B
1 −T )+ τ

µB

1
−θ+
2
≥ σA

21−σB
21 (21)

ρB
2 (θ

+
2

+ τλ B
2 −T )+ τ

µB

2
−θ+
1
≥ σA

12−σB
12 (22)

which looks very similar to (18) and (19). The results can

be combined:

max(ρA
1 ,ρ

B
1 )(θ

+
1

+ τλ B
1 −T )+ τ

µB
1

−θ+
2
≥ σA

21−σB
21 (23)

max(ρA
2 ,ρ

B
2 )(θ

+
2

+ τλ B
2

−T )+ τ
µB
2

−θ+
1
≥ σA

12−σB
12. (24)

These inequalities, together with θ +
1
≥ 0 and θ+

2
≥ 0, enclose

a feasible area in the (θ +
2

,θ+
1

)-plane. The intersection point
of the two linear borders defined by (23) and (24) lies in the
pos-pos quarter of this plane. The intersection point is given
by:

θ+

1
=

R2

[

τ
µB
1

+ τλB
2

+σB
21
−σA
21
−T+R1(τ

λB
1

−T )
]

+τ
µB
2

+σB
12
−σA
12

1−R1 ·R2
(25)

θ+

2
=

R1

[

τ
µB
2

+ τλB
1

+σB
12
−σA
12
−T+R2(τ

λB
2

−T )
]

+τ
µB
1

+σB
21
−σA
21

1−R1 ·R2
(26)

which are only positive if (14) and (15) are fulfilled.

For the second part of the proof, we know that (14)

and (15) are fulfilled and we want to find a feasible periodic

orbit for A. Because of the lengthy (but straightforward)

proof, the reader is referred to [4, Proposition 8.2].

In case of more than one upstream workstation, simi-

lar conditions can be derived for these workstations. Each

additional workstation adds two constraints similar to (14)

and (15) to Proposition 3.1.

In order to find a feasible trajectory for upstream servers

given the parameters (µ and σ ) the problem can be casted

into a linear program (LP) with design variables τ
µA
1
, τλ A
1
,

τ
µA
2
, τλ A
2
, θ+
1
and θ+

2
. All constraints (7)–(13) are linear

in the design variables. Additional workstations can be

put in the same LP. Any arbitrary objective function will

result in a feasible solution, (unless infeasible according

to (14) and (15)). In this way, for larger flowlines, feasible

trajectories can be found fairly easy. Also, the LP solver can

be used to check if a feasible solution exists at all.

Now that the desired (optimal) process cycle has been de-

fined for the whole flowline and conditions for the upstream

workstations have been derived, we look for a controller that

steers the state x(t) to the desired periodic orbits from any
arbitrary initial state x(0).

IV. CONTROLLER

A state feedback controller that brings any arbitrary trajec-

tory to the desired periodic orbits as defined in sections II-

B and III of this paper is presented in this section. The

controller can be obtained using the theory and method

presented in [6], based on Lyapunov’s direct method.

Lemma 4.1: Under conditions (14) and (15), the following

inequality holds: R1+ R2 < 1.
Proof: See [4, Lemma 9.1].
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Proposition 4.2: The following state feedback controller

steers the system to the desired (optimal) periodic orbits,

from any arbitrary initial state x(0): (due to limited space,
an ‘informal’ state feedback law has been presented, instead

of a formal specification)

• If at t = 0 the modes of the machines are unequal in
the initial state, then make A switch to the same mode

as B, according to (1) and (2):

mA=1 ∧ mB=2→ uA
0 :=· → xA

0 := σA
12; mA := 2 (27)

mA=2 ∧ mB=1→ uA
0 :=¶ → xA

0 := σA
21; mA := 1 (28)

• After initial switching (if necessary), the controller

loops the following lines from top to bottom. Based on

the state of the system, the controller (trivially) starts in

one of the lines for each server.

Workstation A Workstation B

¬ until xA
1

= xB
1

= 0 ¬ until xB
1

= xA
1

= 0

¬ until xB
1
≥ x

B♯
1
and mB = 2 ¬ until xA

2
≥ x

A♯
2

perform · perform ·

­ until xA
2

= xB
2

= 0 ­ until xB
2

= xA
2

= 0

­ until xB
2
≥ x

B♯
2
and mB = 1 ­ until xA

1
≥ x

A♯
1

perform ¶ perform ¶

in which x
A♯
1

= λ1(σ
A
12

+ τ
µA

2
+ τλ A
2

−θ+
2

), x
B♯
1

= λ1θ
+
1
,

x
A♯
2

= λ2(σ
A
21

+ τ
µA
1

+ τλ A
1

−θ+
1

) and x
B♯
2

= λ2θ
+
2
.

Proof: In both the desired (optimal) trajectory and the

transient, the system loops these modes (mA,mB): (1,1) →
(1,2)→ (2,2)→ (2,1)→ (1,1)→ . . . For the desired trajec-
tory, the buffer levels after leaving modes (mA,mB) are:

After (1,1) :
[

xA
1

xB
1

xA
2

xB
2

]T

=
[

0 0 x
A♯
2

x
B♯
2

]T

After (1,2) :













xA
1

xB
1

xA
2

xB
2













=













0

x
B♯
1

x
A♯
2

+ λ2θ
+
1

x
B♯
2
−µB

2
max(θ+

1
−σB

12
,0)













After (2,2) :
[

xA
1

xB
1

xA
2

xB
2

]T

=
[

x
A♯
1

x
B♯
1
0 0

]T

After (2,1) :













xA
1

xB
1

xA
2

xB
2













=













x
A♯
1

+ λ1θ
+
2

x
B♯
1
−µB

1
max(θ+

2
−σB

21
,0)

0

x
B♯
2













The duration of mode (1,1) equals x
A♯
2

/λ2, whereas the du-

ration of mode (2,2) equals x
A♯
1

/λ1. Furthermore, mode (1,2)
always takes θ+

1
and mode (2,1) always takes θ +

2
.

Suppose that we enter mode (1,2) in the transient for

the nth time (n > 1). The buffer levels are at this point:

[

xA
1

xB
1

xA
2

xB
2

]T
=

[

0 0 x
A♯
2

+ X (n) x
B♯
2

]T

(29)

where X (n) ≥ 0 represents the eX tra buffer content with
respect to the steady state value, when starting mode (1,2) for

the nth time. Now we can wonder what the buffer levels are

after mode (2,2), and consequently after mode (1,1), i.e. we

would like to express X (n+1) = f (X (n)). Instead of deriving
the map f explicitly, we compute an easy to find upper bound

for X (n+1) by means of an alternative control strategy.

Consider the alternative control strategy that first goes

through mode (1,2) during θ +
1
and then stays in mode (2,2)

during x
A♯
1

/λ1, as if it were on the desired orbit. The resulting
buffer levels are then:

[

xA
1

xB
1

xA
2

xB
2

]T
=

[

0 0 X (n) x
B♯
2

]T

(30)

Assume that A and B both process type 2 jobs at

rate min(µA
2
,µB
2
) to empty buffer xA

2
. This takes another

X (n)/(min(µA
2
,µB
2
) − λ2) time units. The resulting buffer

levels are then:

[

xA
1

xB
1

xA
2

xB
2

]T
=

[

x
A♯
1

+ λ1
min(µA

2
,µB
2
)−λ2

X (n) x
B♯
1
0 0

]T

(31)

With the original controller (Proposition 4.2), different

values for the buffer levels are obtained. However, the

original controller processes at least as much jobs as the

alternative controller, at each time instant, because the orig-

inal controller always processes jobs at the highest possible

rate. For this reason, we know that for the real controller at

the end of mode (2,2),
[

xB
1

xA
2

xB
2

]

=
[

x
B♯
1
0 0

]

and xA
1
:

x
A♯
1

≤ xA
1 ≤ x

A♯
1

+
λ1

min(µA
2
,µB
2
)−λ2

X (n) (32)

Completing the controller cycle for modes (2,1) and (1,1),

similar reasoning leads to the following result:

0≤ X (n+1) ≤
λ1

min(µA
2
,µB
2
)−λ2

·
λ2

min(µA
1
,µB
1
)−λ1

·X (n)

(33)

or rewritten:

0≤ X (n+1) ≤
R1

1−R1
·

R2

1−R2
·X (n). (34)

Since R1+ R2 < 1 (result of Lemma 4.1), we can conclude:

lim
n→∞

X (n) = 0 (35)

which means that the system converges to the desired (opti-

mal) periodic orbit (cf. (29) with (35)).

V. DISCRETE EVENT IMPLEMENTATION

Both the analysis of the servers has been performed and

the feedback controller has been proposed based on a hybrid

fluid model. In this section, we implement the controller in

a discrete event simulation. Loosely speaking, the integer-

valued buffer lengths of this simulation can be regarded as

a disturbance with respect to the fluid model and thereby,

we test the controller for robustness, in some sense. The

discrete event system and controller have been modeled using

specification language χ , see [1]. The parameter settings used
for the implementation are presented in Table I. Setup costs

are zero. From [3] we know the optimal process cycle of B:

τ
µB
1

= 3, τλ B
1

= 1, τ
µB
2

= 1, τλ B
2

= 0 and T = 9. The periodic
orbit of A has been computed as proposed in the second
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part of the proof of Proposition 3.1: τ
µA
1

= 3.47, τλ A
1

= 2.06,

τ
µA
2

= 0.40, τλ A
2

= 1.07, θ+
1

= 1.06 and θ+
2

= 0.53.
The results of the simulation have been shown in Fig. 5

(buffer levels over time) and Fig. 6 (periodic orbit A + B,

from light-gray to black for better visual understanding).

As can be seen, A + B converge to the optimal periodic

orbit of B (cf. Fig. 8 in [3]), resulting in minimal work-in-

process levels. Despite the disturbances due to the integer-

valued buffer, convergence is reached, as a result of the

state feedback control, in which measurements of the current

situation are used for to compute the control action.

TABLE I

PARAMETER SETTINGS FOR IMPLEMENTATION OF CONTROLLER.

λ1: 9 µA
1
: 18 µB

1
: 24 mA(0): 2 xA

1
(0): 30

λ2: 3 µA
2
: 60 µB

2
: 27 mB(0): 2 xA

2
(0): 10

c1: 1 σA
12
: 1 σB

12
: 2 xA

0
(0): 0 xB

1
(0): 30

c2: 1 σA
21
: 1 σB

21
: 2 xB

0
(0): 0 xB

2
(0): 15
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Fig. 5. Buffer levels of A (left) and B (right).
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Fig. 6. Plot of total amount of type 2 jobs against amount of type 1 jobs.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we studied flowlines consisting of switching

servers. The servers process more than one job type and

switching between job types takes time. In previous work,

the optimal process cycle for a single switching server with

respect to work in process level has been derived. This

minimal wip level is an absolute lower bound for average

the wip level of a flowline. In this paper, we characterized

the class of flowlines that actually can be controlled in such

a way that the lower bound of the wip for a single switching

server becomes the actual wip level for the flowline. Given

an arbitrary (possibly optimal) process cycle for a single

switching server, we derived conditions for the other work-

stations of the flowline which must be obeyed in order to

make the flowline behave like the given cycle for one server.

We assumed that both workstations have equal lengths of

their process cycles. Once the process cycles for all servers

have been determined, a controller has to make the system

process in the desired way. In this paper, we proposed a state

feedback controller (which can be derived using Lyapunov’s

direct method [6]) and we proved convergence to the desired

process cycles mathematically. So instead of optimizing

within a given control policy, we first determined the desired

optimal behavior of the system, and then proposed a control

strategy to achieve this behavior.

Although the methods and derivations have been per-

formed for a system consisting of two servers, it can easily be

extended to larger flowlines. We gave remarks on this issue

throughout the paper. If the number of job types becomes

more than two, the theory and methods still hold. Challenge

is then to find the optimal process cycle for a single server.

Given a feasible (not necessarily optimal) process cycle with

more than two job types, all notions and methods in this

paper remain valid.

Suggestions for further study on this topic are:

• finite buffer analysis for flowlines;

• optimal cycles for all flowlines, not only the flowlines

that can behave as a single switching server stand-alone;

• workstation dependent weighing factors for wip, instead

of type specific weighing factors;

• derivation of optimal process cycles for workstations

serving more than two job types;

• defining ‘optimal transient behavior’ and developing

controllers that guarantee optimal transient behavior.
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