
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
https://doi.org/10.1080/00207543.2022.2081630

Genetic algorithm and decision support for assembly line balancing in the
automotive industry

J. B. H. C. Diddena, E. Lefeberb, I. J. B. F. Adan a and I. W. F. Panhuijzenc

aDepartment of Industrial Engineering and Innovation Sciences, OPAC, Eindhoven University of Technology, Eindhoven, Netherlands;
bDepartment of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; cVDL Nedcar, Born, Netherlands

ABSTRACT
An important and highly complex process in the automotive industry is the balancing of the assem-
bly lines. Optimally distributing jobs among the lines in order to obtain the highest efficiency is
mostly donemanually, taking a lot of time. This paper aims to automate the process of line balancing
for a real-world test case. Automotive assembly lines are highly complex, andmultiple factors have to
be consideredwhile balancing the lines. All factors relevant in a case study at VDLNedcar are consid-
ered, namely, mixed-model production, sequence-dependent setup times, variable workplaces with
multiple operators and multiple assignment constraints. A Genetic Algorithm (GA) is proposed to
solve the formulated balancing problem and to act as a decision support system. Results on newly
proposed benchmark instances show that the solution is dependent on the relation between the
takt time and processing time of jobs, as well as the setup times. In addition, results of a real-life
case study show that the proposed GA is effective in balancing a real-world assembly line and that it
can both increase the efficiency of the line and decrease the variance in operating time between all
model variants when compared to current practice.

ARTICLE HISTORY
Received 3 June 2021
Accepted 25 April 2022

KEYWORDS
Assembly line balancing;
mixed models; genetic
algorithm;
sequence-dependent setup
time; variable workplaces

1. Introduction

Assembly lines are typically used in mass-production
facilities as they allow products to be finished faster with
a high level of efficiency. Assembly lines were first intro-
duced in the early 1900s in the Ford factories, allowing
for the fast production of the Model-T as each car was
exactly the same (Ford and Crowther 1922). Nowadays,
customers desire high customisationwhile still maintain-
ing a short lead time. The use of manual labor allows for
a variety of models to be produced on the same assembly
line, as operators are highly flexible. Implementing these
machines lead to considerably high investment costs,
thus making the planning and configuration of these
assembly lines of high importance (Boysen, Fliedner, and
Scholl 2007).

An assembly line consists of workstations connected
in series. A workpiece is launched down the line at fixed
intervals, referred to as the takt time (or cycle time). The
takt time is related to the desired production quantity
over a given time period (i.e. production quantity divided
by production time). The workpieces are transported
through each workstation with the use of a conveyor
belt. At every workstation, an operator performs jobs

CONTACT J.B.H.C. Didden j.b.h.c.didden@tue.nl Department of Industrial Engineering and Innovation Sciences, OPAC, Eindhoven University of
Technology, PO Box 513 Eindhoven, 5600 MB, Netherlands

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00207543.2022.2081630

on the workpiece, in which the operator typically does
not exceed the takt time. The jobs are also constrained
to precedence relations due to physical or technologi-
cal restrictions. The overall aim is to plan the required
jobs to assemble the complete workpiece according to a
given objective while taking into account the takt time
and precedence constraints. This problem is referred to
as the Assembly Line Balancing Problem (ALBP).

Despite the vast amount of academic research done
over the past decades, there is still a gap between the real
world and the academic world. Assembly line balancing
is still done manually at companies such as VDL Ned-
car and can take anywhere from a few weeks when the
assembly lines need to be rescheduled due to quantity
changes or new model introduction, up to a few months
if new lines are built or new models are introduced. This
is due to the high amount of models and tasks that are
present within the assembly line, both of which are in the
order of thousands. Furthermore, given a large amount
of time needed to balance the line, it is difficult to quickly
see what potential changes have on the assembly line, e.g.
changes in the takt time, positioning of the equipment, or
the introduction of a newmodel. Therefore, the use of an

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or
built upon in any way.

2 J.B.H.C. DIDDEN ET AL.

automated solution to balance the assembly lines is espe-
cially of interest to industry, in order to integrate it as a
decision support system.

The reason why, to the best of our knowledge, many
companies do not apply optimisation techniques such as
meta-heuristics to solve the ALBP can be due to a num-
ber of reasons, as also identified by Boysen, Fliedner,
and Scholl (2007); (1) lack of ‘real world’ problems that
allow for a correct representation of the actual problem
(i.e. problems in literature are often simplified), (2) the
difficulties in solving complex problems, as constraints
are often too difficult to be included within an optimi-
sation model and (3) academic results could not be used
for practical applications as specific solutions could not
be translated back to more generic problems. In addi-
tion, VDL Nedcar states that the balancing of assembly
lines started out in a situation with a minimal amount of
complexity and gradually developed in more detail (i.e.
more constraints were added while data regarding these
decisions were not being stored). This leads to missing
information in the data systems that is needed to make
use of e.g. heuristics, to aid in the process of balancing. It
also leads to information not being readily available in a
single system. Then, it is difficult to see whether automa-
tion of the process can lead to feasible solutions that can
be applied to the current assembly lines.

Even though a lot of research has been done on solving
theGeneral Assembly Line Balancing Problem (GALBP),
there is still a lack of research considering real-world case
studies, especially in the automotive industry. In contrast
to current literature, real-world assembly lines contain a
variety of additional constraints that need to be taken into
account to formulate feasible (and optimal) line balances.
These constraints are often related to the positioning of
certain tasks on the line due to logistical issues or equip-
ment placement, differences in working times between
operators and constraints imposed on the takt time.

Therefore, the objective of this paper is threefold:
(i) to develop an optimisation model that incorporates
all constraints identified within an assembly line, (ii)
implement this model within the company and (iii) use
the model to identify possible room for improvements
with the current line (i.e. show how the model can be
used for decision support). Moreover, we aim to keep
the model as generic as possible so that it can be used
in a variety of settings. We develop a similar problem
as proposed by Naderi, Azab, and Borooshan (2019).
Our problem, however, extends this model by adding
sequence-dependent setup times and introducing a pro-
portional cycle time constraint, as described by Boysen,
Fliedner, and Scholl (2007). This proportional cycle time
constraint states that the takt time should be met depen-
dent on the individual demand of eachmodel. To the best

of our knowledge, no other papers have taken all these
constraints into account simultaneously. In addition, a
horizontal line balancing constraint is added, aiming to
reduce the variation in station time between operators
and models. This is especially desired by automotive
producers, in order to keep the workload for all opera-
tors across all models the same. Note that this paper is
deduced from a thesis, as can be seen in Didden (2020).
For more background information, we would like to
direct the reader to this thesis. This paper, however, con-
tains more results that evaluate the concept of using the
proposed solutionmethod as a Decision Support System.

The ALBP as set for VDL Nedcar contains con-
straints such as Mixed Model Line Balancing, Sequence
Dependent Setup Times, Multi-Manned workstations
and assignment restrictions. Other constraints such as
ergonomics are not taken into account, as this is typically
considered as a separate problem within the company.
To this extent, an MIP is formulated (see Didden 2020)
and aGenetic Algorithm is proposed to balance a current
assembly line. Furthermore, we explain how the size of
the problem can potentially be reduced to accommodate
for the high amount of tasks and models that are present
in a single assembly line. Initial analysis of the results
of the newly generated benchmark instances shows that
the efficiency of line balancing depends heavily on the
task times and setup times. Furthermore, results of a
case study show that the proposed algorithm can reach
a significantly better solution in terms of the number of
operators and horizontal balancing, when compared to
the current line balance. A more thorough analysis also
reveals potential room for improvement when using the
proposed algorithm as a decision support system, such as
the need to decrease the size of mounting positions and
the ability of the new line balance to respond to changes
in demand.

The remainder of the paper is organised as follows.
First, in Section 2, a review of the current literature is
given. Then, the problem statement is formulated con-
sidering the constraints identified at VDL Nedcar in
Section 3. A Genetic Algorithm is then formalised in
Section 4 to solve the problem. Section 6 describes a
case study and the results obtained by implementing
the Genetic Algorithm. Finally, conclusions and future
research directions are stated in Section 7.

2. Literature review

The ALBP has been a thoroughly researched topic in
the past few decades. One of the first known descrip-
tions of the problem was given by Salveson (1955) who
proposed an Integer Programming (IP) model. Wee and
Magazine (1982) used bin packing algorithms to solve

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3

the SALBP, as this problem is closely related to the bin
packing problem. İlker (1986) furthermore introduced
the Simple Assembly Line Balancing Problem (SALBP)
and its extension which relaxes some of the constraints,
referred to as theGeneral Assembly Line Balancing Prob-
lem (GALBP).

More recent papers formulate GALBP’s to solve prob-
lems more closely related to actual manufacturing lines.
Kim, Kim, and Kim (2000) solve the two-sided assembly
line balancing problem (TALBP), where workers can per-
form tasks on the left and right side of aworkstation. Each
task may have a preferred side or can be performed on
both sides. The author formulates a Genetic Algorithm
(GA) to solve the problem.Uğur andToklu (2009) extend
the problem by addingmixedmodels to the TALBP. They
formulated a mathematical model and simulated anneal-
ing algorithm to solve the problem. Another extension
to the problem is by allowing multiple operators to per-
form tasks on the workpiece simultaneously. Becker and
Scholl (2009) address this problem as theALBPwith vari-
able parallel workplaces. Multiple operators are allowed
to perform tasks on a workpiece and a workpiece is
split into multiple mounting positions. A task is uniquely
assigned to amounting position and operators can simul-
taneously perform tasks as long as they do not hinder
one another (i.e. share the same mounting position).
Roshani and Giglio (2017) solve the problem of line bal-
ancing while incorporating variable parallel workplaces
and mixed models. They limit the number of workplaces
to a predefined number of operators depending on the
problem at hand. A mathematical model and simulated
annealing algorithm are produced to solve the problem.
Lopes et al. (2020) extend the definition of Becker and
Scholl (2009) by introducing extra flexibility, allowing
workers to start and end in different workstations. A key
difference is that the cycle time constraint is imposed
on the operator’s workload instead of the workstation’s
workload.

Task times are also handled differently throughout
the literature. Boysen, Fliedner, and Scholl (2007) pro-
pose three different approaches to include task time
within the problem: stochastically following a distri-
bution function, dynamically through learning effects
of workers, or deterministically when task times are
fixed and known in advance. The first method is often
proposed through the use of fuzzy processing times.
Zacharia and Nearchou (2012) in turn extend the SALBP
with the addition of fuzzy task times with the aim to
minimise the fuzzy cycle time and the fuzzy smoothness
index/fuzzy balance delay. The authors propose aGenetic
Algorithm to solve this problem. They continue their
work in Zacharia and Nearchou (2013), looking at an
extension of the problem, with the objective of increasing

the efficiency (i.e. minimising cycle time and number of
workstations) of the assembly line. Here, ameta-heuristic
based on aGA is proposed. Lastly, Alavidoost et al. (2017)
also consider fuzzy task times and also propose a GA.
However, the authors consider a U-shaped lined instead
of a straight line.

Tang et al. (2017) solved the problem of two-sided
assembly lines with stochastic task times and various
other assignment constraints such as (in-)compatible
tasks and synchronous tasks. Variability in task times
may occur due to unqualified operators, machine break-
downs, complexity of tasks, or similar reasons. The
authors consider a fixed stochastic task time and formu-
late a probabilistic cycle time constraint (i.e. the cycle
time constraintmust bemet with a certain probability). A
hybrid teaching-learning-based optimisation algorithm
is employed to solve the problem. Similarly, Aydoğan
et al. (2019) define stochastic task times and apply the
same probabilistic cycle time constraint, however, only
for a U-line. The authors develop a Particle Swarm
Optimisation method to solve the proposed problem.
Hamta et al. (2013) consider the problem where task
times are restricted between an upper and lower bound
and a learning effect is introduced stating the task time
decreases the more often a task is performed.

Another common restriction within assembly lines,
especially in factories where large workpieces are assem-
bled (e.g. the automotive branch), is the setup time
between tasks. A common way to address this issue is
by setting tasks for which the setup time is too large as
incompatible, see Boysen, Fliedner, and Scholl (2007).
Andrés, Miralles, and Pastor (2008) formulate a prob-
lem where setup times, due to walking distances or other
restrictions, are added to the workload of each worksta-
tion. These setup time are considered to be sequence-
dependent, i.e, the setup time depends on the order in
which the tasks are executed. Scholl, Boysen, and Flied-
ner (2013) extend the problem by defining forward and
backward setup times. Forward setup time occur within
the same cycle (e.g. an operator has to walk towards the
next task on the same workpiece). A backward setup
occurs between the last task of the current cycle and the
first task on the next cycle (e.g. an operator has to walk to
the next workpiece to be assembled). Delice (2019) con-
siders the problem of two-sided assembly line balancing
with forward and backward setup times. The author pro-
poses a Genetic Algorithm (GA) to solve the proposed
problem.

Over the past years, some research has been done
using real-world applications in the automotive indus-
try by considering a multitude of realistic constraints.
Alghazi and Kurz (2018) consider the ALBP while tak-
ing into account a Mixed Model Assembly Line, parallel

4 J.B.H.C. DIDDEN ET AL.

workstations, zoning constrains and ergonomic factors.
To this extent, they developed an IP and Constraint Pro-
gramming (CP) model. Using actual OEM data, they
prove that their CP model outperforms the IP model.
Naderi, Azab, and Borooshan (2019) considered a five-
sided multi-manned mixed-model assembly line balanc-
ing problem based on actual OEM data from two differ-
ent companies. Additionally, workers are allowed tomove
along different sides of the car and a maximum of three
workers are to be allocated per workstation. To solve
the problem, the authors develop a Mixed Integer Linear
Program (MILP) and a Logic-based Bender’s decompo-
sition algorithm. They prove that their algorithm can
reach sub-optimal solutions for the case study provided.
However, for both studies, sequence-dependent setup
time are not included as tasks that are too far apart
are set to be incompatible. This may lead to solutions
not being explored. Ferrari et al. (2019) also consider
a multi-manned assembly line balancing problem, with
the addition of incompatibility of different mounting
positions, equipment sharing and worker cooperation.
To this extent, they develop a Mixed Integer Program
(MIP) and Simulated Annealing (SA) algorithm. They
test their algorithm with a case study at an Italian man-
ufacturer considering around 600 tasks. They demon-
strate that their problem can find solutions close to the
estimated lower bound. However, a single model is con-
sidered which simplifies the problem significantly. Ster-
natz (2014) considers a real-world problem taken from
the Volkswagen Group in which they consider multi-
ple constraints that apply to actual assembly lines in the
automotive industries. Constraints such as high product
variety (MixedModel), sequence-dependent setup times,
assignment restrictions andmultiple operators per work-
station (Multi-Manned) are taken into account among
others. The authors develop an EnhancedMulti Hoffman
Heuristic which is shown to be effective in finding solu-
tions for complex real-world problems.Ourwork extends
the problem by Sternatz (2014) by adding horizontal
balancing to the objective function and assessing new
assignment restrictions such asminimum andmaximum
distances between certain tasks.

Table 1 presents a comparison of the relevant litera-
ture to the current work1. The classification scheme of
Boysen, Fliedner, and Scholl (2007) is used for the com-
parison. This table shows that we are one of the first to
incorporate all these different types of constraints.

3. Problem formulation

This paper considers the assembly line balancing prob-
lem as it occurs within an automotive manufacturing
plant. A number of models N is to be produced on a

serial assembly line (i.e. a single assembly line without
feeder or parallel lines). We are given a set of tasks J
(these are all tasks required to produce the N models)
that need to be assigned to a set of (unique) workstations
W, where workstations can differ according to equip-
ment and sizing constraints. Each workstation is divided
into Z zones. Each task j ∈ J has a deterministic task
time equal to τj,n, dependent on the model n ∈ N. The
order in which the models are launched down the line
are decided separately in a sequencing problem. How-
ever, as the order of the model changes constantly due
to changes in production volume, the line is balanced
according to predictions of the model demand instead of
the exact sequence of the models. Not every task is appli-
cable for every model. In that case τj,n = 0. In addition,
common tasks between models must be processed on
the same workstation and by the same operator. On each
workstation, a number of operators o is assigned, each
performing a single task at any given moment, where o ∈
{1, . . . ,Omax}, withOmax being the maximum number of
operators able to be assigned to any given workstation. In
addition, only one operator can work in any zone z ∈ Z
simultaneously. Naturally, precedence relations are appli-
cable, stating the order inwhich tasks need to be executed
(e.g. the radiator needs to be installed before the front
bumper can be put into place). A schematic overview of
an assembly line is given in Figure 1 and a more detailed
overview of a single workstation is given in Figure 2.

Typically, the sum of the task times at each worksta-
tion, and for each operator, cannot exceed the takt time
T . The takt time is an indicator of the production rate of
the line and is defined as the ratio between the total avail-
able production time, and the production volume. The
takt time is typically constant over the span of a couple of
months. However, as some models require significantly
more tasks compared to other models, the strict restric-
tion of the takt time can cause unnecessary idle times
for certain models, due to the mixed model nature of the
line. Therefore, it is allowed that models exceed the takt
time, with a maximum time equal to βw, as long as the
average working time of all operators across all models
(dependent on the demand of the models) is less than or
equal to the takt time, as seen in Equation (1). Tasks that
exceed the takt time should be performed by the same
operator and can be finished in consecutive workstations.
This does, however, lead to workload unbalance, as for
somemodels the sum of the task time for an operator can
be significantly higher than for other models. This again
can cause unnecessary idle times. The objective therefore
becomes to reduce the absolute difference in the sum of
the task time between all models, also known as hori-
zontal balancing, see Thomopoulos (1970). The problem
of horizontal balancing can be solved through different

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 5

Ta
bl
e
1.

Co
m
pa
ris
on

of
cu
rr
en
tr
el
ev
an
tl
ite
ra
tu
re
on

as
se
m
bl
y
lin
e
ba
la
nc
in
g.

K
im

,K
im

,a
nd

K
im

(2
00
0)

A
nd

ré
s,

M
ira

lle
s,
an
d

Pa
st
or

(2
00
8)

Be
ck
er

an
d
Sc
ho

ll
(2
00
9)

U
ğu
ra

nd
To

kl
u

(2
01
0)

H
am

ta
et

al
.

(2
01
3)

St
er
na
tz

(2
01
4)

Ro
sh
an
ia
nd

G
ig
lio

(2
01
7)

Ta
ng

et
al
.

(2
01
7)

A
lg
ha
zi
an
d

Ku
rz

(2
01
8)

Ay
do

ğa
n
et

al
.

(2
01
9)

Zh
an
g

et
al
.

(2
01
9)

D
el
ic
e

(2
01
9)

N
ad
er
i,
A
za
b,
an
d

Bo
ro
os
ha
n

(2
01
9)

Fe
rr
ar
i

et
al
.

(2
01
9)

Lo
pe
s

et
al
.

(2
02
0)

C
ur
re
nt

W
or
k

I.
Pr
od
uc
tS

pe
cifi

cP
re
ce
nd

en
ce

G
ra
ph
s

Si
ng

le
�

�
�

�
�

�
�

�
�

�
�

�
M
ul
ti

M
ix
ed

�
�

�
�

�
II
.

Se
tu
p
Ti
m
es

N
on

e
�

�
�

�
�

�
�

�
�

�
Se
qu

en
ce

D
ep
en
de
nt

�
�

�
�

�
�

�
II
I.

A
ss
ig
nm

en
tR

es
tr
ic
tio

n

Li
nk

ed
�

�
�

�
�

�
In
co
m
pa
tib

le
�

�
�

�
�

�
�

�
Fi
xe
d

�
�

�
�

�
Ty

pe
�

�
�

M
in
im

um
�

M
ax
im

um
�

IV
.

M
ov
em

en
to
fW

or
kp
ie
ce
s

Pa
ce
d

Av
er
ag
e

�
�

�
�

�
�

�
�

�
�

�
�

�
Ea

ch
�

�
Pr
ob

�
Sa
m
e

D
iv
er
ge
nt

V.
Li
ne

La
yo
ut

Se
ri
al

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
U
-L
in
e

�
�

Pa
ra
lle
l

V
I.

Pa
ra
lle

lis
at
io
n

P l
in
e

P s
ta
t

P t
as
ks

�
P w

or
k

�
(2
)

�
(K

)
�

(2
)

�
(K

)
�

(K
)

�
(2
)

�
(K

)
�

(K
)

�
(2
)

�
(K

)
�

(K
)

�
(K

)

N
on

e
�

�
�

V
II
.

So
lu
tio

n
Te
ch
ni
qu
e

M
at
he
m
at
ic
al
M
od

el
�

�
�

�
�

�
�

�
�

�
�

�
�

C
on

st
ra
in
tP

ro
gr
am

m
in
g

�
G
en
et
ic
A
lg
or
ith

m
�

�
�

PS
O

�
�

�
SA

�
�

G
RA

S P
�

C
O
M
SO

A
L

�
M
ul
ti-
H
off

m
an
n

�
M
ig
ra
tin

g
Bi
rd
s

�
Be

nd
er
sD

ec
om

po
sit
io
n

�
M
od

el
Ba

se
d
H
eu
ri
st
ic

�

6 J.B.H.C. DIDDEN ET AL.

Figure 1. Schematic overview of a piece of the assembly line.

Figure 2. Schematic overview of a single workstation.

objective functions. For this, we refer to the work of
Emde, Boysen, and Scholl (2010). In our case we aim to
reduce the difference between the total task time for an
operator and the takt time, as can be seen in Equation (2).

∑

n∈N
αn · tw,o,n ≤ T (1)

min
∑

n∈N

∑

w∈W

∑

o∈O
|tw,o,n − T | (2)

where tw,o,n is the station time of workstation w for oper-
ator o when model n is being produced. Due to the size
of the cars produced on the line, a setup time needs to

be added after a task is processed due to either walk-
ing distances or tool/equipment/material changes. These
setup times also depend on the model that is produced.
Not all tasks are performed for each model (e.g. tasks
that are related to a convertible roof are only applicable
to the models that have this type of roof), and not all
models have the same size (e.g. an SUV is much larger
than a compact car, which can cause an increase in walk-
ing distances between the front and back of the car).
A similar method as proposed by Scholl, Boysen, and
Fliedner (2013) is used. Between two consecutive tasks,
j1, j2 ∈ J, in the same cycle, a forward setup time equal

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 7

Figure 3. The connection between different tasks executed on a workpiece in consecutive cycles.

to πj1,j2,n is added. Furthermore, between the last task
j2 ∈ J conducted on a model n2 ∈ N in one cycle, and
the first task j1 ∈ J conducted on a model n1 ∈ N in the
next adjacent cycle, a backwards setup time μj2,j1,n2,n1 is
added. See Figure 3 for a schematic overview of forward
and backward setup times.

Example: Figure 3 shows how setups are defined and the
differences between forward and backward setups. The
simplest setup time is created solely by walking distances,
as is the case between tasks j1 and j2. Here the operator
does not have to change equipment or grab new materi-
als. In contrast, the setup between tasks j2 and j3 is more
elaborate. The operator must walk from position (a), to
thematerial box at position (b), and then continue to task
j3 at position (c). This creates extra setup time in compar-
ison with the situation that the operator walks directly
from task j2 at position (a) to task j3 at (c). Next, the dif-
ference between a forward and backward setup becomes
apparent. If the operator finishes cycle a with task j4 and
starts the next cycle a+ 1 with task j1, then only a short
setup time is needed (i.e. the backward setupμj4,j1). How-
ever, if task j4 is succeeded by task j1 in the same cycle
a then a much longer setup time is relevant, namely the
forward setup πj4,j1 .

Note that due to the addition of multiple opera-
tors per workstation, and the allowance of operators
to process tasks over the station boundary, idle time
may be incurred. These idle times are typically incurred
when operators have to wait due to precedence relations

between tasks or when operators in consecutive work-
stations are performing tasks in the same zones, as it is
only allowed for one operator to work in a single zone
simultaneously.

Lastly, we also consider assignment restrictions:

• Tasks that cannot be performed at the same worksta-
tion or by the same operator (Incompatible Tasks).

Example: The installation and checking of the fuel
tank must be done by a different operator.

• A pair of tasks that have aminimum ormaximum dis-
tance between them (Minimum andMaximum tasks).

Example: The filling of the break lines needs to be
expanded over aminimum of 4 stations, thus the tasks
related to the coupling anddecoupling of themachines
to perform these tasks must be at minimum 4 stations
separated.

• Tasks that have to be performed at the same time by
different operators on the same workstation (Linked
Tasks).

Example: A large workpiece that requires 2 operators
to lift it.

• Tasks that have to be performed on a specific worksta-
tion and zone (Fixed Tasks).

Example: Due to the dashboard being inserted from
a feeder line at a specific side of the assembly line, any

8 J.B.H.C. DIDDEN ET AL.

tasks related to the installation of the dashboard need
to be done at the workstation.

• Tasks that need to be assigned to a specific subset of
workstations. (Type Tasks)

Example: A subset can be workstations where the car
is lifted. On this subset, tasks can be performed on the
underside of the car.

The goal is to determine the sequence of the tasks allo-
cated to each operator and workstation. Multiple objec-
tives can be chosen to formulate the line balancing prob-
lem, with the most typical ones being the minimisation
of the line length (i.e. the number of workstations) or
takt time. Other objectives may be the minimisation of
the number of operators or workload balancing. In the
case of multiple objectives, the objectives can each be
weighed according to a weighting factor ηi with ηi >

ηi+1 > · · · > ηn to prioritise one objective function over
another. In this case, the objective is four fold: (i) min-
imise the amount of operators, (ii) minimise the amount
of workstations, (iii) minimise the total station time and
(iv) achieve the best possible workload balancing. The
objective function is given in Equation (3),

min η1 · |O| + η2 · |W| + η3 ·
∑

n∈N

∑

w∈W

∑

o∈Ow

tw,o,n

+ η4 ·
∑

n∈N

∑

w∈W

∑

o∈Ow

|tw,o,n − T |. (3)

4. Algorithm

In this section a Genetic Algorithm (GA) is proposed
to solve the problem that is stated in Section 3. A GA
is able to to find favourable solutions due to its ability
to go through a large search space. The GA in this sit-
uation is kept simple, it is only responsible to generate
new solutions and improve on any previous solutions. In
basic terms, it determines the order of which the jobs
are executed on the line. Another heuristic, the decod-
ing, eventually determines the exact assignment of jobs,
both to workstations and operators. The basis of the GA
can be summarised in the following steps:

(1) Generate an initial population.
(2) Assign a fitness score to each individual according to

Equation (3).
(3) Use tournament method to select individuals to per-

form crossovers.
(4) Select individuals to perform mutation on.
(5) Collect newly generated individuals and original

individuals into a new population and assign fitness

scores. SelectN individuals to be carried over to the
next generation.

(6) Terminate if a stopping criterion is met (time limit,
number of generations (#gen), fitness score), other-
wise repeat from step 3.

The remainder of this section is organised as follows.
First, Sections 4.1 and 4.2 describe the encoding of a
solution and how the initial population of the GA is
initialised, respectively. Next, Section 4.3 describes the
crossover and mutation operators used within the GA.
Section 4.4 presents the selection procedure of the GA. In
Section 4.5 a decoding algorithm is proposed in order to
transform the created individuals into a feasible line bal-
ance. Finally, Section 4.6 describes how additional assign-
ment constraints are implemented within the algorithm.

4.1. Encoding

The first step to the GA is encoding the chromosomes
(i.e. a possible solution for the problem). Chromosomes
are built up out of genes. For the ALBP each gene in the
chromosome represents a task, e.g. task 7 would be given
a gene labeled with 7. The total length of a chromosome
equals the number of available tasks. The sequence of the
genes in the chromosome represents the sequencing (i.e.
the order) of the tasks on the assembly line. See Figure 4
for a visual example of a chromosome. It must be noted
that the order in which the tasks appear in the chromo-
some, do not exactly relate to the order in which the tasks
are processed. Due to the fact that multiple operators can
be present at every workstation, successive tasks that are
present in the chromosomemay start simultaneously, but
at different operators. The de-coding heuristic used to
define at which workstation task j is present is given in
Section 4.5.

4.2. Initial population

Due to the fact that the solutions for the ALBP are highly
sequence-dependent, mainly caused by the sequence-
dependent setup times, a diverse population can be use-
ful for the GA. The initial population should, therefore,
also contain a variety of unique task sequences, thus
allowing for the crossover and mutation to be effective.
Therefore, it has been chosen to use the method devel-
oped by Scholl, Boysen, and Fliedner (2013) to gener-
ate the initial chromosomes. This method is referred to
as rule-GRASP (Greedy Randomised Adaptive Search
Procedure).

The rule-GRASP algorithm assigns available tasks
from a generated candidate list (CL) to the current con-
structed sequence (labeled as σ). The tasks (labeled j) in

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 9

Figure 4. Example of a chromosome as used in the Genetic Algorithm.

the CL are ones that can be assigned to the next posi-
tion in the sequence, due to their precedence relations
(i.e. tasks that do not have any predecessors or whose pre-
decessors have already been assigned). Then a priority
rule (PR) is chosen at random from a uniform distribu-
tion and each task in the CL is assigned a value corre-
sponding to the PR. The task with the lowest PR value
is then assigned to the next position in the sequence.
Lastly, the CL is updated by adding the direct succes-
sors of task j (i.e. from the set S∗

j) to the CL if all other
predecessors of these tasks have also been assigned. This
process is repeated until all tasks have been assigned. See
Algorithm 1 for a summary of the algorithm.

Algorithm 1: rule-GRASP algorithm

while CL �= ∅ do
select priority rule from random uniform
distribution;

for j ∈ CL do
calculate values for chosen PR;
add j to σ ;
remove j from CL;

end
construct CL from S∗

j ;
end

4.3. Crossover andmutation operator

Crossover children are created by selecting two parent
chromosomes. The parents chromosomes can be chosen
using a variety of methods such as: at random, roulette
wheel selection or tournament selection. In this case,
the tournament selection procedure is chosen. Here, a pt
part of the population of random chromosomes is cho-
sen (with n>2) from the current population and the two
with the best fitness values are chosen to form a pair of
parents. This process is repeated #gen/2 times.

In order to retain feasible sequences of tasks (i.e.
according to the precedence relations), a two point
crossover method is chosen. To start, two random

integers (C1 and C2) between (2, n − 1) are chosen (with
C1<C2). C1 and C2 denote positions in the chromo-
some. Then, the head and tail portions of the first parent
chromosome (P1) are copied to the first offspring (O1).
The head is the genes from positions 1 up to C1 and
the tail from positions C2 up to n. Then the middle
section (genes between C1 and C2) of P1 is ordered in
the sequence it occurs in the second parent chromosome
(P2). The elements are the copies to O1. The same pro-
cedure is used to create O2, where the roles of P1 and P2
are reversed. See Figure 5 for an example of the two point
crossovermethod. In addition, not all parents produce an
offspring with the crossover method. There is a probabil-
ity, pc with 0.5 ≤ pc ≤ 1, that two parent chromosomes
produce an offspring.

The second method used to diversify the population
is through mutation. Mutation children are created by
first randomly selecting a gene in a parent chromosome.
For this gene, the latest assigned predecessor (m1) and
earliest assigned successor (m2) are recorded. A random
integer from (m1,m2) is then chosen and the gene is
inserted into this point. There is a probability that amuta-
tion will happen equal to pm. See Figure 6 for a visual
representation of the mutation operator.

4.4. Selection

Elitism (and selection) is a third important step in a GA.
Elitism (or survival of the fittest), is used to carry over the
solutions with the best fitness value for the next genera-
tion. This is done to preserve the quality of the solutions
to the next generations. As has been explained earlier,
the newly formed population and the original population
are pooled together. From this total population a certain
number,N , of individuals with the best fitness score are
selected to be carried over to the next generation.

4.5. Decoding

The decoding of the chromosome is based on the infor-
mation needed for the fitness function and the desired
output, in this case which tasks are allocated to which

10 J.B.H.C. DIDDEN ET AL.

Figure 5. Example of the crossover operation.

Figure 6. Example of the mutation operator.

workstation. The allocation of tasks should be deter-
ministic, a sequence of tasks should always yield the
same output, therefore, no randomness can be involved.
When allocating tasks to a workstation, the assump-
tions as posed in Section 3 should be adhered to. For
this purpose, a heuristic has been written to decode the
chromosomes. The heuristics is based on three choices,
the first being which operator a task is assigned to, sec-
ondly if a task can be allocated to the current worksta-
tion and lastly, how many operators are assigned to each
workstation.

First, the assignment of tasks to a workstation is done
through the calculation of its earliest starting time on
every available operator on the current workstation. The
start time of a task depends on four factors: (1) the end
time of the last allocated task to an operator, (2) a forward
setup time, (3) idle time created by precedence relations
caused by tasks allocated to other operators on the same
workstation (I1) and (4) idle time created by precedence
relations and mounting positions by tasks allocated to
operators on previous workstations (I2). The start time
for each model and operator is calculated and the mini-
mum start time over all models is the start time used to

decide to which operator the task is allocated to. Finally,
the output is a list of operators in ascending order from
earliest to latest start time. It is noted that in case of a tie
(i.e. the start times for two or more operators is equal),
then the operator with the lowest index is chosen as the
best operator, as opposed to choosing one of the operators
at random.

Secondly, a check has to be done to decide if a task
can be allocated to the current workstation. The station
time tw,o,n for eachmodel is calculated, which includes all
possible idle and setup times (τ andμ). In order to calcu-
late setup times, the first and last (i.e. f and l respectively)
allocated task to a workstation for each model must be
tracked. As the backward setup time can vary between
any combination of models (e.g. the setup from model
n1 to n2 might be different than from n1 to n3 depend-
ing if a task is executed for a specific model), this time is
averaged according to the first task that is relevant for a
model, according to (4).

μj2,j1 = 1
N2

∑

n1∈N

∑

n2∈N
μj2,j1,n1,n2 ∀ (j1, j2) ∈ J. (4)

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 11

When all station times are calculated, they are averaged
according to the model demand. If the average station
time is lower that the takt time (T) and the maximum
station time is lower than the operators boundary (Tmax),
then the task is allocated to the selected operator. Other-
wise, the check is repeated for the next operator in the list.
If the current task cannot be allocated to any operator, a
new workstation is opened.

The choice of deciding the number of operators on
each workstation is done through the efficiency (η) of
each operator. First, a maximum amount of operators per
workstation is set, Omax. This number typically depends
on the available space on the assembly line. Next, a
threshold value for the efficiency is set. The efficiency is
the ratio between the useful time of an operator (i.e. time
spent executing a task) and the takt time. This is in turn
calculated for every model and is averaged according to
the demand for each model. In other words:

ηo,w = αn

∑
j∈(w,o) τj

T . (5)

After nomore tasks can be allocated to the current work-
station, the efficiency of each operator is calculated. If the
efficiency of a single operator is lower than the thresh-
old value, the number of operators for that workstation
is reduced by one and the tasks are re-allocated to the
remaining operators. This process is repeated until all
operators reach the threshold value or until there is only a
single operator left on the current workstation. The final
output of the algorithm is the number of operators per
workstation (Ow), number of workstations (Wtotal), a list
of allocated tasks to eachworkstation and operator (Jw,o)
and the station times (t). The general heuristic can be
seen in Algorithm 2.

4.6. Extra constraints

Most requirements for the assembly line as described in
Section 3 are addressed in the decoding algorithm as
described earlier. However, most constraints related to
assignment restrictions are addressed through a penalty
function in the fitness evaluation of the GA. Then in case
one of these assignment restrictions is violated (e.g. a task
is assigned to a non-compatible workstation) the solution
is discarded in the next iteration of the GA.

Linked Tasks tasks are handled differently within the
GA. If the current task being assigned is one of the two
tasks of a linked task, then a new workstation is opened,
and both task packages are assigned to different opera-
tors on the newly openedworkstation. It is also noted that
the minimum number of operators on this workstation is
equal to 2 instead of 1. Furthermore, there is one special
case of Minimum/Maximum tasks, where there needs to

Algorithm 2: Decoding Algorithm
Initialisation: setWtotal = 1,Ow = Omax, add
σ1 to J1,1, calculate t1,1,n, add σ1 to f1,1,n, l1,1,n
dependent on model;

ii = 2;
while ii ≤ noTasks do

Set j to σii;
Calculate I1;
Calculate I2;
Decide best operator to assign task to based
on earliest start time;

for o ∈ O do
for n ∈ N do

Determine τl,j,n and μj,f ;
Calculate tw,o,n based off idle and
setup times;

end
if mean station time ≤ T and max
station time ≤ Tmax then

add σii to Jw,o;
Determine tw,o,n, fw,o,n, lw,o,n;
break;

else
continue;

end
end
if task fits in workstation then

ii = ii + 1;
else

Calculate ηw,o for all operators on
current workstation;

if mean efficiency ≥ ηt or Ow = 1 then
Wtotal = Wtotal + 1,Ow = Omax;
add σii to Jw,1, set fw,1,n, lw,1,n
dependent on model;

Calculate tw,o,n;
ii = ii + 1

else
empty Jw,o and reset fw,o,n, lw,o,n for
all operators on current
workstation;

ii = prev;
Ow = Ow − 1;

end
end

end

be a certain amount of empty workstations between two
tasks, typically due to safety regulations. If the first task
of one of these tasks pairs is assigned to a workstation,

12 J.B.H.C. DIDDEN ET AL.

then, after the workstation is closed, the number of cur-
rent workstations (Wtotal in Algorithm 2) is increased
by x instead of 1, with x being the number of empty
workstations needed between the tasks.

5. Experimental results

This section provides an initial analysis on multiple test
cases using theGA as a decision support system. First, the
experimental settings, as well as newly generated bench-
mark instances, are given in Section 5.1. Next, a Design
of Experiments is presented in Section 5.2 to analyse
the influence of certain parameters on the quality of the
solution. Lastly, Section 5.3 presents results of a Mixed
Integer Linear Program and the proposed GA, as well as
ananalysis on the generated benchmark instances.

5.1. Experimental settings

As stated before, no other research considers all the
constraints mentioned in this paper, therefore, no stan-
dard benchmarks are available for testing. However, in
order to show the effectiveness of this algorithm, new
benchmarks instances are proposed2. The benchmarks
are combinations of multiple different benchmark prob-
lems obtained from https://assembly-line-balancing.de/.
The newly generated test instances only omit any assign-
ment restrictions but contain all remaining constraints as
previously described in Section 7.

The proposedGA is implemented inMatlab and tested
on 259 different instances, each with a varying number
of tasks, takt time, number of models and precedence
relations. In order to speed up the GA, some early termi-
nation criteria are implemented. First, if after mutation
and crossover less than 6 unique individuals remain in
the population, or if after 20 generations the fitness value
of the best individual has not changed, the simulation is
terminated. In addition, the GA is also terminated after
900 seconds. No limit is set on the number of genera-
tions, as initial testing showed that in some cases, due to
the horizontal line balancing, the fitness value can still
decrease. For all problems, a theoretical lower bound of
the number of operators as proposed in Didden (2020) is
given for comparison.

Lastly, in order to analyse the results, multiple per-
formance measure are given. The most important per-
formance measures to consider are the efficiency of the
line balance, the smoothness index and the lower bound.
The overall line efficiency is the average of the individual
efficiencies of all operators, in other words:

η = 1
Ototal

∑

w∈W

∑

o∈Ow

ηo,w,

where ηo,w is as stated in Equation (5). The smoothness
index results directly from the horizontal balancing fit-
ness functions as given in Section 4.5, however, scaled
according to the takt time:

SI =
∑

n∈N
∑

w∈W
∑

o∈Ow
|tw,o,n − T |

T .

5.2. Design of experiments

The algorithm performance depends on the chosen fac-
tors for the available parameters. In order to come to a
correct choice for these parameters, a Design of Exper-
iments (DoE) is done. During DoE, multiple values of
each parameter are checked in order to evaluate their
influence on the results. In this case, two values for each
parameter are chosen, a lower and upper bound value.
The values of each parameter are chosen through an
educated guess and can be seen in Table 2.

A two-factor factorial design is performed, with an
addition of 17 centre points to check for possible cur-
vature. This results in a total of 26 + 17 = 81 runs. Stat-
Graphics18 is used to create the experimental design and
to analyse the results. For each run, 10 samples are taken.
A test case is created consisting of 90 tasks and 1000
models, taken from a real-world example at VDL Ned-
car. This ensures similar results to an actual real-world
case, however decreases the computation time.

Figure 7 shows the main effects plot for each of the six
parameters. A line is drawn from the lower bound to the
upper bound (left to right), corresponding to the effect
of the bound. The goal is to minimise the cost function
(fitness), which corresponds to the lowest point on the
line. The longer the line, the more effect a certain param-
eter has. In addition, the steeper the slope of the line, the
greater themagnitude of themain effect. A negative slope
relates to a better result with a higher value of the param-
eter. It becomes clear that η has the largest influence on
the results.

The main effects significance must also be checked,
this is shown by the Pareto chart in Figure 8. Here the
standardised effects are shown of the main parameters
as well as the two-factor interaction between parame-
ters. The blue vertical line represents the significance
level. It can be seen that the threshold efficiency (η)

Table 2. Table showing the lower andupper bound values for the
parameters of the GA for the DoE.

Parameter Lower Bound Upper Bound Optimal Value

pm 0.1 0.9 0.9
pc 0.1 0.9 0.9
#gen 10 100 100
N 10 100 100
ηt 0.1 0.75 0.8
pt 0.05 0.2 0.2

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 13

Figure 7. The main effects plot for the parameters of the GA.

Figure 8. The standardised effect charts for the parameters of
the GA.

and probability of crossover (pc) have significant effects.
Lastly, the optimal value for each parameter can be
decided in StatGraphics18, this result is shown in Table 2.

5.3. Experimental results

In the online appendix, a Mixed Integer Linear Program
(MILP) is given for the model described in this section.
Some of the smaller benchmark instances were chosen
to test the MILP. To this extent, the MILP was imple-
mented in Python, using IBM ILOG CPLEX as a solver,

with a given time limit of 7200 seconds. Results for four
of the test cases can be seen in Table 3. Only a single test
case could be solved optimally in the given time limit,
while two others that contained more workstations and
operators to append tasks to, could not be solved within
the given time limit. The fourth case that contained 31
tasks received an out-of-memory error. It can therefore be
concluded anMILP cannot be used for real-life test cases.

The results of the GA for the all benchmark instances
can be found in the supplementary materials. It can be
seen that for most instances, the GA can achieve results
relatively close to the theoretical lower bound. Even
though that the lower bound does not provide the exact
optimum (in some instances it is closer than for oth-
ers), some conclusions can still be drawn. In case that the
average task time is relatively small compared to the takt
time (e.g. see parameters of testcase kilbridc = 110 in the
results file3), the solution quickly converges to the lower
bound. The algorithm can find multiple solutions that
reach the lower bound in terms of the number of oper-
ators. The only difference between the found solutions
is the smoothness index. However, given the tight prece-
dence constraints, the algorithm still quickly converges to
a minimum.

Table 3. Comparison of the results of the MILP model and the proposed GA for small test instances.

Instance Settings MILP Results Algorithm Results

Instance
No. Of
Tasks

No. Of
Models

Takt
Time

No. Of
Operators

No. Of
Workstations Objective CPU Time Gap

No. Of
Operators

No. Of
Workstations Objective

CPU
Time

Mertens 11 2 18 2 1 211.775 1181 0 2 1 211.775 16.25
Mertens 11 2 18 4 3 433.325 7200 35 4 3 433.19 16.2
Jackson 13 2 18 3 3 335.147 7200 33 3 2 322.525 1.2
Roszieg 31 3 25 – – – < 7200 – 6 5 655.088 14.2

14 J.B.H.C. DIDDEN ET AL.

Figure 9. Analysis of various benchmark instances.

Regarding the results of the benchmark instances,
some interesting observations can be made. First, the rel-
ative task time, which denotes the ratio between themean
task time of all models and the takt time, has a pro-
nounced effect on the quality of the solution. As can be
seen in Figure 9, typically if the takt time is increased, and
all other parameters are kept the same, then a linear rela-
tion between the objective functions and the relative task
time is present. However, in case of the instances of wee-
mag, a different trend is seen. The relative task timehere is
high in most case (> 0.5), meaning that often only a sin-
gle task can fit on a workstation. Increasing the takt time
therefore does not give the same linear relation. A sub-
stantial drop in the objective values can be seen between
T = 52 and T = 54. At this point, the relative number
of tasks that fit within one operators takt time increases
from 2 to 3, allowing more variability to be found within
the solution space. Therefore, it is better to keep the rel-
ative ratio between task time and the takt time as low as
possible.

A second observation that can bemade is that theCPU
time is not necessarily dependent on the number of jobs
or the number of models that are on the assembly line.
Comparing the benchmark instancesArc83 and Tonge70,

a lot of similarities in number of jobs, models and order
strength of the precedence graph (i.e. the order strength
(OS)). The relative task time is different, however, for a
lower relative task time it would be expected that the
CPU time increases, as the solution space becomes bigger
(i.e. more tasks would fit within an operators takt time).
However, a potential cause of the increase in CPU time
is the range of forward and backward setup times. The
range in both forward and backward setup times for the
instances of Arc83 are much smaller, compared to those
of Tonge70. This can cause the solution space to decrease;
even though the OS of the precedence graphs is relatively
the same, if the range of setup times is large, then picking
a different line balancing may result in a steep increase
of total setup time in the line. As a high amount of
total setup time is undesired, the solution space becomes
restricted.

6. Case study

In this section, the results of a case study is described
which took place at VDL Nedcar. The entire assembly
line at VDL Nedcar is split up into multiple smaller sec-
tions, each responsible for different assembly procedures.

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 15

For this case study, a part of the assembly line was
taken to analyse and apply the developed GA to. This
part of assembly line is referred to as ALX throughout
the remainder of this section. Section 6.1 describes the
method used to collect and sort data as an input for the
DSS is described. Section 6.2 presents analysis of the GA
on one of the assembly lines at VDL Nedcar.

6.1. Data collection

In order to implement automated line balancing at Ned-
car, the correct data needs to be gathered, analysed and
adapted to fit in the previously described model. The
main data that is needed is as follows:

• List of tasks with corresponding task time
• List of available mounting positions
• Precedence relations between tasks
• List of variants and their corresponding demands
• Forward and backward setup times
• Takt Time

In addition, some extra constraints may need to be
added to the model depending on the assembly line
section that is being balanced. Each assembly line is
unique, e.g. some lines have tasks that have to be done
on a specific workstation due to equipment or material
constraints and other tasks might require two operators
to work simultaneously on the same task. An important
step to take is to analyse the assembly line thoroughly and
take note of special constraints. It must however be noted
that not each additional constraint should be adhered to
strictly, as this may reduce the degrees of freedom in the
eventual line balance. E.g. a task might require a specific
piece of equipment that is only available at a single work-
station, therefore a constraint could be added that fixes
this specific task to that workstation. However, the cost
reduction of the new line balance might outweigh the
costs ofmoving the equipment. This only becomes appar-
ent if the initial balance is done with the least amount of
additional constraints.

This case study considers a single assembly line at
VDL Nedcar, referred to as ALX. An initial analysis of
the data shows that ALX contains around 1000 tasks that
have to be processed. Considering the amount of options
that are installed on the assembly line, the total amount
of variants is bounded by O(104) (an exact number is
not known as not all option combinations can exist). It
becomes apparent that the amount of variants quickly
exceeds the amount of tasks, as the number of variants
increases exponentially with an increasing amount of
options. Therefore, both the amount of tasks and variants
have to be reduced within reason in order to balance the

line within a reasonable time frame. Given the observa-
tions made in Section 5, the number of tasks should be
reduced sufficiently, while still keeping the ratio between
the mean processing time of tasks and the takt time
reasonable (e.g. according to the results presented in
Section 5 this should be lower than 3).

Precedence relations are not directly available. The
reason for this is that assembly line balancing is done
by hand. The responsible engineer typically knows the
order in which the tasks have to be done, however, the
exact relations are never written down. A similar princi-
ple applies to setup times. These are added later in the
balance if it becomes apparent that an operator has to
cover extra distance between tasks. Furthermore, in order
to reduce the number of tasks, certain task packages are
created, which consists of tasks with direct precedence
relations between them (i.e. tasks that have to be done
in a specific order). For the models a similar procedure
is followed. Model variants are created based on the tasks
that have to be performed on them, instead of the options
they contain (i.e. variants are created that are relevant for
a certain section of the line). This reduces the number
of models in the line by 90%. The methods of how both
data types were collected is explained in more detail in
Didden (2020).

Lastly, the forward and backward setup times have to
be calculated. This is done by defining setups between
mounting positions, instead of defining them for each
task pair individually, as this requires a high amount of
informationneeded that is not readily available. Each task
package is assigned a unique mounting position, accord-
ing to the ones given in Figure 10. Some individual tasks
already contain setup times (i.e. time needed to walk to
grab equipment/material or to walk to the vehicle). As
this is the case, and because it is difficult to find the exact
time that has been added, it was decided to add a low
amount of forward and backward setup times in order
not to add more setup times than occur. Similarly, this is
in line with the analysis in Section 5. Keeping forward
setup times in a smaller range, while still being feasi-
ble, increases the solution space. Standard times between

Figure 10. The mounting positions available to each task
package.

16 J.B.H.C. DIDDEN ET AL.

mounting position are added for both the forward and
backward setup times. This also includes an additional
mounting position 12 that is not included in Figure 10.
This mounting position is an off-line pre-assembly, typi-
cally done on the side of the assembly line.

6.2. Test case

The only parameter that was altered from theDoE results
is the number of generations. It became apparent dur-
ing testing that the fitness function still decreases after
100 generations, due to the horizontal balancing param-
eter. It was therefore chosen to swap out the limit on
the number of generations by a time limit. This limit
was set to 7200 seconds, as finding a better solution is
of more importance than finding a solution quickly. The
other settings of the GA are the upper bounds found in
Table 2, including the maximum takt time Tmax = 1.3T .
Lastly, the calculation of the lower bound, as can be found
in Didden (2020), results in a maximum possible line
efficiency of 95%.

Next, the algorithm is tested on the real-life test case
at VDL Nedcar. The current line balance can be seen in
Figure 11, while the new line balance generated by theGA
can be seen in Figure 12. Overall, a substantial increase
was seen in the line efficiency4, with both less operators
and workstations used. The smoothness index has been
decreased from 10733 to 3498, thus resulting in a more
even station load throughout the assembly line, which
can be seen in Figure 12. The maximum station load has
been decreased from 205% to 128%, reaching the desired
value of 130%.

Given the new line balance, some managerial insights
can be formulated. A first observation that can be made

Figure 11. Distribution of the station times over all operators for
the current line balance.

Figure 12. Distribution of the station times over all operators for
the new line balance.

with the new line balance, is that for all operators, the
mean station load has dropped significantly. Figure 12
shows that, with the new line balance, there is room to
decrease the takt time, without needing to re-balance
the line. This, however, comes at the cost of needing to
increase the maximum allowable station load, in order to
satisfy all the constraints. The takt time can be dropped
by approximately 9%, given that the maximum allow-
able takt time is increased to 1.5T . This can directly
help to counteract any small deviations in demand that
may be present, without the need to re-balance of make
adjustments within the line.

Furthermore, it is noticed within the data that the
mounting positions as provided by the company are too
big. Given the constraint that only a single operator can
be presented in a mounting position at any given time,
drastically increases the number of operators and num-
ber of workstations necessary. This causes an infeasible
solution to be obtained. In order to come to a feasible
solution given the input data, it was decided to relax the
constraint and allow two operators to be present within a
mounting position.

Lastly, Figure 12 still often shows some steep decreases
in station time for some operators. This has multiple
causes. First, some models have significantly more jobs
compared to other models. Even though the demand
for these models is low, it still causes inbalances within
the system that are difficult to address. Secondly, assign-
ment restrictions also can cause certain operators to not
be fully utilised. As some tasks are fixed to a worksta-
tion, or have to be done with multiple operators at once,
an operator has a reduced number of jobs that can be
assigned. Jobs that will be placed after the assignment of

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 17

restricted jobs may be to large to be fit in, causing the
operators not to be utilised fully. Lastly, a big drop can
be seen in station time for the last operator. This shows
potential improvements that can bemade within the line,
as more tasks can be allocated to it in order to fully utilise
the last operator, further increasing the total efficiency of
the assembly line.

7. Conclusion and further research directions

This paper studies the problems of an assembly line bal-
ancing with the addition of mixed models, sequence-
dependent setup times, zoning and multiple assignment
constraints. This problem is mainly inspired from the
current situation at VDL Nedcar. Compared to previ-
ous studies, the main novelty within this problem lies in
the usage of a proportional cycle time constraint, were
operators are allowed to exceed the takt time to a certain
extent, as long as on average (according to the demand of
each model) the takt time is met. Furthermore, an addi-
tional objective function of horizontal balancing is added
within the proposed model. To this extent, a GA was
developed in order to find better quality solutions in a
shorter amount of time, compared to the current manual
line balancing procedures.

The experimental results reveal numerous things, that
can be used in practice in order to improve the quality
and efficiency of existing line balances. First, the size of
jobs (i.e. their processing times) should be kept relatively
small compared to the takt time, e.g. below three, in order
to be able to explore more solutions regarding the line
balance. Secondly, setup times also have a negative effect
on the solution space. If the range of setup times is large,
then indirect precedence constraints are created, as large
setup times are undesired. It is beneficial for companies to
look at ways to reduce setup time between different jobs.
These observations can also help with the process of data
collection, as reducing the number of tasks and mod-
els considered during balancing decrease computational
time, allowing managers to explore more options.

The computational study on a real assembly line at
VDL Nedcar showed that the GA clearly outperforms
the current balancing method, in terms of efficiency,
smoothness (i.e. the deviation in station times) and com-
putational time. Most notable was the reduction in the
smoothness index by a factor of three, which directly
relates to a reduction in idle times among operators and
therefore also the amount of line stoppages. In addition,
the new line balance also allows slight deviations in the
takt time to be quickly addressed.

Further, the case study also showed that the size of
mounting positions should be decreased to allow for fea-
sible solutions. Also, the way assignment restrictions are

set should be looked at closely. To strict restrictions on
the assignment of tasks can impact the line balance, caus-
ing the smoothness to decreases and more operators to
be necessary. The model has also shown potential to be
integrated within a real-life assembly plant. Currently,
VDL Nedcar is working on implementing this model as
a Decision Support System for partially automating the
line balancing procedures. In addition, insights gained
from data collection also proved to be useful for setting
up the environment to integrate these kinds of models in
an industrial setting.

Interesting future research directions include enhan-
cements to the proposed algorithm, with more com-
plex crossover and mutation operators to improve solu-
tion quality further, combining the balancing with the
assembly line sequencing problem to further evaluate the
effects of line balancing and, lastly, implementation of the
results in a simulation model to act as a digital twin for
the assembly line.

8. Data availability statement

The data that support the findings of this study are avail-
able in GitHub at https://github.com/JDidden789/Line-
Balancing-Instances.git. This data was derived from
the following resources available in the public domain:
https://assembly-line-balancing.de/. Data regarding the
case study is not available, as participants of this research
did not agree to share their data due to confidentiality.

Notes

1. Some papers mentioned in the literature review have been
omitted

2. These instances can be found at https://github.com/JDidde
n789/Line-Balancing-Instances.git

3. The results file can be found at https://github.com/JDidden
789/Line-Balancing-Instances.git

4. The actual increase cannot be stated due to confidentiality

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Notes on contributors

J. B. H. C. Didden is a PhD candidate in
the sectionOperation, Planning,Account-
ing and Control, Department of Indus-
trial Engineering and Innovation Sciences
at the Eindhoven University of Technol-
ogy (TU/e). His current research focuses
on the application of Multi-Agent System
to solve complex scheduling problems in

High-Mix-Low-Volume production environments.

18 J.B.H.C. DIDDEN ET AL.

E. Lefeber received the M.Sc. degree in
applied mathematics and the Ph.D. degree
in the subject of tracking control of non-
linear mechanical systems from the Uni-
versity of Twente, Enschede, The Nether-
lands, in 1996 and 2000, respectively. Since
2000, he has been an Assistant Professor
with the Department of Mechanical Engi-

neering, Eindhoven University of Technology, Eindhoven, The
Netherlands, where he was involved in the modelling and con-
trol of manufacturing systems from 2000 to 2015, and then
he joined the Dynamics and Control Group in 2015. His cur-
rent research interests include nonlinear control theory, in
particular the control of drones and the control of platooning
vehicles.

I. J. B. F. Adan is a Professor at the
Department of Industrial Engineering of
the Eindhoven University of Technol-
ogy. His current research interests are in
the modelling and design of manufac-
turing systems, warehousing systems and
transportation systems, and more specifi-
cally, in the analysis of multi-dimensional

Markov processes and queueing models.

I. W. F. Panhuijzen hold the function of
ProgramManager at VDL Nedcar. He has
a BSc and MSc in Mechanical Engineer-
ing, with a specialisation in Manufactur-
ing Networks, from Eindhoven University
of Technology.

ORCID

I. J. B. F. Adan http://orcid.org/0000-0002-4493-6367

References

Alavidoost, M. H., M. H. Fazel Zarandi, Mosahar Tarimoradi,
and Yaser Nemati. 2017. “Modified Genetic Algorithm for
Simple Straight andU-shapedAssembly Line Balancingwith
Fuzzy Processing Times.” Journal of Intelligent Manufactur-
ing 28 (2): 313–336. http://dx.doi.org/10.1007/s10845-014-
0978-4

Alghazi, Anas, and Mary E. Kurz. 2018. “Mixed Model Line
Balancing with Parallel Stations, Zoning Constraints, and
Ergonomics.” Constraints 23 (1): 123–153.

Andrés, Carlos, Crisóbal Miralles, and Rafael Pastor. 2008.
“Balancing and Scheduling Tasks in Parallel Assembly Lines
with Sequence-dependent Setup Times.” European Journal
of Operational Research 213: 81–96.

Aydoğan, Emel Kızılkaya, Yılmaz Delice, Uğur Özcan, Cevriye
Gencer, and Özkan Bali. 2019. “Balancing Stochastic U-lines
Using Particle Swarm Optimization.” Journal of Intelligent
Manufacturing 30 (1): 97–111.

Becker, Christian, and Armin Scholl. 2009. “Balancing Assem-
bly Lines with Variable Parallel Workplaces: Problem
Definition and Effective Solution Procedure.” European

Journal of Operational Research 199 (2): 359–374. http://dx.
doi.org/10.1016/j.ejor.2008.11.051

Boysen, Nils, Malte Fliedner, and Armin Scholl. 2007. “A Clas-
sification of Assembly Line Balancing Problems.” European
Journal of Operational Research 183 (2): 674–693.

Delice, Yilmaz. 2019. “A Genetic Algorithm Approach for Bal-
ancing Two-sided Assembly Lines with Setups.” Assembly
Automation 39: 827–839.

Didden, Jeroen B. H. C. 2020. “Automating Balancing and
Sequencing of Assembly Lines in An Automotive Manu-
facturing Plant.” MSc, Technical University of Eindhoven.
https://research.tue.nl/en/studentTheses/automating-balanc
ing-and-sequencing-of-assembly-lines-in-an-autom.

Emde, Simon,Nils Boysen, andArmin Scholl. 2010. “Balancing
Mixed-model Assembly Lines: A Computational Evaluation
of Objectives to SmoothenWorkload.” International Journal
of Production Research 48 (11): 3173–3191.

Ferrari, Emilio, Maurizio Faccio, Mauro Gamberi, Silvia
Margelli, and Francesco Pilati. 2019. “Multi-mannedAssem-
bly Line Synchronization with Compatible Mounting Posi-
tions, Equipment Sharing andWorkers Cooperation.” IFAC-
PapersOnLine 52 (13): 1502–1507. https://doi.org/10.1016/j.
ifacol.2019.11.412

Ford, Henry, and Samuel Crowther. 1922. My Life and Work.
New York: Doubleday.

Hamta, Nima, S. M. T. Fatemi Ghomi, F. Jolai, and M. Akbar-
pour Shirazi. 2013. “A Hybrid PSO Algorithm for a Multi-
objective Assembly Line Balancing Problem with Flexible
Operation Times, Sequence-dependent Setup Times and
Learning Effect.” International Journal of Production Eco-
nomics141 (1): 99–111. http://dx.doi.org/10.1016/j.ijpe.2012
.03.013

İlker, Baybars. 1986. “A Survey of ExactAlgorithms for the Sim-
ple Assembly Line Balancing Problem.”Management Science
32 (8): 909–932. http://pubsonline.informs.org/doi/abs/10.
1287/mnsc.32.8.909.

Kim, Yeo Keun, Yeongho Kim, and Yong Ju Kim. 2000.
“Two-sided Assembly Line Balancing: A Genetic Algorithm
Approach.” Production Planning and Control 11 (1): 44–53.

Lopes, Thiago Cantos, Giuliano Vidal Pastre, Adalberto Sato
Michels, and Leandro Magatão. 2020. “Flexible Multi-
manned Assembly Line Balancing Problem: Model, Heuris-
tic Procedure, and Lower Bounds for Line LengthMinimiza-
tion.” Omega (United Kingdom) 95: 102063. https://doi.org/
10.1016/j.omega.2019.04.006

Naderi, Bahman, Ahmed Azab, and Katayoun Borooshan.
2019. “A Realistic Multi-manned Five-sided Mixed-model
Assembly Line Balancing and Scheduling Problem with
Moving Workers and Limited Workspace.” International
Journal of Production Research 57 (3): 643–661.

Roshani, Abdolreza, and Davide Giglio. 2017. “Simulated
Annealing Algorithms for the Multi-manned Assembly
Line Balancing Problem: Minimising Cycle Time.” Interna-
tional Journal of Production Research 55 (10): 2731–2751.
http://dx.doi.org/10.1080/00207543.2016.1181286

Salveson,M. E. 1955. “The Assembly Line Balancing Problem.”
The Journal of Industrial Engineering,6 (3): 18–25.

Scholl, Armin, Nils Boysen, and Malte Fliedner. 2013. “The
Assembly Line Balancing and Scheduling Problem with
Sequence-dependent Setup Times: Problem Extension,
Model Formulation and Efficient Heuristics.” OR Spectrum
35 (1): 291–320.

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 19

Sternatz, Johannes. 2014. “Enhanced Multi-Hoffmann Heuris-
tic for Efficiently Solving Real-world Assembly Line Balanc-
ing Problems in Automotive Industry.” European Journal of
Operational Research 235 (3): 740–754. http://dx.doi.org/10.
1016/j.ejor.2013.11.005

Tang,Qiuhua, Zixiang Li, Li Ping Zhang, andChaoyongZhang.
2017. “Balancing Stochastic Two-sided Assembly Line
with Multiple Constraints Using Hybrid Teaching-learning-
based Optimization Algorithm.” Computers and Operations
Research82: 102–113. http://dx.doi.org/10.1016/j.cor.2017.
01.015

Thomopoulos, Nick T. 1970. “Mixed Model Line Balancing
with Smoothed Station Assignments.” Management Science
16 (9): 593–603. https://about.jstor.org/terms.

Uǧur, Özcan, and Bilal Toklu. 2009. “Balancing of Mixed-
model Two-sided Assembly Lines.” Computers and Indus-
trial Engineering 57 (1): 217–227.

Uğur, Özcan, and Bilal Toklu. 2010. “Balancing Two-sided
Assembly Lines with Sequence-dependent Setup Times.”
International Journal of Production Research 48 (18):

5363–5383. https://www.tandfonline.com/action/journalIn
formation?journalCode= tprs20.

Wee, T. S., andM. J. Magazine. 1982. “Assembly Line Balancing
As Generalized Bin Packing.” Operations Research Letters 1
(2): 56–58.

Zacharia, P. Th., and Andreas C. Nearchou. 2012. “Multi-
objective Fuzzy Assembly Line Balancing Using Genetic
Algorithms.” Journal of Intelligent Manufacturing 23 (3):
615–627.

Zacharia, P. Th., and Andreas C. Nearchou. 2013. “A Meta-
heuristic Algorithm for the Fuzzy Assembly Line Balanc-
ing Type-E Problem.” Computers and Operations Research
40 (12): 3033–3044. http://dx.doi.org/10.1016/j.cor.2013.07.
012

Zhang, Zikai, Qiuhua Tang, Dayong Han, and Zixiang Li.
2019. “Enhanced Migrating Birds Optimization Algorithm
for U-shaped Assembly Line Balancing Problems with
Workers Assignment.” Neural Computing and Applications
31 (11): 7501–7515. https://doi.org/10.1007/s00521-018-3
596-9

