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Consider a dynamical system with equilibrium point x̄:

ẋ = f(x), f(x̄) = 0, x(0) = x0. (1)

Define a change of variables: x̃ = x − x̄, so x = x̃ + x̄. Then we have

˙̃x = f̃(x̃) = f(x̃ + x̄), f̃(0) = 0, x̃(0) = x̃0,

In the remainer we assume w.l.o.g. that x̄ = 0.

The equilibrium point x = x̄ = 0 of the system (1) is

stable If ∀ε > 0, ∃δ(ε) > 0 such that ‖x(0)‖ < δ ⇒ ‖x(t)‖ ≤ ε for all t ≥ 0.

unstable If it is not stable

asymptotically stable If it is stable and ∃δ > 0 such that ‖x(0)‖ < δ ⇒ limt→∞ ‖x(t)‖ = 0.
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Khalil, Nonlinear Systems, Theorem 4.2 (3rd ed.)

Consider (1). Let V : Rn → R be continuously differentiable such that

V(0) = 0 V(x) > 0 ∀x 6= 0 (2)

‖x‖ → ∞ ⇒ V(x) → ∞ (3)

V̇ < 0 ∀x 6= 0 (4)

then x = 0 is globally asymptotically stable
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Important Example (Hahn, Stability of Motion)

Consider the system

ẋ1 = −6x1
(1+x21)

2 + 2x2 ẋ2 = −2(x1+x2)
(1+x21)

2

Differentiating the Lyapunov function candidate V =
x
2
1

1+x21
+ x22 > 0

along solutions results in V̇ = − 4(x22+x
4
1x

2
2+x

2
1(3+2x22))

(1+x21)
4 < 0.

On hyperbola x2 = 2
x1−

√
2
we have ẋ2

ẋ1
= − 1

(x1
√
2+1)2

, but slope of tangent: dx2
dx1

= − 1
(x1

√
2−2)2

.

So for x1 >
√
2 and x2 > 2

x1−
√
2
we can never cross the hyperbola x2 = 2

x1−
√
2
. Therefore we do

not have global asymptotic stability of x = 0.

5 Lyapunov stability: common mistakes and useful machinery

Converse Lyapunov Theorem (Khalil, Th. 4.17)

Let x = 0 be an asymptotically stable equilibrium point of ẋ = f(x).

Let RA be the region of attraction of x = 0.

There exist smooth V(x) and continuous positive definiteW(x) (both defined for x ∈ Ra) such

that:

V(x) → ∞ as x → ∂RA

∂V
∂x f(x) ≤ −W(x) ∀x ∈ RA

and for any c > 0: {x ∈ RA | V(x) ≤ c} is a compact subset of RA.

For RA = Rn, V(x) is radially unbounded.
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We can use Lyapunov functions for showing asymptotic stability.

When the origin is asymptotically stable, a Lyapunov function does exist.

Problem

How to find a Lyapunov function?

Typical (first) candidates for V:

• Position error (squared)

• Energy

Often encountered problem

V̇ is only negative semidefinite.

7 Lyapunov stability: common mistakes and useful machinery

Example: mobile robot (circle, constant velocity)

Consider the following dynamics

ẋ = v cos θ ẋr = vr cos θr

ẏ = v sin θ ẏr = vr sin θr

θ̇ = ω θ̇r = ωr

for constant reference inputs vr > 0 and ωr.

How to define error?

Often seen: xe = x − xr, ye = y − yr, θe = θ − θr.

What happens if we change the inertial frame? Errors become different…
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Example: mobile robot (circle, constant velocity)

Kanayama et al. (1990) defined errors in body-frame of mobile robot:[
xe
ye

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xr − x

yr − y

]
θe = θr − θ

resulting in the error dynamics

ẋe = ωye − v + vr cos θe

ẏe = −ωxe + vr sin θe

θ̇e = ωr − ω
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Example: mobile robot (circle, constant velocity)

Following Jiang, Nijmeijer (1997), differentiating the Lyapunov function candidate

V = 1
2x

2
e +

1
2y

2
e +

1
2c3

θ2e

along solutions yields

V̇ = xe(−v + vr cos θe) + vrye sin θe +
1
c3
θe(ωr − ω)

= xe(−v + vr cos θe) +
1
c3
θe(c3vrye

sin θe

θe
+ ωr − ω)

= −c1x
2
e − c2

c3
θ2e ≤ 0

in case we take as input

v = vr cos θe + c1xe ω = ωr + c2θe + c3vrye
sin θe

θe
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Example: mobile robot (circle, constant velocity)

Problem: V̇ = −c1x
2
e − c2

c3
θ2e is negative semidefinite.

We need something for “repairing” our proof:

LaSalle’s invariance principle (1959)

Let Ω be a compact set that is positively invariant with respect to ẋ = f(x).
Let V be a continuously differentiable function such that V̇(x) ≤ 0 in Ω.
Let E be the set of points in Ω where V̇ = 0.
LetM be the largest invariant set in E.

Then every solution starting in Ω approachesM as t → ∞.
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Example: mobile robot (circle, constant velocity)

Dynamics:

ẋe = (ωr + c2θe + c3vrye
sin θe

θe
)ye − c1xe

ẏe = −(ωr + c2θe + c3vrye
sin θe

θe
)xe + vr sin θe

θ̇e = −c2θe − c3vrye
sin θe

θe

Furthermore: V̇ = −c1x
2
e − c2

c3
θ2e ≤ 0.

We have E = {(xe, ye, θe) | xe = θe = 0}. From xe(t) ≡ 0 and θe ≡ 0 we obtain

0 = (ωr + c2 · 0 + c3vrye · 1)ye − c1 · 0
0 = −c2 · 0− c3vrye · 1

and thereforeM = {(xe, ye, θe) | xe = ye = θe = 0} and global asymptotic stability.
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Defining error coordinates for angles

We picked displacement errors independent of the inertial frame. But how about angles?

More natural error: associate angle with point on unit disc and use distance between such points.

Differentiating V = 1
2x

2
e +

1
2y

2
e +

1
c3
(1− cos θe) along

ẋe = ωye − v + vr cos θe ẏe = −ωxe + vr sin θe θ̇e = ωr − ω

results in

V̇ = xe[−v + vr cos θe] +
1
c3

sin θe[c3vrye + ωr − ω]

so we get V̇ ≤ 0 for the input

v = vr cos θe + c1xe ω = ωr + c2 sin θe + c3vrye

13 Lyapunov stability: common mistakes and useful machinery

Completing the proof using LaSalle

We have V̇ = −c1x
2
e − c2

c3
sin2 θe ≤ 0.

From sin θe ≡ 0 we obtain

0 = cos θeθ̇e = −c2 sin θe cos θe − c3vrye cos θe = −c3vrye cos θe

and as cos θe = ±1 for sin θe = 0, we obtain ye = 0 and therefore

M = {(xe, ye, θe) | xe = ye = 0, sin θe = 0}.
Remaining question: Do we converge to the desired equilibrium point?
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Stability of equilibrium points

Linearisation of closed-loop dynamics around xe = 0, ye = 0, sin θe = 0: ˙̄xe
˙̄ye
˙̄θe

 =

−c1 ωr 0
−ωr 0 1
0 −c3vr −c2


︸ ︷︷ ︸

in case cos θe=1

x̄eȳe
θ̄e

  ˙̄xe
˙̄ye
˙̄θe

 =

−c1 ωr 0
−ωr 0 −1
0 −c3vr c2


︸ ︷︷ ︸

in case cos θe=−1

x̄eȳe
θ̄e


Characteristic polynomial for cos θe = −1:

λ3 + (c1 − c2)λ
2 + (ω2

r − c2c1 − c3vr)λ−(c1c3vr + c2ω
2
r )︸ ︷︷ ︸

<0: unstable

Characteristic polynomial for cos θe = 1:

λ3 + (c1 + c2)λ
2 + (ω2

r + c2c1 + c3vr)λ+ (c1c3vr + c2ω
2
r )

Stable, as also (c1 + c2)(ω
2
r + c2c1 + c3vr) > (c1c3vr + c2ω

2
r ).
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Signal chasing: another example

In Lefeber, Robertsson (1998) we analysed the following dynamics:

ẇ =



−b1 −b2 0 · · · 0

1 0 −b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 0 −bn

0 · · · 0 1 0


w

where bi > 0. Differentiating

V = b1w
2
1 + b1b2w

2
2 + · · ·+ b1b2 · · · bn−1w

2
n−1 + b1b2 · · · bnw2

n

along solutions results in

V̇ = −b21w
2
1
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Signal chasing: another example

We have V̇ = −b21w
2
1 = 0, as well as

ẇ1 = −b1w1 − b2w2, ẇ2 = w1 − b3w3, · · · ẇn−1 = wn−2 − bnwn.

Then, from 0 = −b1 · 0− b2w2 we obtain w2 = 0.

Then, from 0 = 0− b3w3 we obtain w3 = 0.

...

Finally, from 0 = 0− bnwn we obtain wn = 0.

And therefore: global asymptotic stability.
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Important Example

Consider the dynamics

ẋ1 = −x1 + x21x2

ẋ2 = u

in closed-loop with the input u = −x2.

We want to investigate asymptotic stability of the origin of the closed-loop system

ẋ1 = −x1 + x21x2 outer loop

ẋ2 = −x2 inner loop
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Important Example

(Erroneous) reasoning sometimes found in papers:

“Assume that x1 is bounded, i.e. ∃M > 0 such that ‖x1(t)‖ ≤ M (e.g., physical system).

Differentiating the Lyapunov function V = 1
2x

2
1 +

M
4

2 x22 along the dynamics

ẋ1 = −x1 + x21x2 ẋ2 = −x2

results in

V̇ = −x21 + x31x2 −M4x22 ≤ −x21 +M2|x1x2| −M4x22

≤ − 1
2x

2
1 − 1

2x
2
1 +

1
2 · 2 · |x1| ·M2|x2| − 1

2M
4x22︸ ︷︷ ︸

− 1
2 (|x1|−M2|x2|)2

− 1
2M

4x22 < 0

So therefore x1 does indeed remain bounded and we have global asymptotic stability.”
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Important Example

Reasoning on previous slide is wrong! Solving the ODE

ẋ1 = −x1 + x21x2 x1(0) = x10

ẋ2 = −x2 x2(0) = x20

results in

x1(t) =
2x10

x10x20e−t+[2−x10x20]et
x2(t) = x20e

−t

For x10x20 > 2 the denominator becomes zero at tesc =
1
2 log

(
x10x20

x10x20−2

)
.

So instead of having asymptotic stability, we have a finite escape time!
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Non-autonomous systems

• Even more important examples

• Signal chasing using Barbălat’s Lemma and Lemma of Micaelli and Samson.

• Signal chasing using (generalisation of) Matrosov’s Theorem

Important example (Khalil (3rd ed), Example 4.22)

Consider the following dynamics

ẋ = A(t)x A(t) =

[
−1 + 3

2 cos2 t 1− 3
2 sin t cos t

−1− 3
2 sin t cos t −1 + 3

2 sin2 t

]
Characteristic polynomial of matrix A(t): det[λI− A(t)] = λ2 + 1

2λ+ 1
2

Eigenvalues: λi = − 1
4 ± 1

4

√
7i. However

x(t) =

[
e
1
2 t

cos t e−t sin t

−e
1
2 t

sin t e−t cos t

]
x(0),

so therefore the system is unstable.

22 Lyapunov stability: common mistakes and useful machinery

Mobile robot: revisited

Assume vr(t), ωr(t) satisfying 0 < vmin ≤ vr(t) ≤ vmax, |v̇r| ≤ amax and |ωr(t)| ≤ ωmax.

Consider the dynamics

ẋe = ωye − v + vr cos θe ẏe = −ωxe + vr sin θe θ̇e = ωr − ω

in closed-loop with the input

v = vr cos θe + c1xe ω = ωr + c2θe + c3vrye
sin θe

θe

Differentiating V = 1
2x

2
e +

1
2y

2
e +

1
2c3

θ2e along solutions results in V̇ = −c1x
2
e − c2

c3
θ2e ≤ 0.

LaSalle (1959) is for autonomous systems, but our closed-loop system is non-autonomous…
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Questions
1. We have that V(t) is monotone and bounded, so therefore V(t) converges to a constant.

Can we deduce that V̇(t) converges to zero (and therefore that xe and θe converge to zero)?

2. If we have that xe(t) converges to zero, can we conclude that ẋe converges to zero and use

signal chasing for concluding that ye converges to zero?

Both boil down to: Assume that limt→∞ x(t) = 0. Do we have limt→∞ ẋ(t) = 0?

No: Consider x(t) = e−t sin e2t for which ẋ(t) = −e−t sin e2t + 2et cos e2t.

Reverse question: Assume that x(t) is bounded and limt→∞ ẋ(t) = 0. Do we have

limt→∞ x(t) = C for some constant C?

No: Consider ẋ(t) = cos(ln(t+1))
t+1 for which x(t) = sin(ln(1 + t)).

We need some results to complete the proof…
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Commonly used tools for completing the proof
Lemma (Barbălat, 1959)

Let φ : R+ → R be a uniformly continuous function (e.g., φ̇ bounded). Suppose that

limt→∞
∫ t

0
φ(τ) d τ exists and is finite. Then lim

t→∞
φ(t) = 0.

Idea: For φ(t) use V̇(t).

Lemma (Micaelli, Samson, 1993)

Let f : R+ → R be any differentiable function. If limt→∞ f(t) = 0 and

ḟ(t) = f0(t) + η(t) t ≥ 0

where f0 is a uniformly continuous function (e.g., ḟ0 is bounded) and limt→∞ η(t) = 0, then
limt→∞ ḟ(t) = limt→∞ f0(t) = 0.

Idea: Signal chasing by (repeatedly) applying to signals that converge to zero
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Mobile robot revisited

Since V̇ ≤ 0 we have: xe, ye, θe bounded.

Step 1: Apply Barbălat to φ(t) = V̇(t)

We have:

φ̇ = V̈ = −2c1xeẋe − 2c2
c3

θeθ̇e =

= −2c1xe[(ωr + c2θe + c3vrye
sin θe

θe
)ye − c1xe]− 2c2

c3
θe[−c2θe − c3vrye

sin θe

θe
]

which is bounded. Therefore, V̇ is uniformly continuous.

Furthermore, limt→∞
∫ t

0
V̇ d t = limt→∞ V(t)− V(0) exists and is finite.

Therefore, using Barbălat, limt→∞ V̇(t) = 0, and therefore limt→∞ xe(t) = limt→∞ θe(t) = 0.
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Mobile robot revisited

Step 2: Signal chasing using Lemma of Micaelli and Samson

We have θe → 0, so we consider θ̇e:

θ̇e = −c2θe − c3vrye
sin θe

θe
= −c3vrye︸ ︷︷ ︸

f0(t)

−c2θe − c3vrye

(
sin θe

θe
− 1

)
︸ ︷︷ ︸

η(t)

Since−c3v̇rye − c3vr ẏe = −c3v̇rye − c3vr[−(ωr + c2θe + c3vrye
sin θe

θe
)xe + vr sin θe] is bounded, we

have that f0(t) is uniformly continuous.

Furthermore, we have limt→∞ η(t) = 0.
Therefore, using Micaelli and Samson, limt→∞ f0(t) = 0, and therefore limt→∞ ye(t) = 0.

We have asymptotic stability, provided 0 < vmin ≤ vr(t) ≤ vmax, |v̇r| ≤ amax and |ωr(t)| ≤ ωmax.
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Mobile robot revisited: definition angular error

Differentiating V = 1
2x

2
e +

1
2y

2
e +

1
c3
(1− cos θe) along

ẋe = ωye − v + vr cos θe ẏe = −ωxe + vr sin θe θ̇e = ωr − ω

results for v = vr cos θe + c1xe, ω = ωr + c2 sin θe + c3vrye in V̇ = −c1x
2
e +

c2
c3

sin2 θe.

Using Barbălat we obtain limt→∞ xe(t) = limt→∞ sin θe(t) = 0.

Applying Micaelli-Samson to f(t) = sin θe(t) gives

ḟ = −c3vrye cos θe︸ ︷︷ ︸
f0(t)

−c2 cos θe sin θe︸ ︷︷ ︸
η(t)

And we can conclude limt→∞ ye(t) = 0.
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Signal chasing: another example

In Lefeber, Robertsson (1998) we analysed the following dynamics:

ẇ =



−b1 −b2u1,r 0 · · · 0

u1,r 0 −b3
. . .

...

0
. . .

. . .
. . . 0

...
. . . u1,r 0 −bnu1,r

0 · · · 0 u1,r 0


w

where bi > 0, as well as 0 < umin
1,r ≤ u1,r(t) ≤ umax

1,r and |u̇1,r| ≤ M. Differentiating

V = b1w
2
1 + b1b2w

2
2 + · · ·+ b1b2 · · · bn−1w

2
n−1 + b1b2 · · · bnw2

n

along solutions results in

V̇ = −b21w
2
1
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Signal chasing: another example

We have V̇ = −b21w
2
1 = 0, as well as

ẇ1 = −b1w1 − b2u1,rw2, ẇ2 = u1,rw1 − b3u1,rw3, · · · ẇn−1 = u1,rwn−2 − bnu1,rwn.

From V̇ ≤ 0 we obtain that w remains bounded.

Using Barbălat, we obtain w1 → 0.

Applying Micaelli-Samson on equation for ẇ1 we obtain b2u1,rw2 → 0 and therefore w2 → 0.

Applying Micaelli-Samson on equation for ẇ2 we obtain b3u1,rw3 → 0 and therefore w3 → 0.

...

Applying Micaelli-Samson on equation for ẇn−1 we obtain bnu1,rwn → 0.

And therefore: global asymptotic stability.
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Standard form

Previous example illustrates general approach: starting from signals that go to zero, determine

other signals that go to zero.

More general: ẋ1 = f1(t, x1, x2, x3), ẋ2 = f2(t, x1, x2, x3), ẋ3 = f3(t, x1, x2, x3)
• Lyapunov function: V(t, x1, x2, x3) positive definite.
• Derivative along dynamics: V̇(t, x1) negative semi-definite.

• Using Barbălat: V̇(t, x1) → 0, which implies x1 → 0.

• Using Micaelli, Samson: f1(t, 0, x2, x3) → 0, which implies x2 → 0.

• Using Micaelli, Samson: f2(t, 0, 0, x3) → 0, which implies x3 → 0.

Or even more general…

Using this approach we can show global asymptotic stability. However, is that what we want?
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Example (Panteley, Loría, Teel, 1999)

Consider the system

ẋ =


1

1+t
if x ≤ − 1

1+t

−x if |x| ≤ 1
1+t

− 1
1+t

if x ≥ 1
1+t

For each r > 0 and t0 ≥ 0 there exist k > 0 and γ > 0 such that for all t ≥ t0 and |x(t0)| ≤ r:

|x(t)| ≤ k|x(t0)|e−γ(t−t0) ∀t ≥ t0 ≥ 0

However, always a bounded (arbitrarily small) additive perturbation δ(t, x) and a constant t0 ≥ 0
exist such that the trajectories of the perturbed system ẋ = f(t, x) + δ(t, x) are unbounded.
Main reason for this negative result: the constants k and γ are allowed to depend on t0, i.e., for

each value of t0 different constants k and γ may be chosen.
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Some definitions

Continuous function α : [0, a) → [0,∞) classK-function (α ∈ K): α(0) = 0, α strictly increasing.

Continuous function α : [0,∞) → [0,∞) classK∞-function (α ∈ K): α(s) → ∞ as s → ∞.

Continuous function β : [0, a)× [0,∞) → [0,∞) classKL-function (β ∈ KL): β(r, s) ∈ K w.r.t.

r, for each fixed r: decreasing w.r.t. s and β(r, s) → 0 as s → ∞.

Globally asymptotically stable (GAS):

∀t0: ∃β ∈ KL such that ∀x(t0) : ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0).

Uniformly globally asymptotically stable (UGAS):

∃β ∈ KL such that ∀(t0, x(t0)) : ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0).
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Lyapunov theorem (Khalil, Theorem 4.9)

Let x(t) be a solution of ẋ = f(t, x). Let V be a continuously differentiable function satisfying

W1(x) ≤ V(t, x) ≤ W2(x)
∂V
∂t +

∂V
∂x f(t, x) ≤ −W3(x)

whereW1,W2,W3, positive definite functions, then x = 0 is UGAS.

Converse Lyapunov theorem (Khalil, Theorem 4.16)

If x = 0 is a UGAS equilibrium point of ẋ = f(t, x), then there exists V such that

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖) ∂V
∂t +

∂V
∂x f(t, x) ≤ −α3(‖x‖)

∥∥∂V
∂x

∥∥ ≤ α4(‖x‖)

where α1, α2, α3, α4 are classK∞ functions.
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Robustness to perturbations for UGAS

Lemma (Khalil 1996 (2nd ed), Lemma 5.3; Khalil 2002 (3rd ed), Lemma 9.3)

Let x = 0 be a uniformly asymptotically stable equilibrium point of the nominal system

ẋ = f(t, x) where f : R+ × Br → Rn is continuously differentiable, and the Jacobian
[
∂f
∂x

]
is

bounded on Br, uniformly in t. Then one can determine constants∆ > 0 and R > 0 such that for

all perturbations δ(t, x) that satisfy the uniform bound ‖δ(t, x)‖ ≤ δ < ∆ and all initial conditions

‖x(t0)‖ ≤ R, the solution x(t) of the perturbed system ẋ = f(t, x) + δ(t, x) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖ , t − t0) ∀t0 ≤ t ≤ t1 and ‖x(t)‖ ≤ ρ(δ) ∀t ≥ t1

for some β ∈ KL and some finite time t1, where ρ(δ) is a classK function of δ.
Furthermore, if x = 0 is a uniformly globally exponentially stable equilibrium point, we can allow

for arbitrarily large δ by choosing R > 0 large enough.
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Problem

Lesson learned from example

For robustness we need uniform global asymptotic stability.

Main take away from remainder of this lecture series

How to show UGAS when we do not have a proper Lyapunov function, i.e, when V̇ is negative

semi-definite.
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Matrosov like theorem (Loría et.al., 2005)

Consider the dynamical system

ẋ = f(t, x) x(t0) = x0 f(t, 0) = 0 (5)

f : R+ × Rn → Rn loc. bounded, continuous a.e., loc. unif. continuous in t. If there exist

◦ j differentiable functions Vi : R+ × Rn → R, bounded in t, and

◦ continuous functions Yi : Rn → R for i ∈ {1, 2, ... j} such that

• V1 is positive definite and radially unbounded,

• V̇i(t, x) ≤ Yi(x), for all i ∈ {1, 2, ... , j},
• Yi(x) = 0 for i ∈ {1, 2, ... , k − 1} implies Yk(x) ≤ 0, for all k ∈ {1, 2, ... , j},
• Yi(x) = 0 for all i ∈ {1, 2, ... , j} implies x = 0,

then the origin x = 0 of (5) is uniformly globally asymptotically stable.

Question: how to determine suitable functions Vi and Yi (for i > 1)?
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Mobile robot: revisited again

Assume vr(t), ωr(t) satisfying 0 < vmin ≤ vr(t) ≤ vmax, |v̇r| ≤ amax and |ωr(t)| ≤ ωmax.

Consider the dynamics ẋe = ωye − c1xe, ẏe = −ωxe + vr sin θe, θ̇e = −c2θe − c3vrye
sin θe

θe
.

Differentiating V1 = 1
2x

2
e +

1
2y

2
e +

1
2c3

θ2e results in V̇1 = −c1x
2
e − c2

c3
θ2e = Y1(xe, ye, θe).

Consider V2 = −θeθ̇e. Then

V̇2 = −θ̇2e − θeθ̈e = −[−c3vrye + η(t)]2 − θeθ̈e = −(c3vrye)
2 + 2c3vryeη(t)− η(t)2 − θeθ̈e

≤ −c23(v
min
r )2y2e +M1‖η̄(xe, ye, θe)‖+ ‖η̄(xe, ye, θe)‖2 +M2‖θe‖ = Y2(xe, ye, θe).

Note that Y1 = 0 implies Y2 ≤ 0. Furthermore, Y1 = Y2 = 0 implies xe = ye = θe = 0.

Therefore: uniform global asymptotic stability (applying Matrosov-like theorem).

NB: Instead of taking V2 = −θe · θ̇e we can also taking the “simpler” V2 = −θe · f0.
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Mobile robot revisited again: definition angular error

Differentiating V1 = 1
2x

2
e +

1
2y

2
e +

1
c3
(1− cos θe) along ẋe = ωye − c1xe, ẏe = −ωxe + vr sin θe,

θ̇e = −c2 sin θe − c3vrye, results in V̇1 = −c1x
2
e +

c2
c3

sin2 θe = Y1(xe, ye, sin θe)1.
Differentiating V2 = c3vrye cos θe · sin θe along solutions results in

V̇2 = c3[v̇rye + vr ẏe − vrye sin θeθ̇e] sin θe + c3vrye cos
2 θe[−c2 sin θe − c3vrye]

≤ −c23(v
min
r )2y2e +M‖ sin θe‖ = Y2(xe, ye, sin θe).

Therefore: uniform global asymptotic stability of (xe, ye, sin θe) (applying Matrosov-like theorem).

1Formally: we lift the path of sin θe to a path in S1
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Signal chasing: another example revisited

For bi > 0, as well as 0 < umin
1,r ≤ u1,r(t) ≤ umax

1,r and |u̇1,r| ≤ M, differentiating

V1 = b1w
2
1 + b1b2w

2
2 + · · ·+ b1b2 · · · bn−1w

2
n−1 + b1b2 · · · bnw2

n along solutions of

ẇ1 = −b1w1 − b2u1,rw2, ẇ2 = u1,rw1 − b3u1,rw3, · · · ẇn−1 = u1,rwn−2 − bnu1,rwn.

results in V̇1 = −b21w
2
1 = Y1(w).

Differentiating V2 = b2u1,rw2 · w1 along solutions results in

V̇2 = b2(u̇1,rw2 + u1,rẇ2)w1 + b2u1,rw2[−b1w1 − b2u1,rw2] ≤ −b22(u
min
1,r )

2w2
2 + M̄|w1| = Y2(w).

Differentiating Vi = biu1,rwi · wi−1 (i = 3, 4, ... , n) along solutions results in

V̇i ≤ −b2i (u
min
1,r )

2w2
i + M̄i−2|wi−2|+ M̄i−1|wi−1| = Yi(w).

Therefore: uniform global asymptotic stability of w = 0 (applying Matrosov-like theorem).
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My standard approach for arriving at uniform results

More general case: ẋ1 = f1(t, x1, x2, x3), ẋ2 = f2(t, x1, x2, x3), ẋ3 = f3(t, x1, x2, x3)
• Lyapunov function: V1(t, x1, x2, x3) positive definite.
• Derivative along dynamics: V̇1(t, x1) = · · · ≤ Y1(x1) negative semi-definite.

• Use V2 = −xT1 ẋ1. Then V̇2 ≤ −f1(t, 0, x2, x3)T f1(t, 0, x2, x3) + F2(‖x1‖) ≤ Y2(x).

• Y1 = 0 implies Y2 ≤ 0. Furthermore Y1 = Y2 = 0 implies x1 = x2 = 0.

• Use V3 = −xT2 ẋ2. Then V̇3 ≤ −f2(t, 0, 0, x3)T f2(t, 0, 0, x3) + F3(‖x1‖ , ‖x2‖) ≤ Y3(x).

• Y1 = Y2 = 0 implies Y3 ≤ 0. Also, Y1 = Y2 = Y3 = 0 implies x1 = x2 = x3 = 0.

• Conclusion: uniform global asymptotic stability.

NB: Often simpler functions can be found for Vi, e.g., V2 = −f1(t, 0, x2, x3)T ẋ1, etc.
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Uncovered subjects/Extra material

• Backstepping

• Cascaded systems

• References/Recommended reading material

• Suggestions for exercises

Integrator Backstepping

Consider the dynamics

ẋ1 = −x1 + x21x2 ẋ2 = u

Take x2 as a virtual input.

Possible candidates for stabilizing the x1 dynamics: x2 = 0, or x2 = −c1x1.

Differentiating the Lyapunov function candidate V1 = 1
2x

2
1 along solutions results in V̇1 = −x21

respectively V̇1 = −x21 − c1x
4
1 .

Three steps:

Step 1 Define new coordinate: difference between state and desired state

Step 2 Define (inverse) change of coordinates and write dynamics in new coordinates

Step 3 Extend Lyapunov function and make its time-derivative negative definite.
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Integrator backstepping: case 1: x2 = 0

Define z2 = x2 − 0 = x2. Inverse change of coordinates: x2 = z2. Dynamics in new coordinates:

ẋ1 = −x1 + z2 · x21 ż2 = u

Differentiating V2 = 1
2x

2
1 +

1
2 z

2
2 along solutions yields

V̇2 = −x21+z2x
3
1 + z2u = −x21 + z2 · (x31 + u)

which can be rendered negative definite by taking

u = −x31 − kz2 = −x31 − kx2 k > 0
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Integrator backstepping: case 2: x2 = −c1x1

Define z2 = x2 − (−c1x1) = x2 + c1x1. Inverse change of coordinates: x2 = z2 − c1x1. Dynamics

in new coordinates:

ẋ1 = −x1 + x21(z2 − c1x1) = −x1 − c1x
3
1 + z2 · x21

ż2 = u+ c1ẋ1 = u− c1x1 − c21x
3
1 + c1x

2
1z2

Differentiating V2 = 1
2x

2
1 +

1
2 z

2
2 along solutions yields

V̇2 = −x21 − c1x
4
1 + z2(x

3
1 + u− c1x1 − c21x

3
1 + c1x

2
1z2)

which can be rendered negative definite by taking

u = −x31 + c1x1 + c21x
3
1 − c1x

2
1z2 − c2z2 = −x31 + c1(1− c2 − x1x2)x1 − c2x2
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General backstepping

Consider for w ∈ Rm, and scalar xi (i = 1, 2, ... , n) the dynamics

ẇ = f0(w) + g0(w)x1

ẋ1 = f1(w, x1) + g1(w, x1)x2
ẋ2 = f2(w, x1, x2) + g2(w, x1, x2)x3

...

ẋn−1 = fn−1(w, x1, x2, ... , xn−1) + gn−1(w, x1, x2, ... xn−1)xn

ẋn = fn(w, x1, x2, ... , xn−1, xn) + gn(w, x1, x2, ... , xn−1, xn)u

where fi(0, 0, ... , 0) = 0 and gi(w, x1, x2, ... , xi) 6= 0 on the domain of interest.

Furthermore, assume that the dynamics ẇ = f0(w) + g0(w)u can be stabilized to w = 0 by a
known feedback u = u0(w), for which a Lyapunov function V0(w) is also known.
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General backstepping

We therefore have that ∂V0

∂w [f0(w) + g0(w)u0(w)] < 0. Define the change of coordinates
z1 = x1 − u0(w) with inverse change of coordinates x1 = z1 + u0(w). Then we get

ẇ = f0(w) + g0(w)u0(w) + z1 · g0(w) ż1 = f1(w, x1) + g1(w, x1)x2 + ∂u0
∂w ẇ

Differentiating V1(w, z1) = V0(w) +
1
2 z

2
1 along solutions, results in

V̇1 = ∂V0

∂w [f0(w)+g0(w)u0(w)]+
∂V0

∂w z1g0(w)+z1
[
f1(w, z1+u0(w))+g1(w, z1+u0(w))x2+

∂u0
∂w ẇ

]
= ∂V0

∂w [f0(w)+g0(w)u0(w)]+z1
[
∂V0

∂w g0(w)+f1(w, z1+u0(w))+g1(w, z1+u0(w))x2+
∂u0
∂w ẇ

]
which is negative definite if we take

x2 = −
[
c1z1 +

∂V0

∂w g0(w) + f1(w, z1 + u0(w)) +
∂u0
∂w ẇ

]/
g1(w, z1 + u0(w)).
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General backstepping

If we now define w̄ =

[
w

x1

]
, f̄0(w̄) =

[
f0(w) + g0(w)x1

f1(w, x1)

]
, ḡ0(w̄) =

[
0

g1(w, x1)

]
, as well as

x̄i = xi+1, f̄i = fi+1, ḡi = gi+1 for i = 1, 2, ... , n− 1, we obtain

˙̄w = f̄0(w̄) + ḡ0(w̄)x̄1

˙̄x1 = f̄1(w̄, x̄1) + ḡ1(w̄, x̄1)x̄2
...

˙̄xn−2 = f̄n−2(w̄, x̄1, x̄2, ... , x̄n−2) + ḡn−2(w̄, x̄1, x̄2, ... x̄n−2)x̄n−1

˙̄xn−1 = f̄n−1(w̄, x̄1, x̄2, ... , x̄n−1) + ḡn−1(w̄, x̄1, x̄2, ... x̄n−1)u

So continuing this procedure n− 1 times more, we obtain a stabilizing controller for the system

(as well as a Lyapunov function proving this).
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Important remark about backstepping

Though backstepping provides a means to arrive at stabilizing controller, including a Lyapunov

proof, the resulting controllers usually are quite difficult expressions (in particular if expressed in

the original coordinates).
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Cascaded systems

Recall the example studied earlier

ẋ1 = −x1 + x21x2 outer loop/

ẋ2 = −x2 inner loop

Even though the subsystems

ẋ1 = −x1 ẋ2 = −x2

were exponentially stable, the cascaded system can have a finite escape time.

Assume you have been able to show asymptotic stability of the unperturbed x1 system using a

Lyapunov function for which V̇ is only negative semi-definite.

Then a useful result to analyze stability of the cascade is given on the next slide
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Panteley, Loría (corollary of more general result)

Consider a system ż = f(t, z) that can be written as

ż1 = f1(t, z1) + g(t, z1, z2)z2
ż2 = f2(t, z2)

where the systems ż1 = f1(t, z1) and ż2 = f2(t, z2) are UGAS. Then we have UGAS of the

cascaded system if the following conditions are satisfied:

1. We have a positive definite V with negative semi-definite V̇ along solutions of ż1 = f1(t, z1),
satisfying c1‖z1‖2 ≤ V and

∥∥∂V
∂z

∥∥ ≤ c4‖z1‖,
2. ‖g(t, z1, z2)‖ ≤ k1(‖z2‖) + k2(‖z2‖)‖z1‖,
3.

∫∞
0

‖z2(t)‖ d t ≤ φ(‖z2(t0)‖) (e.g. when ż2 = f2(t, z2) is ULES).
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Alternative way out

Panteley and Loría proved that showing boundness of z1 suffices to conclude UGAS.

The conditions 1–3 on previous slide guarantee boundedness of z1.

What if condition 1 and/or condition 2 are not satisfied?

Option 1: See if one of the other conditions in their paper works for you

Option 2: Show boundedness of z1 by evaluating V for ż1 = f(t, z1) along the cascade. If you can

find a function φ such that ‖ ∂V
∂z1

g(t, z1, z2)‖ ≤ φ(V)‖z2(t)‖ (e.g., φ(V) =
√
V or φ(V) = V), then:

V̇ = ∂V
∂z1

f1(t, z1)︸ ︷︷ ︸
≤0

+ ∂V
∂z1

g(t, z1, z2) ≤ φ(V)‖z2(t)‖ so

∫ t

0

V̇/φ(V) ≤
∫ t

0

‖z2(τ)‖ d τ

If the primitive of 1/φ is bounded on bounded intervals, you have boundedness of V and

therefore of z1.

52 Lyapunov stability: common mistakes and useful machinery



Suggestions for exercises

• Consider a dynamic extension of a mobile robot:

ẋ = v cos θ ẏ = v sin θ θ̇ = ω v̇ = u1 ω̇ = u2

and consider the problem of tracking a (time-varying) feasible reference trajectory

ẋr = vr cos θr ẏr = vr sin θr θ̇r = ωr v̇r = u1,r ω̇r = u2,r

Use one of the controllers for the mobile robot from this presentation as a starting point for

backstepping to arrive at a tracking controller. Show uniform global asymptotic stability by

means of the Matrosov-like theorem and make explicit what assumptions you need to make on

signals of the reference trajectory.

• Search for “Barbalat” on the USB-stick with papers of a recent (pre-Covid) CDC or IFAC World

Congress. Most likely the authors only show (global) asymptotic stability. Update the proof of

the authors so that you can conclude uniform (global) asymptotic stability.
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