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Tracking Control of an Underactuated Ship
Erjen Lefeber, Kristin Ytterstad Pettersen, and Henk Nijmeijer, Fellow, IEEE

Abstract—In this paper, we address the tracking problem for
an underactuated ship using two controls, namely surge force and
yaw moment. A simple state-feedback control law is developed and
proved to render the tracking error dynamics globally -expo-
nentially stable. Experimental results are presented where the con-
troller is implemented on a scale model of an offshore supply vessel.

Index Terms—Cascade control, marine vehicle control, non-
linear systems, tracking.

I. INTRODUCTION

I N THIS paper, we study the underactuated tracking control
of a ship. For a conventional ship it is common to consider

the motion in surge (forward), sway (sideways), andyaw
(heading), see Fig. 1. Often, we have surge and sway control
forces and yaw control moment available for steering the
ship. However, this assumption is not valid for all ships. For
instance, some ships are either equipped with two independent
aft thrusters or with one main aft thruster and a rudder, but
are without any bow or side thrusters, like, for instance, many
supply vessels. As a result, we have no sway control force. In
this paper, we consider tracking control for ships having only
surge control force and yaw control moment available. Since
we need to control three degrees of freedom and have only two
inputs available, we are dealing with an underactuated problem.

Sinceweseektocontrol theshipmotion in thehorizontalplane,
weneglect thedynamicsassociatedwith themotion inheave, roll,
andpitchwhenmodeling theship.Moreover,asafirst steptoward
finding a solution to the underactuated tracking control problem,
we do not include the environmental forces due to wind, currents,
and waves in the model. Furthermore, we assume that the inertia,
added mass and damping matrices are diagonal. In this case, the
ship dynamics can be described by (see, e.g., [1]):

(1)
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Fig. 1. Definition of state variables in surge, sway, heave, roll, pitch, and yaw
for a marine vessel.

where , , and are the velocities in surge, sway, and yaw,
respectively, and , , denote the position and orientation of
the ship in the earth-fixed frame. The parameters are
given by the ship inertia and added mass effects. The parameters

are given by the hydrodynamic damping. The available
controls are the surge force, and the yaw moment .

The ship model (1) is neither static feedback linearizable, nor
can it be transformed into chained form. It was shown in [2] that
no continuous or discontinuous static state-feedback law exists
which makes the origin asymptotically stable. The stabilization
problem for an underactuated ship has been studied in [2]–[6].

Tracking control of ships has mainly been based on linear
models, giving local results, and steering only two degrees
of freedom. In [7] and [8] output-tracking control based on
nonlinear ship models has been investigated. Using feedback
linearization and Lyapunov theory, respectively, tracking con-
trollers were developed that stabilized the desired trajectories.
The trajectories were, however, position trajectories, and the
yaw angle was not controlled.

In the case where only the position variables are controlled,
the ship may turn around such that the desired position trajectory
is followed backward. That is why we focus on state-tracking
instead of output-tracking.

The first complete state-tracking controller based on a non-
linear model was developed in [5] and yields global practical
stability. Another result yielding global practical stability can be
found in [9]. In [10] semi-global asymptotic stability has been
achieved by means of backstepping, inspired by the results of
[11]. We are not aware of any global tracking results for the
tracking control of an underactuated ship in literature.

In this paper, we present a global solution to the tracking
problem for an underactuated ship. Based on a result for (time-
varying) cascaded systems [12] we divide the tracking error dy-
namics into a cascade of two linear subsystems which we can
stabilize independently of each other.

The organization of this paper is as follows: In Section II,
we present some preliminary results. In Section III, we state the
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problem formulation. In Section IV, a full state feedback control
law is developed and proven to globally asymptotically stabilize
the tracking-error dynamics. Section V contains experimental
results and some conclusions are given in Section VI.

II. PRELIMINARIES

In this section, we recall some results that we need in this
paper.

For basic stability concepts, the reader is referred to [13, Sec.
3.4]. A slightly weaker notion than global exponential stability
is the following.

Definition 1 (cf. [14]): We call the system

(2)

with and piecewise continuous inand locally
Lipschitz in , globally -exponentially stableif there exist a

and a class function such that

Consider a system that can be written as

(3a)

(3b)

where , , is continuously differen-
tiable in and , are continuous in
their arguments, and locally Lipschitz in and re-
spectively.

Notice that if (3a) reduces to

Therefore, we can view (3a) as the system

(4)

that is perturbed by the output of the system

(5)

Assume that the systems and are asymptotically stable,
then for (4) we know that and for (5) we
have . It is obvious that then also for (3b)

tends to zero. In that case, the dynamics (3a) reduces to
the dynamics (4). It seems plausible also, that, therefore, (3a)
and as a result the cascaded system (3) become asymptotically
stable.

Unfortunately, this is not true in general as can be seen from
the system

which has a finite escape time
. However, under certain conditions it

is possible to conclude asymptotic stability of (3) when both
and are asymptotically stable. In [12, Lemma 2], it was

mentioned that if the systems (4) and (5) are globally uniformly
asymptotically stable and solutions of the cascaded system (3)
are globally uniformly bounded, then the system (3) is globally
uniformly asymptotically stable. The question that remains
then, is when solutions of (3) are globally uniformly bounded.

An answer to that question can also be found in [12]. For this
paper, a corollary suffices.

Corollary 1 (cf. [15]): Assume that both (4) and (5) are
globally -exponentially stable and that continuous functions

and exist such that

(6)

Then the cascaded system (3) is globally-exponentially
stable.

A third ingredient we need for this paper is a result from linear
systems theory. For basic concepts, the reader is referred to [16].
The result we need in this paper is a corollary of [17, Th. 2].

Corollary 2: Consider the time-varying linear system

(7)

where is continuous, , continuous.
Assume that for all the pair is controllable. If

is bounded, Lipschitz in, and constants and
exist such that

such that

then the system (7) is uniformly completely controllable.
The condition imposed on in Corollary 2 plays an im-

portant role, not only in this paper, but also in identification and
adaptive control systems. It is known as the “persistence of ex-
citation condition.”

Definition 2: A continuous function is said to
bepersistently excitingif all of the following conditions hold:

• constant exists such that for all ;
• constant exists such that

for all ;
• constants and exist such that

such that

Remark 1: Notice that the third condition on in Defi-
nition 2 can be interpreted as follows: assume that we plot the
graph of and look at this plot through a window of width

. Then, no matter where we put this window on the graph,
always a time instant exists where is at least .

III. PROBLEM FORMULATION

Consider the system (1). Assume that a feasible reference
trajectory is given, i.e., a
trajectory satisfying

(8)

Notice that a drawback exists in considering the error coordi-
nates and , since these position errors depend on the
choice of the inertial frame. This problem is solved by defining
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the change of coordinates as proposed in [2] which boils down to
considering the dynamics in a frame with an earth-fixed origin
having the - and -axis always oriented along the ship surge-
and sway-axis

The reference variables , , and are defined corre-
spondingly. Next, we define the tracking errors

In this way, we obtain the tracking error dynamics

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

As in [10], we study the problem of stabilizing the tracking error
dynamics (9).

Problem: Find appropriate state feedback lawsand of
the form

(10)

such that the closed-loop trajectories of (9) and (10) are globally
uniformly asymptotically stable.

IV. CONTROLLER DESIGN

Our controller design aims at arriving at a closed-loop error
dynamics of the form (3). To start with, we look for a way to
obtain in closed loop a subsystem, i.e., a subsystem (3b).
In that light, it is good to remark that we can use one input for
stabilization of a subsystem of the control system (9).

By defining the preliminary feedback

(11)

where is a new input, the subsystem (9c) and (9f) reduces to
the linear system

(12)

which can easily be stabilized by choosing a suitable control law
for , for example

(13)

As a result, the subsystem (9c) and (9f) is rendered globally
exponentially stable. In the closed-loop system this stabilized
subsystem can be considered as the system, i.e., the system
(3b). Now one input is left that should be chosen such that the
overall closed-loop system is rendered asymptotically stable.

We aim for a closed-loop system of the form (3). Besides, for
asymptotic stability of the system (3) it is necessary that the part

(14)

is asymptotically stable. This is something that should be guar-
anteed by the controller design. From Corollary 1 we further-
more know that it might be sufficient too! As a result, we can
conclude that it might suffice in the controller design for the re-
maining input to render the part (14) asymptotically stable and
“forget” about the part.

Notice that it is fairly easy to arrive from (3a) at (14), simply
by substituting . This is also the way to proceed in the
controller design. In the first step we designed a control law for
one of the two inputs in such a way that in closed loop a sub-
system was stabilized. Before we proceed with the controller de-
sign we assume that the stabilization of this subsystem worked
out, i.e., we substitute and in (9a), (9b), (9d),
(9e). This results in

which is a linear time-varying system

(15)

All that remains to be done, is to find a feedback controller for
that stabilizes the system (15). It follows from Corollary 2 that
the system (15) is uniformly completely controllable (UCC) if
the reference yaw velocity is persistently exciting. As a re-
sult, if the reference yaw velocity is persistently exciting,
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we can use any of the control laws available in literature for sta-
bilizing linear time-varying systems. In addition to these results,
we propose the following control law.

Proposition 1: Consider the system (15) in closed loop with
the control law

(16)

where ( satisfy

(17)

If is persistently exciting then the closed-loop system (15)
and (16) is globally exponentially stable.

Proof: See the Appendix.
Remark 2: Notice that the condition that has to be per-

sistently exciting appeared in the literature before. Not only in
the paper [10] on tracking control of an underactuated ship, but
also in the literature on tracking control of a mobile robot [15],
[16], [19]. In these papers, the reference angular velocity had to
be persistently exciting.

Remark 3: Notice that determining gains ( )
which meet (17) is feasible. The gains and could for in-
stance be chosen first. The condition onguarantees that a
gain can be chosen. After choosing the gains, , and ,
the required value for can be determined.

Combining the controllers (11), (13), and (16) we are now
able to formulate the cascaded systems based solution to the
tracking control problem:

Proposition 2: Consider the ship tracking error dynamics (9)
in closed loop with the control law

(18a)

(18b)

where

If , , and are bounded and is persistently
exciting, then the closed-loop system (9) and (18) is globally

-exponentially stable.
Proof: Due to the design, the closed-loop system (9) and

(18) has a cascaded structure as shown in the equation at the
bottom of the page. From Proposition 1 we know that the system

is globally exponentially stable and from stan-
dard linear control that the system is globally
exponentially stable. Furthermore, due to the fact that, ,

, and are bounded, satisfies (6). Applying
Corollary 1 provides the desired result.

Remark 4: Notice that the only property of the system
that we need in this proof, is the fact that it is globally

exponentially stable. Under the assumption that is persis-
tently exciting (which yields uniform complete controllability
according to Corollary 2), more control laws for are avail-
able in literature that also guarantee global exponential stability
of the system (15). In case we replacewith any of these, the
proof still holds. Therefore, several other choices forcan be
made. For instance, one might consider the following:

• a “standard” linear control law [16] which involves using
the state-transition matrix of the system (15);

• a less complicated control law [which also needs the state-
transition matrix of the system (15)] as presented by [20];

• a pole-placement based control law, like for instance the
one presented by [21] [which requires the signals , ,
and to be continuous and available], or any other
control law one prefers that guarantees global exponential sta-
bility of the system (15).
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Fig. 2. Guidance, navigation, and control laboratory.

Similarly, any control law that renders the system (12) glob-
ally uniformly asymptotically stable can be used for.

Remark 5: In case is constant (but not equal to zero),
then the system (15) becomes a standard time-invariant linear
system which can be stabilized by means of standard linear con-
trol theory.

Remark 6: As pointed out by [22], it is possible to normalize
the system’s equations in terms of the advancement velocity

, in order to replace time by the distance gone by the ref-
erence vehicle. This “time normalization” makes the solutions
“geometrically” unaffected by velocity changes, yielding con-
vergence in terms of this distance, instead of time. In practice,
this has the advantage that the damping rate does not change
with different values of .

V. EXPERIMENTAL RESULTS

To support our claims, we performed some experiments at the
Guidance, Navigation and Control Laboratory located at the De-
partment of Engineering Cybernetics, Norwegian University of
Science and Technology, Trondheim, Norway, shown in Fig. 2.
In the experiments we used Cybership I, which is a 1 : 70 scale
model of an offshore supply vessel. The model ship has a length
of 1.19 m, and a mass of 17.6 kg. The maximum surge force is
approximately 0.9 N and the maximum yaw moment is approx-
imately 0.9 Nm. The vessel moves in a 10-by-6 m pool with a
depth of about 0.25 m.

Three spheres mounted on the model ship can be identified by
infrared cameras. Three infrared cameras are mounted in such a
way that (almost always) one or two cameras can see the boat.
From each camera the positions of the spheres are transmitted
via a serial line to a dSPACE signal processor (DSP). From these
positions the ship position and orientation can be calculated. A
nonlinear passive observer of [23] is used to estimate the unmea-
sured states. The estimates for position and velocities generated
by this observer are used for feedback in the control law. No the-
oretical guarantee for a stable controller observer combination
can be given (yet), as for nonlinear systems no general separa-
tion principle exists. However, in the experiments it turned out
to work satisfactorily.

The control law and position estimates are implemented on a
Pentium 166 MHz PC which is connected with the DSP via a

dSPACE bus. By using Simulink blocks, the software is com-
piled and then downloaded into the DSP. The DSP sends the
thruster commands to the ship via a radio-transmitter. The sam-
pling frequency used in the experiments was 50 Hz.

The reference trajectory to be tracked was similar to that in
[10], namely a circle with a radius of 1 m that should be tracked
at a constant surge velocity of 0.05 m/s. From the initial refer-
ence state

m/s

m/s

rad/s

m

m

rad

and the requirement

m/s

rad/s

the reference trajectory can be gener-
ated, since it has to satisfy (8).

As in [10], we chose in the experiments not to cancel or com-
pensate for the damping terms (i.e., assume ),
since these are restoring terms, and due to possible parameter
uncertainties cancellations could result in destabilizing terms.

For tuning the gains of (18) we considered the two linear sub-
systems (12) and (15) that resulted from the cascaded analysis.
Both can be expressed as a standard linear time-invariant system
of the form . We used optimal control to arrive at
the control law for which the costs

are minimized. For we chose a diagonal matrix with entries
( ), where is the maximum

error we would tolerate in . For we took the inverse of
maximum allowed input. This resulted in the choice

for the system (15) and

for the system (12). In this way, we obtained the following gains
for the control law:

(19a)

(19b)

The resulting performance of this controller is shown in Fig. 3.
In the first two graphs, we compare the actual position of the
ship with its desired position. The third graph contains the error
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Fig. 3. Cascade controller (19) with gains based on optimal control.

in orientation. The fourth and fifth graph depict the controls ap-
plied to the ship. The bottom graph depicts the camera status.
The reason for showing this is that the infrared cameras from
time to time loose track of the ship. As long as the camera status
equals zero we have position measurements from the camera-

system, but as soon as the camera status is nonzero we no longer
get correct position measurements. In Fig. 3, we can see that
for instance after about 240 s we had a temporary failure of the
camera-system. This explains the sudden change in the orienta-
tion error and in the controls and . Note, however, that
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Fig. 4. Cascade controller (19) under disturbance of author walking through the pool.

the peaks in the error time evolution corresponding to camera
failures mostly were due to observer estimation errors and not
reflecting the actual ship behavior.

From the fact that the presented controller can be applied suc-
cessfully in experiments, we might conclude that it possesses

some robustness with respect to modeling errors and with re-
spect to disturbances due to currents and wave drift forces.

To illustrate this robustness even more, we performed one
experiment in which the first author was wearing boots and
walking through the pool, trying to create as much waves as
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possible and disturbing the ship as much as he could. The re-
sults are depicted in Fig. 4. It can be noticed that, due to the
heavy waves, the camera system had much more difficulties in
keeping track of the ship. Nevertheless, a reasonable tracking
performance was achieved.

VI. CONCLUDING REMARKS

In this paper, we studied the complete state-tracking problem
for an underactuated ship that has only surge control force and
yaw control moment, which is a common situation for many
supply vessels.

By means of a cascaded approach we developed a global
tracking controller for this tracking problem. The resulting
control law has a very simple structure and guarantees global

-exponential stability of the tracking error dynamics. The
cascaded approach reduced the problem of stabilizing the
nonlinear tracking error dynamics to two separate problems
of stabilizing linear systems. This insight simplified the
gain-tuning a lot, since optimal control could be used to arrive
at suitable gains.

A disadvantage of both the cascade controller and the back-
stepping-based controller presented in [10] is the demand that
the reference angular velocity does not tend to zero. Solutions to
the tracking of a straight line are presented in [10] and [24]–[26].

The controller presented in this paper also proved to work rea-
sonably well in experiments. This implies a certain robustness
against modeling errors and disturbances due to currents and
wave drift forces. In an attempt to get better robustness results,
the cascaded approach might be helpful, as well, since robust-
ness results from linear theory can be used.

APPENDIX

Before we prove Proposition 1, we first prove the following
lemma.

Lemma 1: Let the following conditions be given:

(20a)

(20b)

(20c)

(20d)

Define and ( ) by means of

(21a)

(21b)

which is similar to saying that and are the roots of the poly-
nomial

(22)

Then and are well defined, and furthermore

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

Proof: First, we remark that from (20a) and the fact that
, we have

Consider the polynomial (22). Then, obviously

and

Therefore, from the intermediate value theorem we know that a
constant exists, , such that and
also a , , such that .
As a result we obtain that and are well defined by means of
(21). From (20) and

we can conclude that the inequalities (23) hold true.
Proof [Proof of Proposition 1]: The closed-loop system

(15) and (16) is given by

(24)

If we define and as in (21) and use (20b), the closed-loop
dynamics (24) can be expressed as shown in the equation at the
top of the next page.

Using the change of coordinates
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(25)

which, due to (23a), is well defined, we obtain (25) as shown at
the top of the page.

Differentiating the positive definite [cf. (23)] Lyapunov-func-
tion candidate

along solutions of (25) yields

which is negative semidefinite [cf. (23)].
It is well known [13] that the origin of the system (25) is

globally exponentially stable if the pair , as shown in
the equation at the top of the page, is uniformly completely ob-
servable (UCO). If is persistently exciting, it follows from

Corollary 2 that the pair is UCO, which completes
the proof.
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