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Abstract

Wepresent a tracking controller for quadrotor UAVswhich uses par-
tial state information and filters the measurements to attenuate noise.
We show uniform almost global asymptotic and local exponential sta-
bility of the resulting closed-loop system,which implies robustness against
bounded disturbances. We illustrate the performance of the controller
by means of several numerical examples, including a complex looping
maneuver.

1 Introduction

In this paperwe consider theproblemof constructing a controller-observer
combination for the tracking control of quadrotor UAVs, without the use of
linear velocity measurements. As state measurements contain noise, one
would like to attenuate those using a filter/observer, and since for nonlin-
ear systems the certainty equivalence principle does not hold, controller-
observer combinations need to be carefully codesigned.

*This is an extended version of the paper: E. Lefeber, M. Greiff, A. Robertsson, Filtered
Output Feedback Tracking Control of a Quadrotor UAV, In: Proceedings of the 21st IFACWorld
Congress, Berlin, Germany, 2020.

†The research leading to these results has received funding from the Swedish Science
Foundation (SSF) project “Semantic mapping and visual navigation for smart robots” (RIT15-
0038) and the ELLIIT Excellence Center at Lund University.

1



Starting with the work of Caccavale and Villani [1999], output feedback
laws that solve the tracking problem for only the attitude dynamics have
been developed. In Asl and Yoon [2015] an output feedback for only the
translational dynamics are given, where it is assumed that the inner loop
for the attitude dynamics is fast enough. However, no stability proof for
the resulting overall system has been given in that paper. Also, the au-
thors used Euler angles to represent the attitude, resulting in singularities
due to the so called “gimbal lock”, making their approach fail for complex
trajectories with large angular movements, such as the looping maneuver
considered in this paper.

The stabilization problem has been studied in Bertrand et al. [2011]. To
the best knowledge of the authors only three (groups of) authors consider
an output-feedback tracking problem: Abdessameud and Tayebi [2010],
Zou [2016], and Shao et al. [2018]. Those papers, as well as ours, use
a similar approach. First, a virtual controller is designed for controlling
the translational dynamics. This determines the total thrust and subse-
quently an attitude controller is designed to achieve the required attitude.
For specifying the desired attitude, a non-zero virtual control action is re-
quired for the virtual controller. In Shao et al. [2018] this is not guaran-
teed by the proposed controller for the translational dynamics, therefore
resulting in a local stability result for their controller. In Abdessameud and
Tayebi [2010] and Zou [2016] the non-zero virtual control action is guaran-
teed by saturating a proportional and differential control action separately.
In this paper we saturate only the combined proportional and differen-
tial control action. Furthermore, in those two papers stability proofs are
finalized using Barbălat’s Lemma, showing only asymptotic stability, not
uniform asymptotic stability as we do in this paper. Only the latter guaran-
tees robustness against bounded perturbations, cf. Panteley et al. [1999]
and [Khalil, 2002, Lemma 9.3]. Also, in Zou [2016] time-derivatives of the
virtual control action are used in the attitude controller, introducing the
need for measuring translational velocities (and even translational accel-
erations). In Abdessameud and Tayebi [2010] the design of the attitude
controller has been done in quaternions. As both the quaternions q and
−q represent the same attitude, the resulting attitude controller may ex-
hibit the so called dynamical unwinding behavior, see Bhat and Bernstein
[2000]. Finally, all of the above controllers use statemeasurements directly
in the controller, i.e., unfiltered.

To the best knowledge of the authors we are the first to present an
output feedback for the tracking control problem of quadrotor UAVs for
which:

• only filtered signals are used in the control action (the measurement
noise is thereby attenuated),

• uniform almost global asymptotic stability results are derived (imply-
ing robustness against bounded disturbances),
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• proportional and derivative actions of the translational controller are
saturated together, not separately (which is beneficial if they have
opposite signs).

Furthermore, we consider the attitude on SO(3) instead of using Euler an-
gles (which have singularities in representation) or quaternions (whichmight
lead to ambiguous control actions due to the phenomenon of unwinding).

This paper is outlined as follows. In Section 2 we introduce some nota-
tion and preliminaries that are used throughout the paper. The problem
formulation is presented in Section 3, after which a virtual filtered con-
troller for the translational dynamics is presented in Section 4. A filtered
controller for the attitude dynamics is presented in Section 5, after which
stability of the combined result is shown in Section 6. The theoretical re-
sults are illustrated by a set of simulation examples in Section 7, where the
propositions in each of the above sections are demonstrated separately. A
final example is given with filtered output feedback control of a UAV in a
looping manoeuvre on the surface of a torus, and Section 8 finally closes
the paper. An extended version of the paper can be found in Lefeber et al.
[2020].

2 Preliminaries

In this section we introduce the notation, definitions and theorems used
in the remainder of this paper.

Let ei for i ∈ {1, 2, 3} denote the standard unit vector, and let xi de-
note the ith element of a vector x. For definitions of uniform global (or lo-
cal) asymptotic (or exponential) stability (UGAS/UGES/ULES), refer to Khalil
[2002].

Definition 1. The origin of (2) is uniformly almost globally asymptotically
stable (UaGAS) if it is UGAS, except for initial conditions in a set of measure
zero.

We consider rotations R ∈ SO(3) = {R ∈ R
3×3 | R�R = I,detR = 1},

and define the skew-symmetric map

S(a) = −S(a)� =

⎡
⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤
⎦ ∈ so(3). (1)

To compare elements of SO(3), we define a measure by its associated log-
arithmic map log : SO(3) → so(3), as

d(R1, R2) = ‖ log(R1R
�
2 )‖ ∈ [0, π].
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Using the fact that the cross product a × b = S(a)b we have the following
useful properties for the map S:

x�S(a)x = 0 ∀a, x ∈ R
3,

S(a)b = −S(b)a ∀a, b ∈ R
3,

RS(a) = S(Ra)R ∀R ∈ SO(3), ∀a ∈ R
3,

a�S(b)c = c�S(a)b = b�S(c)a ∀a, b, c ∈ R
3.

In the remainder, let σ : R
n → R

n denote a vector-function σ(x) =
s( 12x

�x)x, where s : R+ → R
+ is a twice continuously differentiable func-

tion satisfying s(0) > 0 and for which the associated Lyapunov function

Vσ(x) =

∫ 1
2x

�x

0

s(τ)dτ,

is positive definite and radially unbounded. Possible candidates are σ(x) =
k0x and σ(x) = (k2∞ + k20x

�x)−1/2k0k∞x with k0 > 0 and k∞ > 0, where the
latter is bounded.

Definition 2. A function σ as considered above for which ‖σ(x)‖ ≤ γ for all
x ∈ R

n is called a saturation function.

Theorem 1 (Corollary of Lorı́a et al. [2005, Theorem 1]). Consider the dy-
namical system

ẋ = f(t, x) x(t0) = x0 f(t, 0) = 0, (2)

with f : R
+ × R

n → R
n locally bounded, continuous and locally uniformly

continuous in t.
If there exist j differentiable functions Vi : R

+ ×R
n → R, bounded in t, and

continuous functions Yi : R
n → R for i ∈ {1, 2, . . . j} such that

• V1 is positive definite and radially unbounded,

• V̇i(t, x) ≤ Yi(x), for all i ∈ {1, 2, . . . , j},
• Yi(x) = 0 for i ∈ {1, 2, . . . , k−1} implies Yk(x) ≤ 0, for all k ∈ {1, 2, . . . , j},
• Yi(x) = 0 for all i ∈ {1, 2, . . . , j} implies x = 0,

then the origin x = 0 of (2) is uniformly globally asymptotically stable (UGAS).

Theorem 2 (cf. Panteley and Lorı́a [1998]). Let the system (2) be written as

ẋ1 = f1(t, x1) + g(t, x1, x2)x2 (3a)

ẋ2 = f2(t, x2), (3b)
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where x1 ∈ R
n, x2 ∈ R

m, f1(t, x1) is continuously differentiable in (t, x1) and
f2(t, x2), g(t, x1, x2) are continuous in their arguments, and locally Lipschitz in
x2 and (x1, x2) respectively. This system is a cascade of the systems

ẋ1 = f1(t, x1), (4)

and (3b). If the origins of the systems (4) and (3b) are UGAS and solutions of
(3) remain bounded, then the origin of the system (3) is UGAS. In addition, if
the systems (4) and (3b) are ULES, then (3) is also ULES.

Lemma 1 (cf. Mahony et al. [2008]). Let ki > 0 and vi ∈ R
3 be such that

M =
∑n

i=1 kiviv
�
i = UΛU� with Λ a diagonal matrix with distinct eigenval-

ues λi where U ∈ SO(3). Then
∑n

i=1 kiS(vi)Rvi = 0 implies that U�RU ∈
{I,D1, D2, D3}, where D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1), D3 =
diag(−1,−1, 1).

3 Problem formulation

Let ρ ∈ R
3 denote the position of the centre of mass relative to a North-

East-Down (NED) inertial frame. Let R ∈ SO(3) denote the rotation matrix
from the body-fixed frame to the inertial frame. Furthermore, let ν ∈ R

3

and ω ∈ R
3 denote the body-fixed linear and angular velocities. In this con-

text, the SE(3)-configured UAV dynamics (comprehensively derived in Lee
et al. [2017]) can be written

ρ̇ = Rν (5a)

ν̇ = −S(ω)ν + gR�e3 − (f/m)e3 (5b)

Ṙ = RS(ω) (5c)

Jω̇ = S(Jω)ω + τ, (5d)

wherem denotes the total mass, J = J� > 0 the inertiamatrix with respect
to the body-fixed frame, the matrix S is given by (1), and f ∈ R and τ ∈
R

3 denote respectively the total thrust magnitude and the total moment
vector in the body-fixed frame, which are assumed to be the inputs.

Assume that we are given a feasible continuous reference trajectory
(ρr, Rr, νr, ωr, τr, fr, ḟr, f̈r), satisfying

ρ̇r = Rrνr (6a)

ν̇r = −S(ωr)νr + gR�
r e3 − (fr/m)e3 (6b)

Ṙr = RrS(ωr) (6c)

Jω̇r = S(Jωr)ωr + τr, (6d)

where 0 < fmin
r ≤ fr(t).
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Define the following error coordinates on SE(3):

ρ̄ = R�
r (ρ− ρr) R̄ = R�

r R

ν̄ = −R̄�S(ωr)ρ̄+ ν − R̄�νr ω̄ = ω − R̄�ωr

with corresponding error measure:

ε(ρ̄, R̄, ν̄, ω̄) = ‖ρ̄‖+ ‖ log R̄‖+ ‖ν̄‖+ ‖ω̄‖.
Then we can define the filtered tracking control problem.

Problem 1. For (ρr, Rr, νr, ωr, τr, fr, ḟr, f̈r) being a given feasible reference
trajectory, find appropriate control laws

f = f(ζ, ρr, Rr, νr, ωr) (7a)

τ = τ(ζ, ρr, Rr, νr, ωr) (7b)

ζ̇ = ζ(ρ,R, ω, z, ρr, Rr, νr, ωr), (7c)

where ζ denotes thememory of the filter, such that for the resulting closed-loop
system (5), (6), (7)

lim
t→∞ ε

(
ρ̄(t), R̄(t), ν̄(t), ω̄(t)

)
= 0.

4 Filtered position tracking control

Following Lefeber et al. [2017] we separate the design of the tracking con-
troller into two parts. In this section we consider the derivation of a posi-
tion tracking controller under the assumption that we can use the body-
fixed linear accelerations as (virtual) input. In subsequent sections we con-
sider the problem of realizing this virtual input by means of the actual in-
puts. First, we define the tracking error in the body-fixed frame of the ref-
erence: [

ρe
νe

]
=

[
R�

r (ρr − ρ)
νr −R�

r Rν

]
.

Using this definition the tracking error dynamics become

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe + (f/m)R�
r Re3 − (fr/m)e3.

For stabilizing these time-varying tracking error dynamics we take u =
(f/m)R�

r Re3 − (fr/m)e3 to be a virtual input which we want to achieve
by controlling the thrust magnitude and the attitude, leading to the first
proposition.

Proposition 1. The dynamics

ρ̇e = −S(ωr)ρe + νe (8a)

ν̇e = −S(ωr)νe + u, (8b)
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in closed-loop with the dynamic output feedback

u = −σ(kρρ̂e + kν ν̂e) (9a)

˙̂ρe = −S(ωr)ρ̂e + ν̂e + L1z (9b)

˙̂νe = −S(ωr)ν̂e + u+ L2z (9c)

ż = −S(ωr)z − (L1 + L3)z + (L1 + L3)ρ̃e, (9d)

with kρ > 0 and kν > 0, L1 > 0, L2 > 0, and L3 > 2L2/L1 is UGAS and ULES.

Proof. Define the errors ρ̃e = ρe − ρ̂e, ν̃e = νe − ν̂e, z̃ = z − ρ̃e, and also
ê = kρρ̂e + kν ν̂e. Then we obtain

˙̂e = −S(ωr)ê+ kρν̂e + kνu+ (kρL1 + kνL2)z (10a)

˙̃ρe = −S(ωr)ρ̃e + ν̃e − L1z (10b)

˙̃νe = −S(ωr)ν̃e − L2z (10c)

˙̃z = −S(ωr)z̃ − L3z̃ + L1ρ̃e − ν̃e, (10d)

Consider the Lyapunov function candidate

V1(ρe, νe, ρ̃e, ν̃e, z̃) = Vσ(ê) +
1

2
kρν

�
e νe+

+
α

2
(ρ̃e − βν̃e)

�(ρ̃e − βν̃e) +
αγ

2
ν̃�e ν̃e +

α

6
z̃�z̃, (11)

with β = 2L1

3L2
, γ =

2L2
1

9L2
2
+ 1

L2
, and α sufficiently large:

α >
max

(
(kρL1 + kνL2)

2, k2ρ
)

kν min

(
1
3L1,

2L1+L2L3−
√

4L2
1+16L2

2−4L1L2L3+L2
2L

2
3

6L2

) .

Differentiating (11) along (8), (9), (10) results in

V̇1(ρe, νe, ρ̃e, ν̃e, z̃) = −kνσ(ê)�σ(ê)− kρσ(ê)
�ν̃�e +

+ (kρL1 + kνL2)σ(ê)
�ρ̃e + (kρL1 + kνL2)σ(ê)

�z̃

− α
[1
3
L1ρ̃

�
e ρ̃e +

2L1

3L2
ν̃�e ν̃e +

4

3
ν̃�e z̃ +

1

3
L3z̃

�z̃
]
, (12)

which is negative semi-definite function in its arguments, but notably neg-
ative definite in σ(ê), ρ̃e, ν̃e, and z̃.

Differentiating V2 = −ν̃�e z along (8), (9), (10) results in
V̇2 = −L2z

�z − σ(ê)�z + (L1 + L3)ν̃
�
e (z − ρ̃e) = Y2.

Differentiating V3 = −ê�ν̂e along (8), (9), (10) yields

V̇3 = −kρν̂�e ν̂e − σ(ê)�(kν ν̂e + ê)−
− z�[(kρL1 + kνL2)ν̂e + L2ê] = Y3.
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Applying Theorem 1 completes the proof of UGAS. ULES follows from a
linearization at the stable equilibrium.

Remark 1. Here, it is useful to note that

d

dt
σ(x) =

d

dt
s( 12x

�x)x = s′( 12x
�x)x�ẋx+ s( 12x

�x)ẋ

d
2

dt2
σ(x) = s′′( 12x

�x)(x�ẋ)2x+ s′( 12x
�x)

[
ẋ�ẋx+ x�ẍx+

+ 2x�ẋẋ
]
+ s( 12x

�x)ẍ,

and

¨̂e =−S(ω̇r)ê−S(ωr) ˙̂e+ kρ ˙̂νe + kν
dσ(ê)

dt
+(kρL1+kνL2)ż.

Therefore, u̇ and ü can be expressed as continuous functions of signals that are
available from measurements.

5 Filtered Attitude control

In Section 6 wewant to achieve the input derived in the previous section by
means of filtered attitude control, but before we can do so, we first need
to construct a filtered attitude controller for tracking reference dynamics.

Proposition 2. Consider the dynamics

Ṙ = RS(ω) Ṙr = RrS(ωr) (13a)

Jω̇ = S(Jω)ω + τ Jω̇r = S(Jωr)ωr + τr. (13b)

Define the errors Re = RrR
�, R̃ = R̂R�, ωe = ωr − ω, and ω̃ = ω̂ − ω, and let

ω̂e = ωr − ω̂. Then the input

τ = τr+S(Jω̂e)ωr+Kωω̂e+
n∑

i=1

kiS(R
�
r vi)R̂

�vi (14a)

˙̂
R = R̂S(ω + δR) (14b)

J ˙̂ω = S(Jω)ω + τ + δω, (14c)

where the innovation terms δR and δω are given by

δR = −cR
n∑

i=1

kiS(R̂
�vi)(R�

r vi +R�vi) (14d)

δω = −cωJS(ωr)ωe − cωKωωe − Cωω̃, (14e)
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with Kω = K�
ω > 0, Cω = C�

ω > 0, cR > 0, cω > 0, and ki > 0 such
thatM =

∑n
i=1 kiviv

�
i has distinct eigenvalues, renders the equilibrium point

(Re, R̃, ωe, ω̃) = (I, I, 0, 0)UaGAS andULES. That is, letEc = {I, UD1U
�, UD2U

�, UD3U
�}

with U ∈ SO(3) such that M = UΛU� with Λ being a diagonal matrix. Then
Re and R̃ converge to Ec, and ωe and ω̃ converge to zero. The equilibria where
Re ∈ Ec \ {I} or R̃ ∈ Ec \ {I} are unstable and the set of all initial conditions
converging to these equilibria form a lower-dimensional manifold.

Proof. The closed-loop dynamics (13), (14) is given by

Ṙe = S(Rrωe)Re (15a)

Jω̇e = S(Jω)ωe + S(Jω̃)ωr −Kωω̃e −
n∑

i=1

kiS(R
�
r vi)R̂

�vi

˙̃R = S(R̂δR)R̃ (15b)

J ˙̃ω = δω (15c)

Differentiating the Lyapunov function candidate

V1 =
n∑

i=1

ki
2
(ReR̃

�vi − vi)
�(ReR̃

�vi − vi) +
1

2
ω�
e Jωe

+
n∑

i=1

ki
2
(R̃vi − vi)

�(R̃vi − vi) +
1

2cω
ω̃�Jω̃,

along solutions of (15) results in

V̇1 = −[ωe − δR]
�

n∑
i=1

kiS(R̂
�vi)R�

r vi + ω�
e Jω̇e

+ δ�R
n∑

i=1

kiS(R̂
�vi)R�vi +

1

cω
ω̃�J ˙̃ω

=−cR
∥∥∥∥∥

n∑
i=1

kiS(R̂
�vi)(R�

rvi+R
�vi)

∥∥∥∥∥
2

2

−ω�eKωωe−ω̃�Cω

cω
ω̃,

Differentiating V2 = ω�
e

∑n
i=1 kiS(R

�
r vi)R̂

�vi along (15),

V̇2 ≤ −
∥∥∥∥∥

n∑
i=1

kiS(R
�
rvi)R̂

�vi

∥∥∥∥∥
2

2

+M1

∥∥∥∥
[
ω̃e

ω̃

]∥∥∥∥+M2

∥∥∥∥
[
ω̃e

ω̃

]∥∥∥∥
2

,

where we used boundedness of ωr, and boundedness of ω̃ and ω̃e resulting
from V̇1 ≤ 0.
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Applying Theorem 1 shows UGAS towards

n∑
i=1

kiS(R
�vi)R̂�vi = 0 ωe = 0

n∑
i=1

kiS(R
�
r vi)R̂

�vi = 0 ω̃ = 0,

which along the lines of the proof in Mahony et al. [2008] implies UaGAS
towards

Re = I ωe = 0 R̃ = I ω̃ = 0.

Considering V1+ εV2, ULES can be shown along the lines of the work of Wu
and Lee [2016].

6 Combined control/cascade analysis

In section 4 we derived a filtered controller for the translational dynamics
by using a virtual input u. Subsequently, in section 5 we derived a filtered
controller for the attitude dynamics. In this section we combine the re-
sults yielding a controller that solves Problem 1, using only filtered signals
without the need for linear velocity measurements.

Following the approach in Lefeber et al. [2017], we need fR�
r Re3 to con-

verge tomu+ fre3. To this end, define

fd =

⎡
⎣fd1fd2
fd3

⎤
⎦ =

fre3 +mu

‖fre3 +mu‖ (16a)

as the desired thrust direction, satisfying fd3 > 0, provided that ‖u‖ ≤
fmin
r /m. We let

Rd =

⎡
⎢⎢⎣
1− f2

d1

1+fd3
− fd1fd2

1+fd3
fd1

− fd1fd2
1+fd3

1− f2
d2

1+fd3
fd2

−fd1 −fd2 fd3

⎤
⎥⎥⎦ ∈ SO(3) (16b)

denote the rotation matrix which rotates the desired thrust vector to the
thrust vector of the reference (i.e., e3) in the plane containing both vectors.
This also gives

ωd =

⎡
⎢⎢⎢⎢⎢⎣

−ḟd2 + fd2ḟd3
1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎥⎥⎥⎦
. (16c)
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Using f = ‖fre3 +mu‖ and (16b), we can write fre3 +mu = fRde3, so our
goal to determine τ which makes fR�

r Re3 converge to fre3 + mu can be
replaced by the goal to determine τ which makes R�

r R converge to Rd, or
equivalently R to RrRd. The latter we can achieve by means of the filtered
attitude controller of the previous section, where this time Re = RrRdR

�,
and ωe = R�

d ωr + ωd − ω, since we need R to converge to RrRd.

Proposition 3. Consider the dynamics (5) in closed-loop with the controller
(14), f = ‖fre3 + mu‖, where Re = RrRdR

�, ωe = R�
d ωr + ωd − ω, ω̂e =

R�
d ωr + ωd − ω̂, Rd and ωd are given by (16) and u given by (9).
If σ is a saturation function satisfying ‖σ(x)‖ ≤ γ = fminr /m, kρ > 0, kν > 0,

L1 > 0, L2 > 0, L3 > 2L2/L1, Kω = K�
ω > 0, Cω = C�

ω > 0, cR > 0, cω >
0, and ki > 0 such that M =

∑n
i=1 kiviv

�
i has distinct eigenvalues, then the

equilibrium point (ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe) = (0, 0, 0, 0, 0, I, 0, I, 0) is UaGAS
and ULES. That is, let Ec = {I, UD1U

�, UD2U
�, UD3U

�} with U ∈ SO(3) such
thatM = UΛU� with Λ being a diagonal matrix. Then Re and R̃ converge to
Ec and all other variables converge to zero. The equilibria where Re ∈ Ec \ {I}
or R̃ ∈ Ec \ {I} are unstable and the set of all initial conditions converging to
these equilibria form a lower dimensional manifold.

Proof. The resulting overall closed-loop dynamics can bewritten as (3) with

x1 =
[
ρe, νe, ρ̃e, ν̃e, z̃

]�
x2 =

[∑n
i=1 kiS(vi)Revi, ωe,

∑n
i=1 kiS(vi)R̃vi, ω̃

]�
g(t, x1, x2)x2 =

[
0 1 0 1 0

]� ‖fre3 +mu‖
m

R�
r (I−Re)Re3,

where ẋ1 = f(t, x1) follows from (8), (9), (10) and is UGAS according to
Proposition 1 and ẋ2 = f2(t, x2) follows from (15) which is UGAS and ULES
by Proposition 2.

Differentiating V1 as defined in (11) along (3a) results in

V̇1 = c1
√
V ‖I −Re‖

for some constant c1. Since (3b) is ULES we have√
V1(t)−

√
V (t0) ≤ c2(x2(t0))

and therefore boundedness of solutions of (3). Applying Theorem 2 en-
ables us to conclude that the cascaded system is UGAS and ULES. There-
fore, the equilibriumpoint (ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe) = (0, 0, 0, 0, 0, I, 0, I, 0)
is UaGAS and ULES.

Remark 2. The above mentioned controller also solves Problem 1, as ρe → 0
implies ρ̄ → 0, Re → I implies R̄ → I , and both together with νe → 0 and
ωe → 0 result in ν̄ → 0 and ω̄ → 0.
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7 Simulation studies

In this section, the stability and robustness of the presented controllers
are illustrated in a set of simulations. We first demonstrate the filtered
and saturated output feedback in Proposition 1, followed by an example
of the attitude feedback in Proposition 2. Using these two propositions,
the main result in Proposition 3 is demonstrated in a looping manoeuvre
on the surface of a torus.

For the translational feedback, wedefine the saturation function in terms
of the hyperbolic tangent function, with σ(x) = γ tanh(‖x‖2/γ)‖x‖−1

2 x for
some constant γ > 0.

Furthermore, in all subsequent examples, we use the initial conditions
in Table 1 and parameter definitions in Table 2, where N (μ,Σ) denotes a
multivariateGaussian distributionwithmeanμ and covarianceΣ, andU(D)
denotes a uniform distribution over a domainD. Any deviation from these
parameters are stated explicitly in the examples.

Table 1: Initial conditions in the simulations.
Initial condition Distribution Description
ρ(t0), ρ̂(t0), z(t0) N (0, I) Position (m)
ν(t0), ν̂(t0) N (0, I) Velocity (m/s)

R(t0), R̂(t0) U(SO(3)) Attitude (·)
ω(t0), ω̂(t0) N (0, I) Attitude rate (rad/s)

Table 2: Parameters used in the simulations.
Parameter Value Description
(kρ, kν) (2, 2) Translational control gains

(L1, L2, L3) (4, 4, 4) Translational filter gains
γ 2 Sat. bound (‖u(t)‖2 ≤ γ)

(k1, k2, k3,Kω) (10, 20, 30, 15I) Attitude control gains
(cR, cω, Cω) (1, 10, 15I) Attitude filtering gains

v1
[
0 0 −1

]�
Direction (gravity)

v2
[
0.98 0.17 0

]�
Direction (magnetic field)

v3 v1 × v2 Virtual meas. direction

J 1
100

⎡
⎣5.2 2.2 2.2
2.2 7.0 1.7
2.2 1.7 5.3

⎤
⎦ Inertia tensor (kg ·m2)

m 0.1 Mass (kg)
g 9.81 Gravitational acc. (m/s2)

12



7.1 Saturated translational output feedback

In this first example, we consider the non-autonomous system in (8), for
which the feedback loop is closed as described in Proposition 1. Here we
only assume knowledge of the positional states, and take a time-varying
ωr(t), as

ω̇r(t) =
[
sin(t+ 1) sin(2t+ 2) sin(3t+ 3)

]�
.

We then generate three simulations from the same initial conditions, using
the nominal parameters in Table 2 but changing the value of the saturation
bound γ in each simulation. In the first, γ = 1 (red), in the second γ = 1.5
(blue), and in the third γ = 2 (black). The resulting system responses for
these three cases are shown in Figure 1, where the virtual input is clearly
bounded at the corresponding γ-value at all times. The error states con-
verge to zero, and the Lyapunov function (shown in the logarithm) decays
exponentially in time, demonstrating the local exponential stability of the
translational subsystem in Proposition 1.
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Figure 1: From top to bottom: (i) tracking error and (ii) estimate error in po-
sition, (iii) tracking error and (iv) estimate error in velocity, (v) filtermemory,
(vi) Lyapunov function V1(ρe, νe, ρ̃e, ν̃e, z̃) in the logarithm, and (vii) the norm
of the virtual controls ‖u(t)‖2 for γ = 1 (red), γ = 1.5 (blue), γ = 2 (black).
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7.2 Attitude output feedback

In this example, we illustrate the proposed filtered attitude output feed-
back in Proposition 2. The resulting closed loop system is UaGAS and ULES,
and to show this in a simulation example, we consider a realization of
the initial conditions and parameters in Tables 1 and 2, where the sys-
tem is set to track a reference trajectory defined by the initial conditions
Rr(t0) ∼ U(SO(3)) and ωr(t0) ∼ N (0, I), and integrated in time with a ref-
erence torque

τr(t) =
[
sin(2t+ 1) sin2(4t+ 2) sin(6t+ 3)

]
. (17)

To illustrate the distance of two elements R1, R2 ∈ SO(3), we consider the
metric d(R1, R2) defined in Section 2. With the resulting system response
depicted in Figure 2, it is clear that both the tracking error and the estimate
error in the closed loop dynamics converge to the identity element, with
d(Re, I) → 0 and d(R̃, I) → 0. This despite an initialization which is close to
as far from the stable equilibrium point as possible.

7.3 Full output feedback with aggressive maneuvering

We now consider themain result, combining the two output feedback con-
trollers using the cascade theorem as outlined in Section 6. For this nu-
merical example, we will attempt to track a highly volatile state-trajectory,
defined as a looping maneuver on the surface of a torus. To facilitate such
a demanding maneuver, we make use of the differential flatness of the
quadrotor UAV, as derived in Greiff [2017] but here in the NED case. This
permits the evaluation of a reference trajectory (ρr, νr, Rr, ωr, fr, ḟr, f̈r, τr) ∈
R

15×SO(3) satisfying (6) from a set of flat outputs γ = (γ1, γ2, γ3, γ4)
� ∈ R

4

without integration, provided the trajectory γ(t) is sufficiently smooth. Re-
fer to Sira-Ramirez and Agrawal [2004] for a review of flatness. We param-
eterize the motion of (6) by a flat output trajectory

γ1(t) := pr1(t) = (6 + 2cos(ωvt))cos(ωut)

γ2(t) := pr2(t) = (6 + 2cos(ωvt))sin(ωut)

γ3(t) := pr3(t) = 2sin(ωvt)

γ4(t) := ψ(t) = ωut+ π,

where the first three flat output dimensions are taken to be the position of
the UAV in the global frame of reference, and the fourth output is chosen
as the yaw angle in a ZYX Tait-Bryan representation, i.e., the rotation of the
system about the e3 direction in the global reference frame.

The trajectory is defined by constant angular rates ωu = 0.2π (rad/s) and
ωv = 1.2π (rad/s), over t ∈ [0, 70/6] (s), and just as in the previous examples,
the initial conditions of the system are randomized according to Table 1.
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Figure 2: From top left to bottom right; (i) attitude estimate error as d(R̃, I);
(ii) attitude tracking error as d(Re, I); (iii) the attitude rate estimate error;
(iv) the attitude rate control error; (v) the Lyapunov function V1(Re, R̃, ωe, ω̃)
in the natural logarithm; (vi) the torque control signals τ(t); which clearly
converge the defined reference trajectory τr(t) as defined in (17).

In Figure 3, the resulting system response is shown in terms of the sys-
tem configurations in time, plotted over the torus on whose surface the
UAV is looping. In Figure 4 the tracking error is shown over the expanded
reference trajectory.

Despite the large initial errors, the system quickly converges to the ref-
erence trajectory, implying that the estimator errors converge to zero, and
it is clear that (ρe, νe, ρ̃e, ν̃e, z̃, Re, ω̃, R̃, ωe) → (0, 0, 0, 0, 0, I, 0, I, 0).

8 Conclusion

In this paper, we present a novel output feedback controller for the prob-
lemof trajectory trackingwith a quadrotorUAVusingpartial state-information,
as defined in Section 3. The proposed control system comeswith fourmain
advantageswhen considering practical implementations. Firstly, the trans-
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Figure 3: Configurations while tracking the looping trajectory from a large
initial control and estimate error. The initial position is close to the center
of the torus.

lational control is saturated, permitting the bounding of the virtual control
signal u(t) so as to comply with actuator constraints. Secondly, the con-
troller filters the acquired measurements, thereby attenuating the effect
of measurement noise in the control signals and states. Thirdly, the con-
troller only uses information which is ubiquitous in modern UAV applica-
tions, including positional, gyroscopic, accelerometer and magnetometer
measurements. It does not rely on full state information, as many UAV
controllers do, but rather readily available measurements. Fourthly, to the
best knowledge of the authors, this is the first filtered output feedback con-
troller with proven uniform local exponential stability, which comes with
benefits in terms of robustness to disturbances.

We conclude that the proposed controller has great practical utility, and
its performance will be evaluated in a real-time implementation in our fu-
ture work. Furthermore, we will investigate the possibility of removing the
gyroscopic measurements to make the approach even more general.
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