
2114 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

Optimal Access Management for Cooperative
Intersection Control

Alejandro Ivan Morales Medina , Falco Creemers, Erjen Lefeber , and Nathan van de Wouw

Abstract— This paper presents an intersection access manage-
ment methodology that optimizes the crossing sequence of an
automated intersection, where the low-level vehicle control is
performed by a cooperative intersection control (CIC) strategy.
While the CIC regulates the safe and efficient relative motion of
vehicles in the intersection, a high-level hybrid queuing model is
proposed to describe the dynamics of the vehicle queues associ-
ated to each intersection lane. This model, including constraints,
is used to design an optimal access management approach based
on the model predictive control that minimizes the time that
the vehicles spend within the intersection, thereby optimizing
the traffic throughput of the intersection. The performance of
this methodology is studied by means of two representative
examples. The impact of the design parameters of the optimal
access management approach is shown for a T-intersection case
study. Moreover, using a real-life five lane intersection case study,
the proposed approach is compared to a vehicle-actuated traffic
light approach, and a first come first served approach. The
comparison shows the benefits of the automated optimal serving
of vehicles from different lanes.

Index Terms— Optimal intersection management, cooperative
intersection control, hybrid dynamical queuing system, model
predictive control, mixed-integer linear programming.

I. INTRODUCTION

ONE of the impacts of the continuous increase of popula-
tion in urban areas, which according to [1] will be a total

of 66% of the world’s population by 2050, is the saturation
of the transportation network of the cities of the world. The
congestion experienced in everyday traffic is caused by a
variety of factors, one of which is the interruption of the traffic
flow at road intersections [2]. Classical systems used to control
road intersections (namely traffic lights, roundabouts, and stop
signs) have fallen short to account for the irregularities of the
congested traffic flow. It is worth noting that these classical
systems also introduce other problems such as excessive vehi-
cle idling, unbalanced waiting times, and potential collisions.

Manuscript received June 20, 2018; revised December 11, 2018; accepted
April 8, 2019. Date of publication May 2, 2019; date of current version
May 1, 2020. This work was supported in part by the European Union Seventh
Framework Programme [FP7-ICT-2013-10] under Grant 612035 and in part by
the Interoperable GCDC (Grand Cooperative Driving Challenge) AutoMation
Experience (i-GAME). The Associate Editor for this paper was J. Haddad.
(Corresponding author: Alejandro Ivan Morales Medina.)
A. I. Morales Medina, F. Creemers, and E. Lefeber are with the

Department of Mechanical Engineering, Eindhoven University of Technology,
5612 AZ Eindhoven, The Netherlands (e-mail: a.i.morales.medina@tue.nl;
f.m.g.creemers@alumnus.tue.nl; a.a.j.lefeber@tue.nl).
N. van de Wouw is with the Department of Mechanical Engineering,

Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands,
also with the Civil, Environmental and Geo-Engineering Department, Uni-
versity of Minnesota, Minneapolis, MN 55455 USA, and also with the Delft
Center for Systems and Control, Delft University of Technology, 2628 CD
Delft, The Netherlands (e-mail: n.v.d.wouw@tue.nl).
Digital Object Identifier 10.1109/TITS.2019.2913589

The field of Intelligent Transportation Systems has risen
(aided by technological advances on sensing, communication,
and automation) as response to the increase in complexity of
transportation networks [3]. Under the category of Coopera-
tive Intersection Management we find a range of solutions for
the road intersection problem [4], which rely on the ability of
vehicles to communicate with other vehicles (V2V commu-
nication), and with the infrastructure (V2I communication).
The solutions fall in two main categories, namely Resource
Allocation (RA) and Trajectory Planning (TP). Note that
both categories include centralized and distributed instances.
The main difference between the RA and TP approaches
is the granularity of the representation of the space-time of
the intersection. The RA approach defines the intersection
as a set of space tiles that can be allocated in time, by a
scheduler that avoids conflicts, to a vehicle that requests access
to the intersection; examples are found in [5]–[8]. On the
other hand, the TP approaches consider predefined trajectories
through the intersection that vehicles ought to follow, while
maintaining a safe distance, using continuous-time control
strategies; examples are found in [9]–[14].
The Cooperative Intersection Control (CIC) strategy,

proposed in [15], is a TP approach that achieves a safe
crossing of vehicles through an unsignalized intersection by
defining and regulating virtual platoons of vehicles driving
on different lanes of the intersection. As presented in [15],
the CIC approach implements a First-Come-First-Served algo-
rithm to assign the crossing sequence of vehicles, which
performs better than a fixed traffic light cycle but is far from
optimal in terms of throughput. The purpose of this work is
to develop an algorithm that optimizes the assignment of the
crossing sequence for the CIC methodology.
Within Cooperative Intersection Management approaches,

we find solutions that optimize the crossing sequence of
vehicles. In general, these solutions use Model Predictive
Control (MPC) to achieve optimization; note that MPC uses
a prediction model and a cost function to be minimized. The
work in [16] presents a distributed approach that decomposes
the optimization problem into a time-slot allocation problem
and a vehicle control problem, in this work a given cross-
ing sequence is considered. The works in [17]–[19] present
an approach which considers a quadratic cost function that
penalizes the difference between the dynamical state of a
vehicle (velocity, and acceleration) and the dynamical state
required to achieve a safe crossing of each vehicle. A distrib-
uted solution is presented in [17], [18], whereas a centralized
solution is presented in [19]. The work in [20] presents a
centralized approach with a similar quadratic cost function,

1524-9050 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2115

but it considers space sampling instead of time sampling.
In contrast, the centralized approach in [21], defines a cost
function in terms of the time that a vehicle spends in the
intersection, its fuel consumption and a comfort level metric.
The application of MPC in the aforementioned approaches

for intersection control focuses on controlling directly the
dynamics and interaction of individual vehicles. The objective
of this work is to achieve an optimal crossing sequence for
CIC, as proposed in [15], where the latter already regulates
a safe and efficient relative motion between the vehicles in
the intersection. Hence, the MPC-based intersection access
management approach, proposed here, does not control the
vehicles, but focuses on controlling the sequence in which
vehicles are granted access to the intersection to optimize
throughput. In support of such an approach, we propose to
add a level of abstraction to model and control the intersection
itself. For this matter, we consider that road intersections
have been modeled successfully at such abstraction level
using queuing theory [22]. Such queuing models have aided
the development of optimal traffic light cycles, as shown
in [23]–[25].
A preliminary version of this approach is presented in [26],

which differs from this work in the following ways. Firstly,
in the current work, we present an in-depth model description
of the intersection dynamics, compared to a concise one
in [26]. Secondly, in [26], the discretization of the queuing
model allows for the occurrence of controlled events only
at sampling instants, whereas in the current paper the pro-
posed approach allows for the description of the occurrence
of controlled events during the inter-sampling periods. This
extension, in turn, allows for a less conservative solution in
terms of intersection throughput. Thirdly, we now propose a
computationally more efficient formulation of the optimization
problem underlying the intersection control approach, which
further supports applicability. Finally, a more extensive simu-
lation case study is presented.
The main contribution of this work is the development

of a methodology that optimizes the crossing sequence of
vehicles through an intersection such that the time vehicles
wait to gain access to the intersection is minimized. In
Section II, the problem statement is formalized by introducing
the necessary assumptions needed to regard the intersection
problem as a queuing problem. Section III presents the hybrid
dynamical queuing system, including its constraints, that mod-
els the behavior of the intersection. This model is then used,
in Section IV, to design a MPC controller that minimizes the
time that vehicles spend in the intersection. The performance
of the controller is studied, in Section V, by means of two
representative case studies. Finally, this work is concluded in
Section VI.
Before introducing the problem statement, we introduce

some notional conventions below.

A. Notation

Consider the set of all real numbers R, the empty set ∅,
and the sets N = {0, 1, 2, · · · }, R≥0 = {z|z ≥ 0, z ∈ R},
Da = {z|0 ≤ z ≤ a, a > 0}, B = {0, 1}, O = {0}, I = {1}.

Moreover, consider the matrices γa ∈ Ia×1, Oa,b ∈ Oa×b, and
In ∈ Bn×n , the elements of which are

(In)ab =
{
1, if a = b,

0, if a �= b.
(1)

We denote the Hadamard product (or element-wise product)
of two matrices of the same dimension as (C ◦ D)ab =
(C)ab(D)ab. Finally, consider that dom z represents the
domain of z.

II. PROBLEM STATEMENT

This section presents the underlying assumptions to consider
the intersection management problem as a queue serving
problem. But before we start with such definitions, we offer
a short summary of the CIC strategy, which is the low-level
cooperative vehicle dynamics control strategy used as a basis
for the intersection management problem considered here.
Note that the optimal solution to the intersection management
problem, presented in this work, is considered as a high-level
layer applied to the CIC strategy.
The CIC strategy, in [15], is designed for Cooperative

Autonomous Vehicles (CAVs), which are vehicles equipped
with actuators to accelerate/decelerate and steer, a GPS to
determine its position in space, sensors that measure the
dynamical state of the vehicle (namely, longitudinal velocity
and acceleration, and yaw rate), and a wireless communication
antenna. Each vehicle broadcasts a heartbeat message which
contains its position, dynamical state, and directional intention.
Three main controllers regulate the dynamical state of each
vehicle, namely, the Path-Following Control (PFC), which
ensures that the vehicle stays on a given path, the Cruise Con-
trol (CC), which is a velocity regulator, and the Cooperative
Adaptive Cruise Control (CACC), which is an inter-vehicle
distance regulator. Note that, in the context of the CIC strategy,
vehicles are able to define and regulate a virtual inter-vehicle
distance, which is defined for vehicles driving on differ-
ent lanes of the intersection. The regulation of such virtual
inter-vehicle distance achieves the safe crossing of vehicles
with crossing paths. With the aforementioned control strategies
in play, the vehicles are able to cross the intersection in a
First Come First Served (FCFS) basis. Using CIC strategy for
the (cooperative) control of the individual vehicle dynamics,
we can make the following assumptions:

• Each vehicle follows a fixed path through the intersection.
• The vehicles travel with a velocity less than or equal to
a given maximum velocity value v̌ .

• Collision avoidance is achieved by constantly regulating
the relative motion between vehicles with crossing paths.

• The dynamical state of each vehicle is known.
Note that the velocity assumption is a consequence of the
interaction between vehicles regulated with CC and CACC.
Now, let us start with the preliminary definitions. First,

consider the generalization of a road intersection or just inter-
section for short. An intersection is the point in which three
or more road segments (or arms) meet. Each road segment is
either a one- or two-way street divided into lanes. We refer
to the lanes that direct traffic towards the intersection as input

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

2116 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

Fig. 1. Representation of the queues, paths, and collision points of an
intersection with four arms, seven input lanes (colored), and three output
lanes (white).

lanes. On the other hand, we refer to the lanes that direct traffic
away from the intersection as output lanes. Figure 1 depicts a
particular example.
Consider an intersection with n input lanes such that each

input lane q ∈ Q = {1, · · · , n} has a distinct path Tq ⊂ R2

associated with it, as depicted in Figure 1. In other words, each
particular input lane (e.g. lane 1 in Figure 1) fully determines
the path through the intersection (e.g., T1 in Figure1) and,
consequently, also the output lane. Note that Oq is the starting
point of Tq . Two paths can be either crossing or non-crossing.
To define this property, consider the set

T = {
(a, b)|a, b ∈ Q; a �= b; Ta,b �= ∅}

, (2)

where Ta,b = Tb,a = Ta ∩ Tb . Note that Ta,b = ∅ means
that paths a and b do not intersect. Therefore, the path of
lane a ∈ Q crosses the path of lane b ∈ Q if (a, b) ∈ T (for
instance, T1 and T7 in Figure 1). On the other hand, the path of
lane a ∈ Q does not cross the path of lane b ∈ Q if (a, b) �∈ T

(for instance, T1 and T2 in Figure 1). Moreover, note that the
set Ta,b may contain more than one point (for instance T6,7,
see T6 and T7 in Figure 1). Therefore, we define a unique
collision point as

Xa,b = arg min
X∈Ta,b

‖X − Oa‖. (3)

It is worth noting that Xa,b = Xb,a , and that the calculation of
the collision point gives the same result if Ob is used instead
of Oa . Several collision points are depicted in Figure 1.
Consider that every path can be parameterized as Tq (τ),

∀τ ∈ R, such that the path starting point is defined as
Oq := Tq (0). Given this parameterization we can define the
curvilinear path coordinate, associated to each path Tq(τ), as

sq (τ) =
∫ τ

0
|T ′

q (σ)|dσ, (4)

where T ′
q (σ) := dTq/dσ . Note that (4) is referred to as the

arc length integral. With this definition we can give an insight
of the functionality of the CIC strategy. Consider the vehicles

V1 and V 2, driving on lane a and b, respectively, such that
V1 crosses the intersection before V2. The position of V1 on
the path Ta can be defined as sa(τ1). Similarly, the position of
V2 on the path Tb can be defined as sb(τ2). Therefore, we can
define the virtual inter-vehicle distance between V 1 and V2 as
�sa,b(τ1, τ2) = sa(τ1)−sb(τ2)− L1− Sa,b + Sb,a, where L1 is
the length of vehicle V 1, Sa,b = sa(τa,b), and Sb,a = sb(τb,a),
with τa,b and τb,a defined such that Ta(τa,b) = Xa,b, and
Tb(τb,a) = Xb,a . This (virtual) inter-vehicle distance is then
regulated (by the CACC) to the reference value �sre f , such
that limt→∞ �sa,b(t) − �sre f = 0.
The first step towards defining the queue serving problem

is to consider a space along each lane in which a vehicle is
considered to be in the queue (this is depicted in Figure 1
by the colored blocks). Every time a vehicle crosses the point
Iq the queue length xq ∈ N increases by one and the vehicle
is considered to be in the queue. Similarly, when a vehicle
crosses the point Oq , or when it is granted access, the queue
length decreases by one and the vehicle is considered to be
served (i.e., it then enters and passes through the intersection).
We refer to the zone delimited by Iq and Oq as the queue
zone. The vehicle at the front of queue is instructed to stop
at Oq if no access has been granted to it, as if waiting on
a lane controlled by a traffic light. However, in many cases
the queue zone would contain a number of moving vehicles,
which is referred to as a moving queue, awaiting a decision
on access to the intersection, given that the queue zone is
long enough and that the vehicle server is fast. Although the
moving queue concept describes accurately the behavior of
vehicles approaching the intersection, in the remainder of this
work we consider (for the sake of simplicity) a static queue of
vehicles. In other words, we consider that all vehicles in every
queue are waiting at pointOq to gain access to the intersection.
Note that to implement the moving queue concept instead of
the static queue concept we need to consider the time it takes a
vehicle to reach Oq , which would need to be estimated, based
on the dynamical state of the vehicle.
The second step towards defining the queue serving problem

is to define the service time matrix T s ∈ Rn×n , the elements of
which T s

a,b := (T s)ab represent the time that the queue server
needs to wait to serve queue b after queue a was served. First,
consider a pair of queues such that we can define the time to
collision t̃a,b, ∀(a, b) ∈ T, with T defined as in (2), which is
the time that a vehicle in queue a takes to travel from Oa to
Xa,b, and, similarly, t̃b,a , ∀(b, a) ∈ T is the time that a vehicle
in queue b takes to travel from Ob to Xb,a . Finally, consider
the time gap t̄h > 0 which is the desired minimum time it
takes one vehicle to cross a specific point after other vehicle
has crossed it. We can calculate t̄h as t̄h = �sre f /v̌, where
�sre f is the reference virtual inter-vehicle distance and v̌ is the
maximum velocity. Considering all the aforementioned terms,
we can define the elements of the service matrix as

T s
a,b =

⎧⎪⎨
⎪⎩
0, ∀(a, b) �∈ T,

t̄h + t̃a,b − t̃b,a, ∀(a, b) ∈ T,

t̄h , for a = b,

(5)

note that T s
a,b �= T s

b,a , and T s
a,b ∈ R. The calculation of the

elements of (5) in the context of the CIC strategy in [15]

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2117

would require a time prediction strategy based on the current
state (position, velocity, and acceleration) of each vehicle at
the front of each queue, and its relation to other vehicles.
However, this prediction strategy is out of the scope of this
work where we consider static queues of vehicles. For the
remainder of this paper, we consider that the constant values
t̃a,b, t̃b,a ∈ R, ∀a, b ∈ Q, are calculated based on the geometry
of the intersection and the nominal velocity of the vehicles
within the intersection.
In conclusion we, can state the queue serving problem as

follows. Given a set of queues Q design a queue server,
constrained by the service time matrix T s , that minimizes the
time it takes to empty all a and b queues.

III. HYBRID QUEUING DYNAMICAL SYSTEM

Consider a road intersection, as defined in the previous
section, such that a queue q ∈ Q is associated to each of
its n input lanes. Two distinct events modify the state of each
queue: an arrival wq to the queue, and a departure uq from
the queue (leading to access to the intersection). The state
of each queue is represented by the queue length xq , and by
two inter-event timers, namely the inter-arrival timer tu,q , and
the inter-departure timer tw,q . When an event occurs, either
an arrival or a departure, the queue length is updated and the
inter-event timer, either inter-arrival or inter-departure, is reset
to zero.
To design a Model Predictive Controller, the development

of which is presented in Section IV, we need to define a
prediction model, of the process and its disturbances, and a
cost function [27]. The prediction model is used to estimate
the state of the process tN seconds into the future. This
prediction time is defined as tN = N�t where N is the
prediction horizon and �t is the sampling time. If we model
the dynamics of the queue state as a plain discrete system (such
that we have an On-Sampling-Event (OSE) representation) we
would need to select a small sampling time to represent accu-
rately the inter-event timers. A small sampling time �t would
require a big prediction horizon N to achieve a reasonable
prediction time tN . This would result in a high computational
burden since the optimization problem (of size proportional
to N) has to be solved every �t seconds. To reduce the
computational burden, we represent the queuing process as
a hybrid dynamical system such that the inter-event timers
are represented in continuous time, and the queue lengths
jump on event times. Then, this hybrid system is sampled in
such a way that we allow for an Inter-Sampling-Event (ISE)
representation. This means that we define a prediction model
that describes if an event happens and when it happens during
the sampling interval. Therefore, we can use a bigger sampling
time �t and a lower prediction horizon N to achieve a
reasonable prediction time tN . Which in turn, will decrease the
computational burden. It is worth nothing that the preliminary
work in [26] uses an OSE representation.
Consider the hybrid dynamical system{

ż = f (z, e), if (z, e) ∈ C,

z+ = g(z, e), if (z, e) ∈ D,
(6)

where z ∈ R
α×1 is the state vector, ż is the rate of change of

the state z, z+ is the value of the state after an instantaneous
change, e ∈ Rβ×1 is the input vector, f (z, e) is the flow map
(or vector field), g(z, e) is the jump map, C is the flow set,
and D is the jump set. The solutions of (6) are defined on
the hybrid time domain (t, j), where t represents continuous
time, and j represents the event counter. Definitions on the
solution concept for the hybrid dynamical system in (6) are
presented in the Appendix.
Now we can introduce the definitions that govern the

dynamics of the state of the queues. The input and state vectors
in (6) are given by

e := [
wT uT

]T
, and z := [

xT tT
w tT

u

]T
, (7)

where w ∈ B
n×1 is the arrivals vector, and u ∈ Bn×1 is the

departures vector, x ∈ Nn×1 is the queue lengths vector, tw ∈
R

n×1
≥0 is the inter-arrival timers vector, and tu ∈ R

n×1
≥0 is the

inter-departure timers vector. Note that for every queue q ∈ Q
we can define, considering all the vectors that constitute (7),
the individual queue states wq := (w)q , uq := (u)q , xq :=
(x)q , tu,q := (tu)q , and tw,q := (tw)q .
The arrivals and departures of vehicles (for individual

queues) are defined in continuous t time as follows:

wq (t) =
{
1 if a vehicle arrives at time t,

0 otherwise,

uq(t) =
{
1 if a vehicle departs at time t,

0 otherwise,
(8)

which are instantaneous events. These events can be described
in the hybrid time domain for all queues as follows:

w(t, j) =
{

w(t), j = min{ j∗|(t, j∗) ∈ dom φ},
0, j �= min{ j∗|(t, j∗) ∈ dom φ},

u(t, j) =
{

u(t), j = min{ j∗|(t, j∗) ∈ dom φ},
0, j �= min{ j∗|(t, j∗) ∈ dom φ}, (9)

with (t, j) ∈ dom φ. Note that φ is the solution of the hybrid
system, and that the conditions on the event counter j in (9)
are to ensure that there are no repeated events at time t induced
by the continuous-times inputs w(t) and u(t).
The flow map f (z, e) in (6) is defined as

f (z, e) := [
O1,n γ T

n γ T
n

]T
. (10)

The definition of the jump map g(z, e) in (6) is made in
parts. Consider

g(z, e) = [
g1(z, e)T g2(z, e)T g3(z, e)T

]T
. (11)

The jump map g1(z, e) ∈ Nn×1 describes a jump of the the
queue length state and is defined as

g1(z, e) := x + w − u, (12)

The jump map g2(z, e) ∈ R
n×1
≥0 describes a reset of the

inter-arrival timers, for every q ∈ Q there is a sub-map
g2,q(z, e) := (g2(z, e))q defined by

g2,q(z, e) :=
{
0, if wq = 1,

tw,q , otherwise.
(13)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

2118 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

Finally, the jump map g3(z, e) ∈ R
n×1
≥0 describes a reset of

the inter-departure timers, for every q ∈ Q there is a sub-map
g3,q(z, e) := (g3(z, e))q defined by

g3,q(z, e) :=
{
0, if uq = 1,

tu,q , otherwise.
(14)

The instantaneous events, defined in (9), represent the
arrivals and departures of vehicles. The vehicles can not arrive
at (or depart from) the same lane at the same continuous time
instant t since the vehicles are modeled as physical entities
which cannot be at the same place at the same time. There-
fore, there exists a minimum inter-arrival and inter-departure
time for each queue. For this matter, the following realistic
assumption is posed.

Assumption 1: For all t ≥ 0 such that uq(t) = 1, with
q ∈ Q, there exist an εu > 0 such that uq(t ′, j ′) = 0,
∀(t ′, j ′) ∈ dom φ, with t ′ ∈ (t, t + εu]. Additionally, for all
t ≥ 0 such that wq (t) = 1, with q ∈ Q, there exist an
εw > 0 such that wq(t ′, j ′) = 0, ∀(t ′, j ′) ∈ dom φ, with
t ′ ∈ (t, t + εw].
It is worth noting that this assumption prevents Zeno behav-

ior, which is when an unbounded number of events occur in a
bounded time interval. Next, we design the flow and jump sets,
C and D in (6), such that Assumption 1 is satisfied. In other
words, the hybrid system in (6) flows as long as there are no
events (arrivals, or departures), or during events that violate
Assumption 1, and jumps when there is an event which is in
correspondence with Assumption 1.
Two pairs of flow sets and jump sets are defined, one

pair (Cu ,Du) dependent on the arrivals, and one pair (Cw,Dw)
dependent on the departures. The sets dependent on the
departures are given by

Cu =
⋃

q∈Q

(
C∗

u,q ∪ C

u,q

)
, and Du =

⋃
q∈Q

Du,q , (15)

where

C∗
u,q = {

(tu,q , uq)|tu,q ≥ 0, uq = 0
}
,

C

u,q = {

(tu,q , uq)|tu,q ≤ εu , uq = 1
}
,

Du,q = {
(tu,q , uq)|tu,q ≥ εu , uq = 1

}
. (16)

The sets dependent on the arrivals are given by

Cw =
⋃

q∈Q

(
C∗

w,q ∪ C

w,q

)
, and Dw =

⋃
q∈Q

Dw,q , (17)

where

C∗
w,q = {

(tw,q , wq)|tw,q ≥ 0, wq = 0
}
,

C

w,q = {

(tw,q , wq)|tw,q ≤ εw,wq = 1
}
,

Dw,q = {
(tw,q , wq)|tw,q ≥ εu, wq = 1

}
. (18)

Combining the sets defined above, we can define the flow set
C and the jump set D in (6) as

C := {
(z, e)|(tu, u) ∈ Cu ∧ (tw,w) ∈ Cw

}
,

D := {
(z, e)|(tu, u) ∈ Du ∨ (tw,w) ∈ Dw

}
. (19)

Finally, we can conclude the definition of the hybrid queuing
dynamical system in (6), where the input vector e and the state

vector z are defined as in (7), the flow map f (z, e) is defined
as in (10), the jump map g(z, e) is defined as in (11)-(14), and
the flow set C and the flow set D are defined as in (15)-(19).
Note that, in the input vector e, we consider w as a disturbance
to the system and u as the control input.

A. Constraints on the Control Input

The queue server is constrained by the serving time matrix
T s ∈ R

n×n
≥0 . In other words, we need to wait T s

a,b seconds
to authorize a departure from queue b ∈ Q which follows a
departure from queue a ∈ Q. We can write the aforementioned
condition as

ub(t, j) ∈
{

O, if ∃a ∈ Q, such that tu,a(t, j) < T s
a,b,

B, otherwise.
(20)

Moreover, if two queues are conflicting (meaning that
(a, b) ∈ T) then a departure from queue a ∈ Q and from
queue b ∈ Q cannot be authorized at the same time t . Such
constraint can be written as

ua(t, j1) + ub(t, j2) ≤ 1,
∀(a, b) ∈ T, (t, j1), (t, j2) ∈ dom φ. (21)

Finally, a departure from an empty queue should not be
authorized. This constraint can be written as

ua(t, j) ∈ O, if xa(t, j) = 0, (22)

with a ∈ Q.

IV. OPTIMAL INTERSECTION ACCESS MANAGEMENT

This section presents the Optimal Intersection Access
Management (OIAM) strategy based on model predictive
control. Hereto, the discretization of the hybrid queuing
system dynamics, described in Section III, is presented in
Section IV-A. Based on this discretization we formulate part
of the MPC problem by defining a prediction model, defined in
Section IV-B, and a cost function, defined in Section IV-C. By
considering the constraints on the control input, presented in
Section IV-D, we shape the MPC problem as a Mixed-Integer
Linear Programming (MILP) optimization problem, which is
presented in Section IV-E, the solution of which yields the
optimal control law.

A. Discretization of the Hybrid Queuing Dynamical System

Consider a sampling time interval �t such that the time
instant tk = k�t, ∀k ∈ N. Given this sampling interval we
can write the discretized version of (6) as

z(k + 1) = h
(
z(k), e(k)

)
, (23)

where z(k) = z(tk, j∗), j∗ = max{ j |(tk, j) ∈ dom φ}, with
z defined as in (7). Note that the event counter j∗ ensures
that z(k) represents the value of z(tk, j) after the latest jump.
We know from the definitions in (8) and (9) that the vector
e(t, j) = [

w(t, j)T u(t, j)T
]T
consists of instantaneous (in t)

signals which cannot be simply sampled. Therefore, to define
e(k) = [

w(k)T u(k)T
]T
we need to introduce the following

assumption.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2119

Fig. 2. Illustration of the event delays du,q (k) and dw,q (k).

Assumption 2: The sampling interval �t is such that there
is at most one arrival and at most one departure on each
queue q ∈ Q for each sampling interval [tk, tk+1), for k ∈ N.
In other words, uq(t, j) and wq(t, j) are non-zero at most
once for t ∈ [tk, tk+1) for each q ∈ Q and (t, j) ∈ dom φ.
Note that this assumption can be satisfied by taking

�t < min(εu, εw), (24)

with εu and εw as in Assumption 1 (so it is taken for granted
that Assumption 1 is satisfied). From (5), we know that a
departure may be authorized at least every Ms seconds, with

Ms = min{T s
a,b > 0}, ∀a, b ∈ Q, (25)

such that we can define

εu ≤ Ms . (26)

Therefore, we can define a definite bound for the sampling
time in (24), considering (26) and εu < εw, as �t < Ms .
Consider the instantaneous signals uq(t, j), wq (t, j),

depicted in Figure 2. We can define the so-called event
delay for each instantaneous signal, for the time instant tk ,
as follows:

dw,q(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t∗ − tk,

if ∃t∗ ∈ [tk, tk+1), such that
wq(t∗, j∗) = 1, for some

(t∗, j∗) ∈ dom φ,

�t, otherwise,

(27)

and

du,q(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t∗ − tk,

if ∃t∗ ∈ [tk, tk+1), such that
uq(t∗, j∗) = 1, for some

(t∗, j∗) ∈ dom φ,

�t, otherwise,

(28)

where du,q(k) := (du(k))q and dw,q(k) := (dw(k))q , for
du(k), dw(k) ∈ D

n×1
�t . Therefore, we can write the discretized

version of the arrivals and departures as

wq(k) =
{
1, if dw,q(k) < �t,

0, otherwise,

uq(k) =
{
1, if du,q(k) < �t,

0, otherwise,
(29)

where wq(k) := (w(k))q and uq(k) := (u(k))q for
w(k), u(k) ∈ Bn×1, which represent if an event (arrival or
departure) occurs in the time interval [tk, tk+1). Moreover,

the definitions in (27), (28), and (29) are necessary to dis-
cretize the dynamics of the inter-event timers, including the
jumps, in (13) and (14), as follows:

tw,q(k + 1) =
{

�t − dw,q(k), if wq(k) = 1,

�t + tw,q(k), otherwise,

tu,q(k + 1) =
{

�t − du,q(k), if uq(k) = 1,

�t + tu,q(k), otherwise,
(30)

where tw,q(k) := (tw(k))q , tu,q(k) := (tu(k))q , for
tw(k), tu(k) ∈ R

n×1
≥0 ; such that if an event occurs in the

time interval [tk, tk+1), then the inter-event timers are reset
considering the values of the corresponding event delays.
Finally, we can define the discrete map z(k + 1) =

h
(
z(k), e(k)

)
in (23) as

z(k + 1) =
⎡
⎣ x(k) + w(k) − u(k)

γn�t + tw(k) − w(k) ◦ (tw(k) + dw(k))
γn�t + tu(k) − u(k) ◦ (tu(k) + du(k))

⎤
⎦. (31)

Note that in this definition du(k) becomes a second control
decision variable besides u(k). Moreover, dw(k) is determined
by the disturbance w(t, j).

Constraints on the Control Input: Given the definition
in (31), we can define the discrete version of the constraints
in (20), (21), and (22) as

T s
a,bub(k) ≤ tu,a(k) + du,a(k), (32)

ua(k) + ub(k) ≤ 1, ∀(a, b) ∈ T, (33)

ua(k) ≤ xa(k). (34)

Note that in all cases a, b ∈ Q.

B. Prediction Model

The model presented in the previous section shows a bilinear
form, which is a type of nonlinearity. According to [28],
this bilinear problem can be solved using a Mixed Integer
Linear Program (MILP) formulation. It is worth noting that
the reformulation as in [28] arrives at the same solution as the
nonlinear program, the approaches differ in the performance
of the solver.
We note that the dynamics of the inter-departure timers

tu(k) and the dynamics of the queue lengths x(k) are both
independent of the dynamics of the inter-arrival timers tw(k)
(the latter of which is relevant for the definition of the
disturbance model). Moreover, we note that the dynamics of
the inter-departure timers contain a product of the input u(k)
with the departure timing delay du(k) and the timers tu(k)
themselves, see (31). To remove the aforementioned products
we introduce the variables τ (k) and δ(k) which should satisfy:

τ (k) := u(k) ◦ tu(k),

δ(k) := u(k) ◦ du(k), (35)

such that τ (k) ∈ R
n×1
≥0 and δ(k) ∈ D

n×1
�t , which can be

achieved by introducing additional constraints to the prediction
model that are discussed later in this section. Now, we can
rewrite (31), considering (35) (while omitting the dynamics
of tw(k) for the reasons described above), as follows:

ζ(k + 1) = Aζ(k) + B1ν(k) + B2w(k) + C, (36)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

2120 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

with

ζ(k) =
[

x(k)
tu(k)

]
, ν(k) =

⎡
⎢⎢⎣

u(k)
du(k)
τ (k)
δ(k)

⎤
⎥⎥⎦, (37)

where ζ(k) is the state vector, ν(k) is the input vector, and

A =
[

In On,n

On,n In

]
, B1 =

[−In On,n On,n On,n

On,n On,n −In −In

]
,

B2 =
[

In

On,n

]
, C =

[
On,1
γn�t

]
, (38)

where B1 and B2 are the input matrices, and A is the system
matrix. Note that τ (k) is included in the input vector ν(k)
because its value is ultimately determined by u(k), and that
the definition in (36) is independent of du(k) which is anyway
included in the input vector ν(k) because it is relevant for the
definition of the constraints of the model.
To support Model Predictive Control we define a

discrete-time prediction model for N time steps into the future.
By considering (36), for N steps into the future we obtain

ζ̂ (k1)k = Aζ̂ (k0)k + B1ν̂(k0)k + B2ŵ(k0)k + C,

ζ̂ (k2)k = Aζ̂ (k1)k + B1ν̂(k1)k + B2ŵ(k1)k + C,
...

ζ̂ (kN)k = Aζ̂ (kN−1)k + B1ν̂(kN−1)k + B2ŵ(kN−1)k + C,

(39)

where the vectors σ̂ (ki)k ,∀i ∈ {0, · · · , N}, represent the
predicted value of the vector σ ∈ {ζ, ν,w} at time ki =
k + i evaluated at time k. Note that ζ̂ (k0)k = ζ(k). Finally,
the prediction model can be defined, using (39) and recurring
substitution, as follows:

ζ̂
k

= �ζ(k) + �1ν̂k + �2ŵk + �, (40)

where

ζ̂
k

:=

⎡
⎢⎢⎢⎣

ζ̂ (k1)k

ζ̂ (k2)k
...

ζ̂ (kN)k

⎤
⎥⎥⎥⎦, ν̂k :=

⎡
⎢⎢⎢⎣

ν̂(k0)k

ν̂(k1)k
...

ν̂(kN−1)k

⎤
⎥⎥⎥⎦, ŵk :=

⎡
⎢⎢⎢⎣

ŵ(k0)k

ŵ(k1)k
...

ŵ(kN−1)k

⎤
⎥⎥⎥⎦,

(41)

� =

⎡
⎢⎢⎢⎣

A
A2

...

AN

⎤
⎥⎥⎥⎦ , �1 =

⎡
⎢⎢⎢⎣

B1 Ob1 · · · Ob1
AB1 B1 · · · Ob1

...
...

. . .
...

AN−1B1 AN−2B1 · · · B1

⎤
⎥⎥⎥⎦,

(42)

�2 =

⎡
⎢⎢⎢⎣

B2 Ob2 · · · Ob2
AB2 B2 · · · Ob2

...
...

. . .
...

AN−1B2 AN−2B2 · · · B2

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

C
C
...
C

⎤
⎥⎥⎥⎦,

(43)

with b1 = dim B1 and b2 = dim B2. Note that �, �1, and �2
are the system matrices of the prediction model, and � is a
constant matrix. Moreover, ζ̂

k
, ν̂k , and ŵk are the predicted

state, input, and disturbance vectors at time k, respectively.

Disturbance Model: From (41) we know that it is neces-
sary to determine the future values of the disturbance vector
represented by ŵk , the elements of which are given by

(ŵk)i = ŵ(ki)k, ∀i ∈ {0, · · · , N − 1}, (44)

which represent the arrivals into a queue. We define the
elements of the vector in (44) as ŵq(ki)k := (ŵ(ki)k)q ,
∀q ∈ Q.
Consider that a vehicle arrives to queue q ∈ Q every

Wq > 0 seconds. The value of Wq at the time instant tk ,
represented by Wq(k) can be calculated in two ways. It can
either be set as constant which requires prior knowledge of the
input flow to the intersection, or be calculated using a moving
average window approach. In the latter approach, the number
of arrivals in a time window is divided by the length of the
time window in seconds which yields an average value of the
arrival rate. In this work, we consider deterministic arrivals
with known arrival rates. Therefore we set Wq as constant.
If a vehicle arrives every Wq seconds, then, according to

the definition in (13), the value of the inter-arrival timer is
bounded as 0 ≤ tw,q(t, j) < Wq . According to (27), if an
arrival occurs in the time interval [tk, tk+1) the arrival delay is
bounded as 0 ≤ dw,q(k) < �t , and is calculated as dw,q(k) =
Wq − tw,q(k). Therefore, according to (29), we can define the
arrival predictions in (44) as

ŵq(ki)k =
{
1, if Wq − t̂w,q (ki)k < �t,

0, otherwise,
(45)

where i ∈ {0, · · · , N −1}, and t̂w,q(k0)k := tw,q (k). Moreover,
the dynamics of the prediction of the inter-arrival timer, based
on (30), become

t̂w,q (ki+1)k = �t + t̂w,q(ki)k − ŵq(ki)k Wq , (46)

where i ∈ {0, · · · , N − 1}.

C. Cost Function

The objective of the MPC-based design for OIAM is to
minimize the time that vehicles spend within the intersection.
The total time that a vehicle spends within the intersection is
the sum of the time it waits to gain access plus the time it takes
to cross the intersection. Here, a CIC approach, as presented
in [15], is used to ensure the desired behavior of vehicles and
interaction between them. Therefore, we can assume that the
time it takes a vehicle to cross the intersection, once it has
gained access, is fixed. Hence, we focus on minimizing the
time a vehicle waits to gain access to the intersection. On this
basis, we can restate the objective to minimizing the weighted
average delay. According to Little’s Law [29], this objective is
equivalent (in steady state) to minimizing the weighted average
queue lengths. Therefore, given the definitions in (37), we can
write the cost function to be minimized as

J
(
ζ̂

k

)
=

N∑
j=1

ĉ ζ̂ (k j)k = [
ĉ · · · ĉ

] ⎡
⎢⎣

ζ̂ (k1)k
...

ζ̂ (kN)k

⎤
⎥⎦ = ĉ ζ̂

k
,

(47)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2121

where ĉ = [
cx ct

]
. The queue lengths gain vector is given

by cx = [
cx,1 · · · cx,N

]
, and the inter-departure timers gain

vector is given by ct = O1,N .

D. Constraints on the Prediction Model

Let us write the service time constraints in (32), the conflict-
ing queues constraints in (33), the empty queue constraints in
(34), and the constraints introduced by each of the linearizing
variables in (35), using the column vectors defined in (37).

1) Service Time Constraints: The constraints in (32) rep-
resent the waiting time to authorize a departure from queue
b ∈ Q after a departure is authorized from queue a ∈ Q.
According to (28), if ua(k) = 0 then du,a(k) = �t , which in
the context of (32) implies that if T s

a,bub(k) ≤ tu,a(k) + �t ,
which means that we have to wait an extra �t to authorize a
vehicle from queue b when a vehicle from queue a was not
authorized, which is actually unnecessary. To deal with this
discrepancy we recall the definition of δ(k) in (35), which for
queue a is given by δa(k) = ua(k)du,a(k), and we rewrite (32)
as

T s
a,bub(k) ≤ tu,a(k) + δu,a(k), ∀a, b ∈ Q, (48)

which reflects the fact that the value of du,a(k) is just relevant
when ua(k) = 1. We can write a general expression for a
single queue as

(T s ◦ Cq)u(k) − tu(k) − δu(k) ≤ On,1, ∀q ∈ Q, (49)

where Cq ∈ Bn×n is defined as

(Cq)i j =
{
1, if j = q,

0, otherwise,
(50)

for all i, j ∈ Q. Considering the column vectors in (37), (49)
becomes

M1ζ(k) + E1ν(k) ≤ b1, (51)

where b1 = On2,1,

M1 =
⎡
⎢⎣

On,n −In
...

...
On,n −In

⎤
⎥⎦, E1 =

⎡
⎢⎣

T s ◦ C1 On,2n −In
...

...
...

T s ◦ Cn On,2n −In

⎤
⎥⎦.

2) Conflicting Queues Constraints: The constraints in (33)
can be rewritten as

ua(k) + ub(k) ≤ 1+ Bs
a,b, ∀a, b ∈ Q, (52)

where

Bs
a,b =

{
0, if (a, b) ∈ T,

1, otherwise ,
(53)

with T as in (2), such that Bs
a,b := (Bs)ab. Therefore, we can

rewrite (52), using (50), as

(Cq + In)u(k) ≤ γn + (ϒCq Bs)T , ∀q ∈ Q, (54)

where ϒ = [
1 0 · · · 0] ∈ B1×n , which, rewritten using the

column vectors in (37), becomes

M2ζ(k) + E2ν(k) ≤ b2, (55)

where M2 = On2,2n ,

E2 =
⎡
⎢⎣

C1 + In On,3n
...

...
Cn + In On,3n

⎤
⎥⎦, b2 =

⎡
⎢⎣

γn + (ϒC1Bs)T

...

γn + (ϒCn Bs)T

⎤
⎥⎦.

3) Empty Queue Constraints: The constraints in (34) can
be rewritten as

uq(k) − xq(k) ≤ 0, ∀q ∈ Q, (56)

which, rewritten in terms of the column vectors in (37),
becomes

M3ζ(k) + E3ν(k) ≤ b3, (57)

where

M3 = [−In On,n
]
, E3 = [

In On,3n
]
, b3 = [

On,1
]
.

4) Constraints for Linearizing the Product of Variables: In
order to rewrite the system in (31) in the form of (36), the defi-
nitions in (35) were introduced to linearize the product of two
variables. These definitions add the following constraints to
the prediction model.
Consider the definition of τq(k) := (τ (k))q given by

τq(k) = uq(k)tu,q(k), where uq(k) ∈ B and 0 ≤ tu,q(k) ≤ t̄u ,
which is the product of a binary variable and a bounded
real variable. Note that the upper-bound t̄u can be defined
as t̄u = ‖tu(k)‖∞ + tN , since none of the elements of the
vector tu(k) will grow unbounded along the prediction time
tN = N�t . This definition adds the following inequalities:

τq(k) ≥ tu,q(k) − (1− uq(k))t̄u,

τq(k) ≤ uq(k)t̄u,

τq(k) ≤ tu,q(k), (58)

such that if uq(k) = 1 then τq(k) = tu,q(k), and if uq(k) = 0
then τq(k) = 0. The vector form of these inequalities is given
by

−τ (k) + tu(k) + t̄uu(k) ≤ t̄uγn,

τ (k) − t̄uu(k) ≤ On,1,

τ (k) − tu(k) ≤ On,1, (59)

which, rewritten in terms of the column vectors in (37),
becomes

M4ζ(k) + E4ν(k) ≤ b4, (60)

where

M4 =
⎡
⎣On,n In

On,n On,n

On,n −In

⎤
⎦, b4 =

⎡
⎣ t̄uγn

On,1
On,1

⎤
⎦,

E4 =
⎡
⎣ t̄u In On,n −In On,n

−t̄u In On,n In On,n

On,n On,n In On,n

⎤
⎦.

The definition of δq(k) := (δ(k))q (given by δq(k) =
uq(k)du,q(k), where uq(k) ∈ B and 0 ≤ du,q(k) ≤ d̄u (in this
case we can define d̄u = �t) is analogous to the definition

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

2122 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

of τq(k). Therefore, we can directly define the constraints,
introduced by this definition, as

−δ(k) + du(k) + d̄uu(k) ≤ d̄uγn,

δ(k) − d̄uu(k) ≤ On,1,

δ(k) − du(k) ≤ On,1, (61)

which, rewritten in terms of the column vectors in (37),
becomes

M5ζ(k) + E5ν(k) ≤ b5, (62)

where M5 = O3n,2n ,

E5 =
⎡
⎣ d̄u In In On,n −In

−d̄u In On,n On,n In

On,n −In On,n In

⎤
⎦, b5 =

⎡
⎣d̄uγn

On,1
On,1

⎤
⎦.

5) Consolidation of the Prediction Model Constraints: By
combining (51), (55), (57), (60), and (62) we can define

Mζ(k) + Eν(k) ≤ b, (63)

where

M =
⎡
⎢⎣

M1
...

M5

⎤
⎥⎦, E =

⎡
⎢⎣

E1
...

E5

⎤
⎥⎦, b =

⎡
⎢⎣

b1
...

b5

⎤
⎥⎦. (64)

The prediction of (63) N steps into the future gives

M ζ̂ (ki)k + E ν̂(ki)k ≤ b,

M ζ̂ (kN)k ≤ b, (65)

where ∀i ∈ {0, · · · , N − 1}, which can be rewritten as
M ζ̂

k
+ E ν̂k + M0ζ(k) ≤ b (66)

where

M =

⎡
⎢⎢⎢⎣
0 · · · 0
M · · · 0
...

. . .
...

0 · · · M

⎤
⎥⎥⎥⎦, E =

⎡
⎢⎢⎢⎣

E · · · 0
...

. . .
...

0 · · · E
0 · · · 0

⎤
⎥⎥⎥⎦, (67)

M0 =

⎡
⎢⎢⎢⎣

M
0
...
0

⎤
⎥⎥⎥⎦, b =

⎡
⎢⎢⎢⎣

b
b
...
b

⎤
⎥⎥⎥⎦. (68)

E. Model Predictive Control as a Mixed-Integer Linear
Programming Optimization Problem

The Model Predictive Control problem presented in the
previous sections can be formulated as a Mixed-Integer Linear
Programming (MILP) optimization problem. Hereto, consider
the control action vector, applied to the system in (31), at time
tk defined as

U(k) =
[

u(k)
du(k)

]
, (69)

where u(k) reflects whether departures are issued from queues
and, if so, when after the time tk they should be issued,
as indicated by du(k).

Define the optimization vector

λk =
[
ν̂k
ζ̂

k

]
, (70)

with ν̂k and ζ̂
k
defined as in (41), which contains the pre-

diction, N time steps into the future, of the state and input
vectors. With this vector define the cost function

γ (λk) = ρλk, (71)

where ρ = [
O1,4nN ĉ

]
, with ĉ defined as in (47). Given this

cost function we obtain the optimal α (in which the elements
of (69) and their prediction over the entire prediction horizon
are embedded) by solving the following MILP problem

λ∗
k = argmin

λk
γ (λk), subject to

{
η(λk) = 0,

μ(λk) ≤ 0,
(72)

where

η(λk) = [−�1 I2nN
]
λk − �ζ(k) − �2ŵk − �,

μ(λk) = [
E M

]
λk − b + M0ζ(k), (73)

with ζ(k) as in (37); the elements of ŵk as in (45); �, �1,
�2, and � as in (42) and (43); and M0, M , E , and b as in
(67) and (68). Finally, given this optimal vector, we can define
the control action vector in (69) as

U(k) = �λ∗
k , (74)

where � = [
I2n O2n,2n(3N−1)

]
.

V. SIMULATION RESULTS

This section presents the results of two simulation case
studies for which deterministic vehicle arrivals are considered.
The performance of different access management protocols
are compared. The hybrid system, described in Section III,
is used to perform the simulations. A discrete-time controller
subsystem samples the hybrid system and calculates and
executes the control action for that time instant (using a
zero-order hold). It is worth noting that the dynamics of the
vehicles within the intersection are not taken into account in
these simulations, given the assumption of the presence of
a CIC strategy realizing constant vehicle velocities. As we
mentioned in Section II, the elements of the service time
matrix are calculated based on the geometry of the intersection
and a given nominal velocity. For instance, in Figure 1, if we
consider that the distance s4(τ4), with T (τ4) = X2,4, equals
20m and we consider a nominal velocity v̌ = 10m/s, then we
conclude that t̃2,4 = 2s.
To aid the measurement of the performance, consider the

average inter-departure time γu for all the queues of the
intersection. Moreover, consider the served vehicles counter
θ . The average inter-departure time and the served vehicles
counter are updated each time a vehicle is served from any
queue. On this basis, consider the following hybrid system that
describes the dynamics of this performance measure. Define{

α̇ = f̂ (α, β), if (α, β) ∈ Ĉ,

α+ = ĝ(α, β), if (α, β) ∈ D̂,
(75)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2123

where the state vector is α := [
γu θ

]T , the input vector is

β =
[

On,n On,n On,n

On,n On,n In

]
z +

[
On,n In

On,n On,n

]
e, (76)

with z and e defined as in (7), such that β := [
uT tT

u

]T
, where

u is the departures vector and tu is the inter-departure timers
vector. Moreover, the flow map is f̂ (α, β) := O2,1, and the
jump map is ĝ(α, β) = [

ĝ1(α, β) ĝ2(α, β)
]T , with

ĝ1(α, β) :=
⎧⎨
⎩

θγu + tu,q

θ + 1 , if ∃q ∈ Q, such that uq = 1,

γu, otherwise,
(77)

and

ĝ2(α, β) :=
{

θ + 1, if ∃q ∈ Q, such that uq = 1,

θ, otherwise.
(78)

Finally, the flow set is Ĉ = {(α, β)|(tu, u) ∈ Cu}, and the jump
set is D̂ = {(α, β)|(tu, u) ∈ Du}, with Cu and Du defined as
in (15).
Moreover, a First-Come-First-Served (FCFS) access proto-

col is also considered. As the name indicates, this protocol
serves the vehicles in the same order they enter the intersec-
tion. Since we consider initial queue lengths different than
zero, the serving order of the vehicles in the queues at time
zero is defined by determining their arrival time, which is
calculated using the arrival time interval matrix W and the
initial queue lengths x(0).
In Section V-A, we show the effectiveness of the OIAM

methodology applied to a three-lane intersection. Moreover,
in Section V-B, we introduce a benchmark example of a
real-life five-lane intersection for which we compare the
presented methodology with a vehicle actuated traffic light
and a FCFS protocol. In both cases, we consider that vehicles
arrive to the intersection in a deterministic fashion (for the
sake of comparison), and that the queues can be emptied in a
finite amount of time.
As a final remark, note that, running on an Intel®Core™i5-

3570 processor, we solve the MILP problem, defined in
Section IV-E, using the MATLAB intlinprog() function
which takes the LP solution to the relaxed problem at a node,
it rounds the integer components in a way that attempts to
maintain feasibility, then, if needed, it searches the neigh-
borhood of the current best integer-feasible solution point (if
available) to find a new and better solution.

A. Three-Lane Intersection Scenario

We propose a scenario based on the intersection depicted
in Figure 3. The road formed by lanes one and three is
hereafter referred to as the main road, whereas the road formed
by lane two is hereafter referred to as the secondary road. Note
that this scenario is proposed in [30], which in turn inspired
the work in [15].
In an intersection controlled by a traffic light the whole

flow of the main road has to be stopped to give access to the
secondary road. The automation of the intersection, presented

Fig. 3. Three-lane intersection.

in [15], allows for a continuous flow of vehicles by means
of virtual platoons, which are formed by an access man-
agement protocol on the basis of a First-Come-First-Served
principle.
To define the intersection problem as a queuing problem

consider the service times matrix, the values of which are
defined in (5), given by

T s =
⎡
⎢⎣
1.25 2.95 0

−0.45 1.25 1.92

0 0.58 1.25

⎤
⎥⎦ (79)

which is calculated using t̃1,2 = 5.15, t̃2,1 = 3.46, t̃2,3 = 6.92,
t̃3,2 = 6.25, and t̄h = 1.25. Note that these values (which are
merely illustrative) are chosen to represent an intersection of
relatively small physical dimensions, and were calculated by
fixing a value for t̃1,2 and using it as the scale of the geometry
depicted in Figure 3. Moreover, the value of t̄h is chosen
to represent a close vehicle following within the intersection
which can be achieved with virtual platooning, see [15]. To
finalize the problem setting, consider that the intersection has
initial queue lengths x(0) = [

20 10 20
]T
, and that the arrival

time interval matrix is given by W = [
4 6 3

]T .
To analyze the performance of the presented methodol-

ogy, consider three access management protocols. Namely,
the aforementioned FCFS protocol [15], and the OIAM
protocol considering both an On-Sampling-Event (OSE)
representation [26], and an Inter-Sampling-Event (ISE) rep-
resentation. Both the OSE and the ISE representations are
described in Section III. Note that we can achieve the OSE
representation by setting d̄u = 0 in (61). Moreover, in both
cases, we consider a cost vector cx = [

1 1 1
]
, and a prediction

time tN = 4 s, with sampling interval �t = 0.5 s and
prediction horizon N = 8.
Figure 4 shows the queue lengths’ response for three access

protocols, all of which reach a stable steady state (meaning that
the queue lengths remain in the vicinity of zero). Moreover,
Figure 5 shows the average inter-departure time γu for each
access protocol. Note that all approaches settle at the same
value due to the lack of saturation of the queues. The main
difference between these protocols is the settling time which
is influenced by γu . Note that the FCFS approach shows
a high value of γu which is a result of the instantaneous
reactiveness of this approach; the vehicles are granted access
in the same order as they requested it. The benefits of the MPC

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

2124 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

Fig. 4. Queue lengths of a three-lane intersection for different access man-
agement protocols. Namely, First-Come-First-Served (FCFS), On-Sampling-
Event (OSE), and Inter-Sampling-Event (ISE). For both OSE and ISE the
sampling time is �t = 0.5 s.

Fig. 5. Average inter-departure time for different access management pro-
tocols. Namely, First-Come-First-Served (FCFS), On-Sampling-Event (OSE),
and Inter-Sampling-Event (ISE).

approach is noticeable in the response of both the OSE and
ISE representations. The OSE representation is limited to grant
access just at sampling instances which limits its performance.
The benefit of the ISE representation is evident, showing
a faster settling time and a lower average inter-departure
time.
To study the influence of the selection of the sampling

interval �t and the prediction horizon N on the performance
of the OIAM approach, consider the following. Keeping the
prediction time constant, if the sampling time would be small
enough we should achieve the same performance from the
OSE and the ISE representations. The trade-off is that the
prediction horizon N has to be increased which in turn
increases the size of the MILP problem to be solved. Figure 6
shows the norm of the queue lengths vector ‖x‖ for different
settings of the MPC approach. Additionally, the execution time
tE (which we define as the time it takes to solve the MILP
problem) is depicted in Figure 7. Note that the settings for
each case are presented in Table I.
It can be seen (in Figure 6) that the performance of the

OSE representation diverges from the ISE representation even

Fig. 6. Norm of the queue lengths vector for different settings of the MPC
approach.

Fig. 7. Execution time of the MILP solver for different event representations.

TABLE I

AVERAGE EXECUTION TIMES FOR DIFFERENT MPC SETTINGS

when the sampling time has been reduced to a point in
which solving the optimization problem takes, in average,
as much as the sampling time itself. Compare the sampling
time �t with the average execution time t̄E in Table I. On
the other hand, we achieve a good performance by solv-
ing a small optimization problem with an ISE representa-
tion. Figure 7, shows that the ISE representation shows a
somewhat consistent execution time (despite having some
peaks that exceed the sampling time) which suggests that a
real-time implementation of this approach is feasible. More-
over, if a real-time implementation is pursued, then an analy-
sis on the most effective way to solve the MILP problem
should be performed, such that the execution time can be
minimized.

B. Five-Lane Intersection

To further benchmark the performance of the presented
methodology we introduce the intersection depicted in
Figure 8. This intersection is a representation of a real-life
intersection in the Netherlands, labeled S4 in [31], which is
controlled with traffic lights. Using the service rates and set-up

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2125

Fig. 8. Real-life five-lane intersection.

TABLE II

OPTIMAL CYCLE FOR THE VEHICLE ACTUATED TRAFFIC LIGHT

times in [31] we can construct the matrix

T̂ s =

⎡
⎢⎢⎢⎢⎣
2 4 4 5 0
5 2 0 4 6
5 0 2.2 0 0
5 5 0 2 0
0 4 0 0 1.9

⎤
⎥⎥⎥⎥⎦ , (80)

the elements of which, given by (T̂ s)ab, represent the time
needed to greenlight lane a after lane b has been stopped by
a red light. Moreover, the arrival rates, also defined in [31],
are given by W = [

5.11 21.56 18.56 21.95 9.73
]T . Note that

for this scenario, a FCFS, an OIAM, and an Optimal Traffic
Light (OTL) protocols are considered.
The aforementioned OTL protocol is a vehicle actuated

traffic light scenario which operates using an optimal cycle,
shown in Table II, determined based on [32].
To compare the OTL approach with the FCFS approach, and

the proposed OIAM approach we need to define the service
time matrix in (5). Since the dimensions of the intersection
are not defined we need to adopt some assumptions. First,
we assume that t̃2,5 = max T̂ s which, by comparison, makes
t̃1,2 = 3.41, t̃1,3 = 6.20, t̃1,4 = 2.20, t̃2,1 = 2.64, t̃2,4 = 3.84,
t̃3,1 = 3.52, t̃4,1 = 5.38, t̃4,2 = 3.59, and t̃5,2 = 5.12. Next,
we assume that t̄h = 2 (as in the traffic light case) which could
be set lower to consider cooperative autonomous vehicles,
defined in [15]. The result of the aforementioned assumptions
is the following service time matrix:

T s =

⎡
⎢⎢⎢⎢⎣

2 2.77 4.66 −1.15 0
1.23 2 0 2.25 2.88

−0.66 0 2 0 0
5.15 1.75 0 2 0
0 1.12 0 0 2

⎤
⎥⎥⎥⎥⎦ . (81)

Moreover, we set the parameters of proposed MPC-based
OIAM approach as follows. Sampling interval �t = 1 s,
prediction horizon N = 5, and cost vector cx = [

1 1 1 1 1
]
.

Fig. 9. Queue lengths of a five-lane intersection for different access
management protocols. Namely, Optimal Traffic Lights (OTL), First-Come-
First-Served (FCFS), and Inter-Sampling-Event (ISE).

Fig. 10. Average inter-departure time for different access management
protocols. Namely, Optimal Traffic Lights (OTL), First-Come-First-Served
(FCFS), and Inter-Sampling-Event (ISE).

Finally, the initial queue lengths for the following comparison
are set as x(0) = [

33 19 27 22 9
]T .

Figure 9 and Figure 10 show the queue lengths and the
average inter-departure times, respectively, for all the proposed
protocols. Both the FCFS and the OIAM approaches show a
faster settling time in comparison with the OTL approach;
see Figure 9. This is because both the FCFS and the OIAM
protocols allow for a continuous serving of vehicles, whereas
the OTL protocol just allows some queues to be served at
the same time. However, from Figure 10, we see that the
FCFS protocol shows a high average inter-departure time in
the first hundred seconds due to the continuous switching
of the server between queues. In this respect the OIAM
and the OTL protocols achieve a response that minimizes
the average inter-departure. Above all, the proposed OIAM
approach achieves both a fast settling time and a minimum
average inter-departure time with an average execution time
t̄E = 26.6 ms, which suggest that a real-time implementation
is feasible. Note that the implementation would require a
centralized unit which receives messages from the vehicles
approaching the intersection, determines the crossing sequence
by means of the OIAM approach, and communicates such
sequence back to the vehicles to execute.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

2126 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 5, MAY 2020

Fig. 11. Queue lengths of a five-lane intersection, with high arrival rate,
for different access management protocols. Namely, Optimal Traffic Lights
(OTL), First-Come-First-Served (FCFS), and Inter-Sampling-Event (ISE).

Finally, Figure 11 shows the queue lengths for the higher
arrival rate W = [

5.11 8.98 9.23 9.15 9.73
]T
, with initial

queue lengths x(0) = [
3 7 8 6 10

]T . We observe that the
OIAM approach is able to keep the queues empty while the
OTL and FCFS reach a steady-state cycle that resembles a
normal traffic light scenario. With this example, we show the
proactive nature of the OIAM approach which adapts to the
traffic changes.

VI. CONCLUSIONS

This paper presents an optimal access management method-
ology for a cooperative intersection control system, devel-
oped in [15]. The road intersection is modeled as a hybrid
dynamical queuing system which, in turn, is controlled using
Model Predictive Control which allows for inter-sampling
control actions. The proposed Optimal Intersection Access
Management strategy minimizes the weighted sum of the
queue lengths which translates into minimizing the time that
vehicles wait to be given access to the intersection. The per-
formance of this methodology is assessed by two simulation
studies. The impact of design parameter tuning is shown
for a three-lane intersection. For which we also analyze the
computational benefits of the inter-sampling event representa-
tion. Moreover, a comparison between the performance of the
proposed strategy against an optimal vehicle actuated traffic
light controller, and a First-Come-First-Served access protocol
is shown for a real-life five lane intersection. The presented
access management methodology shows a satisfactory perfor-
mance with a low average execution time, which is a result
of the inter-sampling control action definition of the system
discretization.
The results presented in this paper assume that the vehicles

waiting to gain access to the intersection form static queues.
Such assumption neglects the dynamics of the vehicles cross-
ing the intersection. Considering such vehicle dynamics leads

to a queuing problem with either a time-varying service matrix,
or time-varying constraints. The implication of such consider-
ation and its application are subject of current research.

APPENDIX

The generic form of a hybrid dynamical system, as defined
in [33], [34], is given by{

ż = f (z, e), if (z, e) ∈ C,

z+ = g(z, e), if (z, e) ∈ D,
(82)

where z ∈ Rα×1 is the state vector, ż is the rate of change of
the state z, z+ is the value of the state after an instantaneous
change, e ∈ Rβ×1 is the input vector, f (z, e) is the flow
map (or vector field), g(z, e) is the jump map, C is the flow
set, and D is the jump set. The solutions of (82) are defined
on the hybrid time domain (t, j) ∈ E, where t represents
continuous time, and j represents the event counter. The subset
E ⊂ R≥0 × N is called a compact hybrid time domain if
E = ⋃J

j=0([t j , t j+1], j) for some finite sequence of times
0 = t0 ≤ · · · ≤ tJ+1. We say E is a hybrid time domain if,
for each (T, J) ∈ E, the set E ∩ ([0, T] × {0, · · · , J }) is a
compact hybrid time domain.
A hybrid signal is a function defined on a hybrid time

domain. A hybrid signal e : dom e �→ Rβ×1 is called a hybrid
input if e(·, j) is Lebesgue measurable and locally essentially
bounded for each j . A hybrid signal z : dom z �→ Rα×1 is
called a hybrid arc if z(·, j) is locally absolutely continuous
for each j . A hybrid arc z : dom z �→ Rα×1 and a hybrid
input e : dom e �→ Rβ×1 form a solution pair φ = (z, e) to
(6) if dom z = dom e,

(
z(0, 0), e(0, 0)

) ∈ C ∪ D, and
1) for all j ∈ N and almost all t such that (t, j) ∈ dom φ,(

z(t, j), e(t, j)
) ∈ C, and ż(t, j) = f

(
z(t, j), e(t, j)

)
;

2) for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,(
z(t, j), e(t, j)

) ∈ D, and z(t, j+1) = g
(
z(t, j), e(t, j)

)
.

Hereafter, we refer to the solution pair simply as the solution.

REFERENCES

[1] World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366),
United Nations, Dept. Econ. Social Affairs, Population Division,
New York, NY, USA, 2014.

[2] Z. Ying-nian and H. Qi-fu, “Intersection approach road congestion index
and application for Beijing, China,” in Proc. 2nd IEEE Int. Conf. Inf.
Manage. Eng., Apr. 2010, pp. 263–266.

[3] B. Singh and A. Gupta, “Recent trends in intelligent transportation
systems: A review,” J. Transp. Literature, vol. 9, no. 2, pp. 30–34,
Apr. 2015.

[4] L. Chen and C. Englund, “Cooperative intersection management: A sur-
vey,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 570–586,
Feb. 2016.

[5] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” J. Artif. Intell. Res., vol. 31, pp. 591–656,
Mar. 2008.

[6] M. Ahmane et al., “Modeling and controlling an isolated urban inter-
section based on cooperative vehicles,” Transp. Res. C, Emerg. technol.,
vol. 28, pp. 44–62, Mar. 2013.

[7] A. Colombo and D. D. Vecchio, “Least restrictive supervisors for
intersection collision avoidance: A scheduling approach,” IEEE Trans.
Autom. Control, vol. 60, no. 6, pp. 1515–1527, Jun. 2015.

[8] P. Tallapragada and J. Cortés, “Coordinated intersection traffic manage-
ment,” IFAC-PapersOnLine, vol. 48, no. 22, pp. 233–239, 2015.

[9] J. Lee and B. Park, “Development and evaluation of a cooperative
vehicle intersection control algorithm under the connected vehicles
environment,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 1, pp. 81–90,
Mar. 2012.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

MORALES MEDINA et al.: OPTIMAL ACCESS MANAGEMENT FOR CIC 2127

[10] J. Gregoire, S. Bonnabel, and A. de La Fortelle, “Priority-based coor-
dination of robots,” 2014.

[11] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE Trans. Veh. Technol., vol. 60, no. 3,
pp. 804–818, Mar. 2011.

[12] M. R. Hafner, D. Cunningham, L. Caminiti, and D. D. Vecchio, “Cooper-
ative collision avoidance at intersections: Algorithms and experiments,”
IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3, pp. 1162–1175,
Sep. 2013.

[13] M. A. S. Kamal, J.-I. Imura, T. Hayakawa, A. Ohata, and K. Aihara,
“A vehicle-intersection coordination scheme for smooth flows of traffic
without using traffic lights,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 3, pp. 1136–1147, Jun. 2015.

[14] D. Miculescu and S. Karaman, “Polling-systems-based control of high-
performance provably-safe autonomous intersections,” in Proc. IEEE
53rd Conf. Decision Control, Dec. 2014, pp. 1417–1423.

[15] A. I. Morales Medina, N. van de Wouw, and H. Nijmeijer, “Cooperative
intersection control based on virtual platooning,” IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 6, pp. 1727–1740, Jun. 2018.

[16] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Primal decomposition of
the optimal coordination of vehicles at traffic intersections,” in Proc.
IEEE 55th Conf. Decision Control (CDC), Dec. 2016, pp. 2567–2573.

[17] A. Katriniok, P. Kleibaum, and M. Joševski, “Distributed model predic-
tive control for intersection automation using a parallelized optimization
approach,” IFAC PapersOnLine, vol. 50, no. 1, pp. 5940–5946, Jul. 2017.

[18] X. Qian, J. Gregoire, A. de L. Fortelle, and F. Moutarde, “Decentral-
ized model predictive control for smooth coordination of automated
vehicles at intersection,” in Proc. Eur. Control Conf. (ECC), Jul. 2015,
pp. 3452–3458.

[19] Y. Zheng et al., “Research on cooperative vehicle intersection control
scheme without using traffic lights under the connected vehicles envi-
ronment,” Adv. Mech. Eng., vol. 9, no. 8, pp. 1–13, Aug. 2017.

[20] L. Riegger, M. Carlander, N. Lidander, N. Murgovski, and J. Sjöberg,
“Centralized MPC for autonomous intersection crossing,” in Proc. IEEE
19th Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2016, pp. 1372–1377.

[21] J. Ding, H. Xu, J. Hu, and Y. Zhang, “Centralized cooperative inter-
section control under automated vehicle environment,” in Proc. IEEE
Intell. Veh. Symp. (IV), Jun. 2017, pp. 972–977.

[22] D. Heidemann and H. Wegmann, “Queueing at unsignalized intersec-
tions,” Transp. Res. B, Methodol., vol. 31, no. 3, pp. 239–263, Jun. 1997.

[23] A. C. Soh, M. H. Marhaban, M. Khalid, and R. Yusof, “Modelling
and optimisation of a traffic intersection based on queue theory and
Markov decision control methods,” in Proc. 1st Asia Int. Conf. Modelling
Simulation (AMS), Mar. 2007, pp. 478–483.

[24] H. Y. Sutarto, M. Maulida, E. Joelianto, and A. Samsi, “Queue length
optimization of vehicles at road intersection using parabolic interpolation
method,” in Proc. Int. Conf. Autom., Cognit. Sci., Opt., Micro Electro-
Mech. Syst., Inf. Technol.(ICACOMIT), Oct. 2015, pp. 63–67.

[25] T. S. Babicheva, “The use of queuing theory at research and optimization
of traffic on the signal-controlled road intersections,” Procedia Comput.
Sci., vol. 55, pp. 469–478, Jan. 2015.

[26] F. Creemers, A. I. M. Medina, E. Lefeber, and N. van de Wouw, “Design
of a supervisory controller for cooperative intersection control using
model predictive control,” in Proc. 5th IFAC Conf. Anal. Control Chaotic
Syst., Jan. 2018, pp. 63–68.

[27] E. F. Camacho and C. Bordons, Model Predictive Control. Berlin,
Germany: Springer, 2007.

[28] A. Gupte, S. Ahmed, M. S. Cheon, and S. Dey, “Solving mixed integer
bilinear problems using MILP formulations,” SIAM J. Optim., vol. 23,
no. 2, pp. 721–744, Apr. 2013.

[29] D. Gross, J. F. Shortie, J. M. Thompson, and C. M. Harris, Fundamentals
of Queueing Theory. Hoboken, NJ, USA: Wiley, 2013.

[30] J. Ploeg et al., “Cooperative automated maneuvering at the 2016 grand
cooperative driving challenge,” IEEE Trans. Intell. Transp. Syst., vol. 19,
no. 4, pp. 1213–1226, Apr. 2018.

[31] S. T. G. Fleuren and A. A. J. Lefeber, “Data of real-life intersections for
fixed-time traffic light control,” Eindhoven Univ. Technol., Eindhoven,
The Netherlands, Tech. Rep., 2016.

[32] S. T. G. Fleuren, “Optimizing pre-timed control at isolated intersections,”
Ph.D. dissertation, Dept. Mech. Eng. Faculty, Eindhoven Univ. Technol.,
Eindhoven, The Netherlands, 2017.

[33] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for
hybrid systems,” Syst. Control Lett., vol. 58, no. 1, pp. 47–53, Jan. 2009.

[34] R. Goebel, A. R. Teel, and R. G. Sanfelice, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton, NJ, USA: Princeton
Univ. Press, 2012.

Alejandro Ivan Morales Medina received the B.Sc.
degree in mechatronics from UPIITA-IPN, Mexico
City, Mexico, in 2009, and the M.Sc. degree in
automotive technology with a dynamics and con-
trol specialization from the Eindhoven University of
Technology, Eindhoven, The Netherlands, in 2013,
where he is currently pursuing the Ph.D. degree.
His current research is on the cooperative motion
of vehicles through road intersections, including the
control strategies to control the longitudinal and
lateral motion of the vehicles, and the optimization

of the traffic flow.

Falco Creemers received the B.Sc. and M.Sc.
degrees from the Department of Mechanical Engi-
neering, Eindhoven University of Technology, The
Netherlands, in 2014 and 2017, respectively. He is
currently employed at the R&D Department,
Océ-Technologies B.V., Venlo, The Netherlands.

Erjen Lefeber received the M.Sc. degree in
applied mathematics from the University of Twente,
Enschede, The Netherlands, in 1996, and the Ph.D.
degree from the University of Twente, in 2000,
on the subject of tracking control of nonlinear
mechanical systems. Since 2000, he has been an
Assistant Professor at the Department of Mechanical
Engineering, Eindhoven University of Technology.
From 2000 to 2015, he worked on modeling and
control of manufacturing systems, but in 2015,
he joined the Dynamics and Control Group. His

current research is nonlinear control theory. In particular, the control of drones
and the control of platooning vehicles.

Nathan van de Wouw received the M.Sc. (Hons.)
and Ph.D. degrees in mechanical engineering from
the Eindhoven University of Technology, Eindhoven,
The Netherlands, in 1994 and 1999, respectively.
He currently holds a full professor position at
the Mechanical Engineering Department, Eindhoven
University of Technology. He also holds an adjunct
full professor position at the University of Min-
nesota, USA, and a (part-time) full professor posi-
tion at the Delft University of Technology, The
Netherlands. He has been working at Philips Applied

Technologies, Eindhoven, in 2000, and he has been working at The
Netherlands Organisation for Applied Scientific Research (TNO), Delft,
The Netherlands, since 2001. He has held positions as a Visiting Professor
at the University of California Santa Barbara, USA, in 2006 and 2007,
at the University of Melbourne, Australia, in 2009 and 2010, and at the
University of Minnesota, in 2012 and 2013. He has published a large number
of journals and conference papers and the books Uniform Output Regulation
of Nonlinear Systems: A convergent Dynamics Approach with A.V. Pavlov and
H. Nijmeijer (Birkhauser, 2005) and Stability and Convergence of Mechanical
Systems with Unilateral Constraints with R.I. Leine (Springer-Verlag, 2008).
His current research interests are the modeling analysis and control of
nonlinear/hybrid systems, with applications to vehicular platooning, high-tech
systems, resource exploration, smart energy systems, and networked control
systems. In 2015, he received the IEEE Control Systems Technology Award
“For the development and application of variable-gain control techniques for
high-performance motion systems.” He is currently an Associate Editor for the
journals Automatica and the IEEE TRANSACTIONS ON CONTROL SYSTEMS
TECHNOLOGY.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 08,2020 at 09:57:09 UTC from IEEE Xplore. Restrictions apply.

