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Abstract— We investigate the problem of coordinating
human-driven vehicles in road intersections without any traffic
lights or signs by issuing speed advices. The vehicles in the
intersection are assumed to move along an a priori known path
and to be connected via vehicle-to-vehicle communication. The
challenge arises with the uncertain driver reaction to a speed
advice, especially in terms of the driver reaction time delay, as
it might lead to unstable system dynamics. For this control
problem, a distributed stochastic model predictive control
concept is designed which accounts for driver uncertainties. By
optimizing over scenarios, which are sequences of independent
and identically distributed samples of the uncertainty over the
prediction horizon, we can give probabilistic guarantees on
constraint satisfaction. Simulation results demonstrate that the
scenario-based approach is able to avoid collisions in spite of
uncertainty while the non-stochastic baseline controller is not.

I. INTRODUCTION

Automating road intersections is a frequently discussed

control problem, especially in the context of fully automated

vehicles (AV) [1]. The potential of automation to increase

traffic flow, improve safety and reduce fuel consumption

is significant. With a solution in place, one day we might

even be able to dispense all traffic lights and signs. This

contribution focuses on an intermediate solution, which

aims at issuing speed advices to the driver, to achieve safe

intersection crossing without any traffic lights or signs.

A. Related Work

For the coordination of AVs in intersections, various so-

lutions have been proposed, e.g., those based on multi-agent

systems [2], hybrid system theory [3], virtual platooning [4]

and model predictive control (MPC) [5], [6], [7].

When discarding the assumption of fully automated vehi-

cles, [8] presents a robust MPC approach for determining

safe gaps in the crossing traffic to pass the intersection

and to optimize fuel efficiency. Thereby, no communication

is available and only the human driven ego-vehicle can

be controlled. Uncertainties in the motion of surrounding

vehicles are covered by the robust approach. In [9], the

authors have proposed a distributed scenario-based MPC

approach to orchestrate vehicles in intersections by issuing

speed advices to the driver such that collisions between

vehicles (or more generally agents) are avoided and traffic

flow is optimized. For information exchange, the control
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scheme relies on vehicle-to-vehicle (V2V) communication.

The driver is treated as an uncertain part of the control

loop as his reaction to a speed advice might deviate from

the expected one. This driver reaction is modeled as a

proportional controller, which follows speed advices with a

certain bounded offset, while the proportional gain and the

speed offset are treated as uncertainties. However, the driver

reaction time has been neglected in this first study.

B. Main Contribution and Outline

We extend our previous work in [9] by additionally

accounting for an uncertain but constant driver reaction

time, i.e., an uncertain but constant time delay. The control

problem is to provide smooth driver speed advices for safe

and efficient intersection crossing, even for an uncertain time

delay. With the time delay, the open-loop prediction model

might become unstable which is unfavorable in an MPC

setting. In addition, the uncertain system response to a speed

advice varies in a much wider range which complicates the

calculation of smooth and convenient speed advices.

To solve the control problem, a scenario-based approach

[10], [11] is pursued which draws independent and identi-

cally distributed (i.i.d.) samples from a bounded uncertainty

set over the prediction horizon, referred to as scenarios.

Essentially, every sample reflects a potential realization of

the driver uncertainty. Ultimately, optimization is carried

out over all scenarios subject to constraints that need to be

satisfied for every scenario. With this methodology, we can

give probabilistic guarantees on constraint satisfaction and

eventually on collision avoidance. To account for unstable

system dynamics, a state feedback gain is introduced which

ensures stability for every uncertainty realization. Simulation

results finally prove that the scenario-based approach is able

to avoid collisions when the driver reaction is uncertain while

the baseline MPC (neglecting uncertainty) is not. Hereafter,

we mainly focus on a proof of concept while a real time

solution of the control problem is part of ongoing research.

The paper is organized as follows. Section II outlines the

MPC prediction model with a focus on the driver time delay

extension. Section III continues with the design of a feedback

gain to prestabilize the MPC prediction model. Then, the

distributed scenario-based MPC scheme is introduced in

section IV before section V finally proves its efficacy.

C. Notation

The predicted value of variable x at the future time step

k + j is referred to as x(k+j|k). Moreover, [x]i refers to the

i-th entry of vector x while N
+ is the set of positive integers.
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II. VEHICLE AND DRIVER REACTION MODEL

To handle the complexity of intersection scenarios, we rely

on the following assumptions:

Assumption 1 (Intersection Scenarios): A1. Only sin-

gle intersection scenarios are considered; A2. The desired

route of every agent is a priori known; A3. All vehicles are

human-driven; A4. Besides the driver reaction to a speed

advice, there are no further uncertainties; A5. All vehicles

are equipped with V2V communication; A6. No commu-

nication failures occur; A7. Data that has been transmitted

after optimization at time k is available to all other agents

at time k + 1. A8. Vehicle kinematic states are measurable.

A. Vehicle Kinematics
Vehicle kinematics of every agent i ∈ A with

A � {1, . . . , NA} is formulated in terms of its acceleration

a
[i]
x , velocity v[i] and path coordinate s[i] in the agent’s

reference frame with respect to the vehicle’s geometric

center, see Fig. 1. The origin s[i] = 0 of agent i’s reference

frame coincides with the first collision point s
[i]
c,l with agent

l ∈ A along his path coordinate s[i]. In case, agent i is

not in conflict with any other agent, the origin refers to his

initial position. The time evolution of velocity and position is

represented as a double integrator while drivetrain dynamics

are modeled as a first order lag element, i.e.,

d

dt

⎡
⎣a[i]xv[i]
s[i]

⎤
⎦ =

⎡
⎢⎣−

1

T
[i]
ax

0 0

1 0 0
0 1 0

⎤
⎥⎦

︸ ︷︷ ︸
A

[i]
v

⎡
⎣a[i]xv[i]
s[i]

⎤
⎦

︸ ︷︷ ︸
x
[i]
v

+

⎡
⎢⎣

1

T
[i]
ax

0
0

⎤
⎥⎦

︸ ︷︷ ︸
B

[i]
v

a
[i]
x,ref

︸︷︷︸
u
[i]
v

(1)

where T
[i]
ax denotes the dynamic drivetrain time constant and

a
[i]
x,ref the demanded acceleration.

B. Driver Reaction Model
We assume the driver to receive a speed advice v

[i]
ref

from the MPC controller and to translate this advice into

a vehicle acceleration demand a
[i]
x,ref. Generally, we build

upon our approach in [9], in which the driver is modeled

as a proportional controller with gain K
[i]
d > 0 and a

bounded offset Δv
[i]
d to the speed advice. The latter takes

into consideration that the driver might not be able to exactly

follow a speed advice. We extend this driver reaction model

by means of a driver reaction time τ
[i]
d ≥ 0 to perceive the

speed advice and react accordingly [12] — corresponding

to a time delay. The demanded vehicle acceleration a
[i]
x,ref,

issued by the driver of agent i as a reaction on the speed

advice v
[i]
ref, can then be stated as

a
[i]
x,ref(t) = K

[i]
d

[
v
[i]
ref(t− τ

[i]
d ) + Δv

[i]
d (t− τ

[i]
d ) (2)

− v[i](t− τ
[i]
d )

]
.

During controller synthesis and system operation, we cannot

be certain about the driver parameters. Therefore, we assume

the driver model to be subject to an unmeasureable but

bounded parametric uncertainty θ[i] � (K
[i]
d , τ

[i]
d ) with

K
[i]
d ∈ [K

[i]
d , K

[i]

d ], τ
[i]
d ∈ [τ

[i]
d , τ

[i]
d ]. (3)
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Fig. 1: Schematic of the conflict resolution problem.

Moreover, Δv
[i]
d is treated as an unmeasurable but bounded

additive uncertainty, i.e.,

Δv
[i]
d ∈ [Δv

[i]
d , Δv

[i]
d ] (4)

with v
[i]
ref +Δv

[i]
d ≥ 0 to avoid negative speed advices.

C. Resulting Prediction Model
The driver reaction-vehicle model with input and state

delay is obtained when replacing a
[i]
x,ref in (1) with (2), i.e.,

ẋ[i]
v (t) = A

[i]
1 x[i]

v (t) +A
[i]
2 x[i]

v (t− τ
[i]
d ) +B[i]v

[i]
ref(t− τ

[i]
d )

+ E[i]Δv
[i]
d (t− τ

[i]
d ) (5)

with A
[i]
1 � A

[i]
v , A

[i]
2 � −K

[i]
d B

[i]
v [0 1 0], B[i] � K

[i]
d B

[i]
v

and E[i] � K
[i]
d B

[i]
v . To be applied in the MPC framework,

a discrete-time formulation of the model is required. In case

of τ
[i]
d = 0, we discretize (A

[i]
1 +A

[i]
2 , B[i], E[i]) using zero-

order hold discretization as in [9].
For τ

[i]
d > 0, the continuous-time system (5) does not have

a finite dimensional discrete-time representation [13]. We

therefore digitalize the driver, i.e., we assume the driver to

sample the vehicle speed respectively the deviation from v
[i]
ref

through a (digital) speedometer and to keep his acceleration

demand constant between two sampling steps. This assump-

tion translates in adding a zero-order hold element between

the driver reaction model (2) and vehicle kinematics (1), see

Fig. 2. Thus, we are able to discretize both subsystems sepa-

rately and gain a finite dimensional state space representation

for any τ
[i]
d ∈ [τ

[i]
d , τ

[i]
d ]. We define τ

[i]
d � T [i] Ts− τ̃

[i]
d as an

integer multiple T [i] ∈ N0 of the sampling time Ts minus

some remaining fraction 0 ≤ τ̃
[i]
d < Ts of the time delay.

With (2), we can state the demanded acceleration a
[i]
x,ref at

the future time instance tk+T [i] in dependence of the delayed

signals v
[i]
ref, Δv

[i]
ref and v[i] at time tk+T [i] − τ

[i]
d = tk + τ̃

[i]
d ,

i.e.,

a
[i]
x,ref(tk+T [i]) � K

[i]
d

[
v
[i]
ref(tk + τ̃

[i]
d ) + Δv

[i]
d (tk + τ̃

[i]
d )

− v[i](tk + τ̃
[i]
d )

]
(6)
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where v[i](tk + τ̃
[i]
d ) � Γ

[i]
A x[i]

v (tk) + Γ
[i]
B a

[i]
x,ref(tk),

Γ
[i]
A �

[
0 1 0

]
eA

[i]
v τ̃

[i]
d , Γ

[i]
B �

[
0 1 0

] ∫ τ̃
[i]
d

0

eA
[i]
v sdsB[i]

v .

Before a
[i]
x,ref(tk+T [i]) is eventually applied to the ve-

hicle, it is delayed by the driver reaction time for

T [i] − 1 time steps. By introducing the time delay states

x
[i]
τ (tk) � [a

[i]
x,ref(tk+T [i]−1), . . . , a

[i]
x,ref(tk)]

�, we can sum-

marize those observations as

x[i]
τ (tk+1) =

[
(6)[

IT [i]−1 0T [i]−1,1

]
x
[i]
τ (tk)

]
(7)

where IT [i]−1 is the (T [i] − 1) × (T [i] − 1) identity

matrix. With the discrete-time vehicle kinematics model

( Ā
[i]
v � eA

[i]
v Ts , B̄

[i]
v �

∫ Ts

0
eA

[i]
v sdsB

[i]
v ), the time evolu-

tion of the vehicle states x
[i]
v can be stated as

x[i]
v (tk+1) = Ā[i]

v x[i]
v (tk) + B̄[i]

v a
[i]
x,ref(tk). (8)

By augmenting the state vector with the time delay states

x
[i]
τ,k � x

[i]
τ (tk) and using the vehicle velocity as control

output, the resulting discrete-time linear system Σ
[i]
θ evolves

as

Σ
[i]
θ �

{
x
[i]
k+1= A

[i]
θ x

[i]
k +B

[i]
θ u

[i]
k + E

[i]
θ w

[i]
k

y
[i]
k = C [i]x

[i]
k

(9)

with

A
[i]
θ =

⎡
⎢⎣ Ā

[i]
v 03,T [i]−1 B̄

[i]
v

−K
[i]
d Γ

[i]
A 01,T [i]−1 −K

[i]
d Γ

[i]
B

0T [i]−1,3 IT [i]−1 0T [i]−1,1

⎤
⎥⎦ , (10)

B
[i]
θ =

⎡
⎢⎣ 03,1

K
[i]
d

0T −1,1

⎤
⎥⎦ , E

[i]
θ = B

[i]
θ , C [i] = [0 1 0 01,T [i] ]

where x
[i]
k � [x

[i],�
v,k , x

[i],�
τ,k ]� refers to the state

vector, u
[i]
k � v

[i]
ref(tk + τ̃

[i]
d ) to the control input,

w
[i]
k � Δv

[i]
d (tk + τ̃d) to the additive disturbance and

y
[i]
k = v[i](tk) to the system output. The attentive reader

might have noticed that the initial condition x
[i]
τ (t0)

depends on v[i](t0 + τ̃
[i]
d − nTs) with n = 1, . . . , T [i].

Therefore, in the MPC implementation, we measure and

store the velocity v[i] with a frequency which is high

enough to obtain an appropriate initial condition. As the

MPC is run with the fixed sample time Ts, we know that

v
[i]
ref(tk + τ̃

[i]
d − nTs) = v

[i]
ref(tk − nTs) holds for n ∈ N0.

D. Distances Between Agents
The distance between two agents i, l ∈ A is defined

according to [5]. If two agents are potentially in conflict,

they share a common collision point s
[i]
c,l respectively s

[l]
c,i

along their respective path coordinate. Otherwise, we define

s
[i]
c,l = s

[l]
c,i = ∞. This way, the distance between agent

i and l is defined as the sum of the absolute distances

d
[i]
c,l � |s[i] − s

[i]
c,l| and d

[l]
c,i � |s[l] − s

[l]
c,i| to the agents’ joint

collision point, when existing, and infinite otherwise, i.e.,

d
[i]
l =

{
|s[i] − s

[i]
c,l|+ |s[l] − s

[l]
c,i| , s

[i]
c,l, s

[l]
c,i �= ∞

∞ , otherwise.
(11)

v
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K
[i]
v
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[i]
θ,d(s)ZOH

a
[i]
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[i]
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OPTIMIZER

Fig. 2: Control loop with digitalized driver, MPC controller

and prestabilizing gain.

III. STABILIZING FEEDBACK GAIN

Before further outlining the controller design, we briefly

focus on how to handle unstable system dynamics, which

might occur when a driver time delay is present. Without

time delay, i.e., for τ
[i]
d = 0 it can easily be proven that

the plant model with control input v
[i]
ref and output v[i]

is strictly stable for every realization of the driver gain

K
[i]
d > 0. When considering a driver reaction time τ

[i]
d > 0,

though, the prediction model might become unstable which

is numerically unfavorable when it should be applied in the

MPC framework [14]. In this case, a common approach

is to design a prestabilizing state feedback gain K
[i]
θ and

eventually apply the prestabilized plant model for prediction

purposes [14]. This way, the control input can be written as

u
[i]
k = K

[i]
θ x

[i]
k + δu

[i]
k (12)

where δu
[i]
k � δv

[i]
ref,k is the new corrective control input that

is determined by the MPC controller.

With the MPC as discrete-time controller, the feedback

gain K
[i]
θ needs to be designed in the discrete-time domain

as well. The main objective is to determine K
[i]
θ such that

the closed-loop system A
[i]
θ + B

[i]
θ K

[i]
θ is Schur stable for

all realizations of the uncertainty θ[i]. For this purpose,

we implement a proportional feedback controller K
[i]
v in

accordance to Fig. 2.

The discrete-time single-input single-output (SISO) driver
reaction+vehicle model in Fig. 2 with control input v

[i]
ref and

control output v[i], can be represented in the z-domain as

G
[i]
θ (z) = (G

[i]
d,θ(z)G

[i]
v (z))/(1 + G

[i]
d,θ(z)G

[i]
v (z)) where

G
[i]
d,θ(z) and G

[i]
v (z) denote the discrete-time counterparts of

the continuous-time driver reaction and vehicle kinematics

transfer functions.

We utilize the Nyquist criterion to design a proportional

feedback gain K
[i]
v < 0 on the vehicle velocity to stabilize

G
[i]
θ (z). Thus, we need to ensure that 1+K

[i]
v G

[i]
θ (z) has only

zeros inside the unit disc. It can be proven that if G
[i]
θ (z) is

strictly stable, G
[i]
θ (z)/(1+K

[i]
v G

[i]
θ (z)) is strictly stable for

all K
[i]
v < 0. If G

[i]
θ (z) is unstable, we obtain a lower bound

K [i]
v (θ[i]) and an upper bound K

[i]

v (θ[i]) on K
[i]
v to ensure

stability for the uncertainty realization θ[i]. When considering

the parametric uncertainty θ
[i]

= (K
[i]

d , τ
[i]
d ) with maximum

gain and maximum time delay, we get the largest lower and
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smallest upper bound on K
[i]
v for every possible realization

of θ[i]. We choose K [i]
v (θ

[i]
) ≤ K

[i]
v ≤ K

[i]

v (θ
[i]
) and finally

obtain the state feedback gain K
[i]
θ as

K
[i]
θ �

[
0 −K [i]

v 0 01,T [i]

]
. (13)

Fig. 3 illustrates for the system in section V and 2000

samples of the uncertainty θ[i] that the maximum absolute

eigenvalue |λ(A[i]
θ +B

[i]
θ K

[i]
θ )| of every prestabilized system

is less than one, i.e., every prestabilized system is stable.
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Fig. 3: Max. abs. eigenvalue of the prestabilized system in

section V in dependence of K
[i]
d and τ [i] (2000 samples).

IV. DISTRIBUTED STOCHASTIC OPTIMAL CONTROL

A. Control Problem and Algorithm
The distributed control problem to solve can generally be

stated as follows:
Problem 1: In spite of the parametric and additive un-

certainties (3)-(4), optimize the driver speed advice v
[i]
ref for

every agent i such that collisions are avoided, the agent’s

cost function is minimized and constraints are satisfied.

The general idea of scenario-based MPC is to minimize,

for every agent i, an average cost over scenarios κ ∈ K,

K � {1, . . . ,K}, which are generated by drawing i.i.d. sam-

ples of the uncertainty over the prediction horizon, subject

to constraints that need to be satisfied for every scenario

[10]. Algorithm 1 sketches the algorithm which is applied

to coordinate the agents in the intersection.
Algorithm 1: Scenario MPC at time k, Agent i ∈ A
1) Receive data via V2V: Receive distances d

[l]
i,(·|k) to

collision points from all agents l �= i.
2) Scenario Generation: Sample K scenarios.

3) Scenario Cost: Determine an average scenario cost.

4) Scenario Constraints: Impose input, state and safety

constraints for every scenario.

5) Scenario Optimization: Solve a single OCP which

optimizes over K scenarios s.t. scenario constraints.

6) Broadcast data via V2V: Broadcast distances d
[i]
l,(·|k).

7) Apply Control: Apply first element u
[i],�
(k|k). Go to 1).

B. Scenario Model Predictive Control
Hereafter, we outline the most important steps of

Algorithm 1.
1) Scenario Generation: During scenario generation, K

different scenarios are sampled, each representing a poten-

tial driver reaction in terms of the parametric uncertainty

θ[i] = (K
[i]
d , τ

[i]
d ) and the additive uncertainty Δv

[i]
d . We as-

sume that the driver does not change his general reaction over

the prediction horizon. The deviation from the recommended

speed, though, is considered to be time-varying over this

interval, see [9]. To this end, we keep K
[i,κ]
d ∈ [K

[i]
d , K

[i]

d ]

and τ
[i,κ]
d ∈ [τ

[i]
d , τ

[i]
d ] constant over the prediction horizon

for scenario κ ∈ K while the velocity offset Δv
[i,κ]
d,(k+j|k)

is sampled from the interval [Δv
[i]
d , Δv

[i]
d ] for κ ∈ K and

j = 0, . . . , N − 1.
We eventually gain the following sampled system model

for every scenario κ ∈ K (indicated by the superscript κ)

Σ
[i,κ]
θ �

{
x
[i,κ]
k+1= A

[i,κ]
θ,Kθ

x
[i,κ]
k +B

[i,κ]
θ δu

[i]
k + E

[i,κ]
θ w

[i,κ]
k

y
[i,κ]
k = C [i]x

[i,κ]
k (14)

where A
[i,κ]
θ,Kθ

� A
[i,κ]
θ +B

[i,κ]
θ K

[i]
θ is the closed-loop matrix

by applying feedback gain (13). Following (6), the time delay

τ
[i,κ]
d is sampled from a continuous interval which eventually

allows us to apply the stochastic MPC theory in [10].
Moreover, referring to (6), the initial condition of the time

delay states x
[i]
τ,0 depends on the uncertain speed offset Δv

[i]
d .

This implies that we also need to sample the initial condition

x
[i,κ]
0 as x

[i]
τ,0 is neither measurable nor observable.

2) Scenario Cost: The control objectives for every agent

i ∈ A can be stated as follows: 1) the velocity v[i] of

every agent i should follow the set speed v
[i]
set, being the

minimum of the driver selected speed (usually the speed

limit) and some situation dependent upper bound (e.g., in

curves); 2) driver speed advices should be smooth, as such

step changes should be small; 3) longitudinal accelerations

should be minimized for efficient driving and 4) jerk should

be minimized for the sake of comfort. We phrase these

objectives in terms of the following quadratic objective

function in dependence of scenario κ ∈ K

J [i,κ](x
[i,κ]
0 ,δu

[i]
(·|k)) � Q[i]

N∑
j=1

(v
[i]
set,(k+j|k) − v

[i,κ]
(k+j|k))

2

+R[i]
N−1∑
j=0

Δu
[i,κ],2
(k+j|k) (15)

+ S[i]
a

N∑
j=1

a
[i,κ],2
x,(k+j|k) + S

[i]
Δa

N∑
j=1

Δa
[i,κ],2
x,(k+j|k)

where x
[i,κ]
0 = x

[i,κ]
k denotes the sampled initial condition

at time k, δu
[i]
(·|k) = [δu

[i]
(k|k), . . . , δu

[i]
(k+N−1|k)]

� the

vector of corrective control actions over the prediction

horizon of length N , Δu
[i,κ]
(k+j|k) = u

[i,κ]
(k+j|k) − u

[i,κ]
(k+j−1|k)

the step change of the resulting control input

u
[i,κ]
(k+j|k) = K

[i]
θ x

[i,κ]
(k+j|k) + δu

[i]
(k+j|k) while Q[i] > 0,

R[i] > 0, S
[i]
a > 0 and S

[i]
Δa > 0 are positive weights.
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3) Scenario Constraints: Besides control objectives, lo-

cal agent constraints and, most important, constraints for

global collision avoidance need to be accommodated as well.
In terms of local agent constraints, the speed advice

v
[i,κ]
ref plus speed offset Δv

[i,κ]
d should be constrained for

every agent i ∈ A such that only positive speeds are

recommended and a driver selected upper speed bound (close

to the speed limit) is accounted for. This claim is formulated

as a constraint on the resulting control input u
[i,κ]
(k+j|k) for

j = 0, . . . , N − 1 and every scenario κ ∈ K, i.e.,

u
[i,κ]
(k+j|k) ∈ U [i,κ]

(k+j|k) ∀κ ∈ K, with (16)

U [i,κ]
(k+j|k) �

{
u ∈ R | 0 ≤ u+Δv

[i,κ]
d,(k+j|k) ≤ v

[i]
(k+j|k)

∧ u = K
[i]
θ x

[i,κ]
(k+j|k) + δu

[i]
(k+j|k), δu

[i]
(k+j|k) ∈ R

}
where v

[i]
(k+j|k) is an appropriately selected upper bound.

Through the state constraint

x
[i,κ]
(k+j|k) ∈ X [i]

(k+j|k) �
{
x ∈ R

3 | a[i]x ≤ [x]1 ≤ a[i]x (17)

∧ 0 ≤ [x]2 ≤ v
[i]
(k+j|k)

}
for j = 1, . . . , N and every scenario κ ∈ K, we also bound

the actual velocity and constrain the vehicle acceleration to

accommodate physical vehicle limitations and safe driving.

Following [9], we impose the lower bound v
[i]
mean on the

mean velocity over the prediction horizon when approaching

a certain distance to the intersection, i.e.,

1

N + 1

(
v
[i]
k +

N∑
j=1

v
[i,κ]
(k+j|k)

)
≥ v[i]mean, ∀κ ∈ K. (18)

Particularly, we claim that the prediction horizon at least

covers the coordinate interval where potential collisions

might occur with other agents. This way, convergence and

feasibility of the distributed control scheme is ensured [9].
To ascertain collision avoidance, we follow our approach

in [9]. Essentially, collision avoidance constraints need to be

satisfied jointly, thus requiring a certain consensus among

agents. To enforce consensus, we introduce time-invariant

priorities on the agents that are determined once and held

constant during the maneuver. Therefore, we define an in-

jective prioritization function γ : A → N
+ which assigns

a unique priority to every agent, where a lower value

corresponds to a higher priority. We specify the prioritized

conflict set A[i]
c,γ �

{
l ∈ A | l �= i∧γ(l) < γ(i)∧s

[i]
c,l �= ∞

}
containing the agents l ∈ A which have a joint collision

point with agent i but a higher priority. Safety constraints

can thus be phrased as

d
[i,κ]
l,(k+j|k) ≥ d

[i]
safe,l,(k+j|k), ∀l ∈ A[i]

c,γ (19)

for j = 1, . . . , N and κ ∈ K with an appropriate safety

distance d
[i]
safe,l,(k+j|k). Ultimately, only the agent with lower

priority has to impose this safety constraint. With definition

(11) of d
[i]
l,(k+j|k), we can recast (19) in the form [9]

(s
[i,κ]
(k+j|k) − s

[i]
c,l)

2 ≥ (d
[i]
safe,l,(k+j|k) − d

[l]
c,i,(k+j|k))

2, (20)

∀l ∈ A[i]
c,γ : d

[i]
safe,l,(k+j|k) > d

[l]
c,i,(k+j|k).

To avoid the necessity to transmit the trajectories of every

scenario, every agent l computes the distance d
[l]
c,i,(k+j|k)

to its collision point based on the center of the interval

[minκ∈K{s[l,κ](k+j|k)},maxκ∈K{s[l,κ](k+j|k)}]. The length of this

interval, denoted as ΔL
[l]
(k+j|k), is leveraged to increase the

safety distance of agent i. In the end, only d
[l]
c,i,(k+j|k) and

ΔL
[l]
(k+j|k) need to be transmitted to the other agents [9].

4) Scenario Optimization: We have decomposed the

control problem by separating the local cost functions and

constraints while collision avoidance constraints are only

imposed on agents with lower priority. Summarizing, the

local OCPs can be cast as

Distributed Scenario OCP, every agent i ∈ A solves:

minimize
δu

[i]

(·|k)

1

K

K∑
κ=1

J [i,κ](x
[i,κ]
0 , δu

[i]
(·|k)) (21)

subject to system dynamics (14)

safety constraints (20)

input (16) & state constraints (17), (18).

Scenario OCP (21) is a non-convex quadratically constrained

quadratic program (QCQP). To solve the QCQP, we apply

the penalty convex-concave procedure [15] as local method

which iteratively solves a convex quadratic problem (QP).

Finally, the control input u
[i],�
k = K

[i]
θ x

[i,1]
k + δu

[i],�
(k|k) is

applied to the plant where K
[i]
θ x

[i,1]
k = . . . = K

[i]
θ x

[i,K]
k .

C. Constraint Violation Probability
For a centralized scenario MPC scheme, [10], [16] have

proven that scenario constraints are satisfied with a certain

probability that depends on the number K of scenarios. In

this work, the uncertainties of every agent i ∈ A are assumed

to be independent from each other, such that sampling can be

carried out independently as well. Consequently, the theory

in [10] also holds for our distributed setup. According to

[10], the most relevant criterion to guarantee closed-loop

constraint satisfaction with a certain probability is the first

predicted step constraint violation probability at time step

k + 1. With the parametric uncertainty θ[i], the additive

(uncertain) disturbance Δv
[i]
d and a control input vector of

dimension one, we obtain the following upper bound on the

first predicted step (and as such closed-loop) state constraint

violation probability for an arbitrary scenario κ

P
{
x
[i,κ]
(k+1|k) /∈ X [i]

(k+1|k)

}
≤ 1

1 +K
. (22)

Given that only the worst case scenarios are broadcasted

to the other agents (see section IV-B.3), collision avoidance

constraints might be violated with an even lower probability.

With the driver being eventually in charge of vehicle control,

we consider a probabilistic guarantee on collision avoidance

to be appropriate for the given application.

V. SIMULATION RESULTS

A. Simulation Setup
To assess the validity of the stochastic approach, an urban

four way intersection scenario with four agents passing the
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Fig. 4: Intersection scenario: Four straight passing agents.

intersection straight is considered, see Fig. 4. Every agent

has a length of L[i] = 4.87m, a width of W [i] = 1.85m

and a dynamic drivetrain time constant of T
[i]
ax = 0.3 s.

Parameter sets that represent a typical human driver are

hard to determine. For the driver gain (in s−1) and the

speed offset (in m/s), we choose similar parameter intervals

like in our previous study [9]. The time delay (in s) is

selected in accordance to studies on platooning [12]. In

the simulation model, the following parameters are used:

K
[1]
d = 0.55, τ

[1]
d = 1.5, Δv

[1]
d = 0.5, K

[2]
d = 1.0, τ

[2]
d = 1.9,

Δv
[2]
d = −0.3, K

[3]
d = 0.7, τ

[3]
d = 1.8, Δv

[3]
d = −0.4,

K
[4]
d = 0.9, τ

[4]
d = 1.9, Δv

[4]
d = 0.2. During simulation,

Δv
[i]
d is varied periodically in a step-wise manner by adding

an offset which is bounded by the interval [−0.2, 0.2].
For the stochastic MPC scheme, the uncertainty intervals

are selected as: K
[i]
d = 0.5 s−1, K

[i]

d = 1.2 s−1 (driver

gain bounds); τ
[i]
d = 0 s, τ

[i]
d = 2 s (time delay bounds);

Δv
[i]
d = −1m/s and Δv

[i]
d = 1m/s (speed offset bounds).

Given those intervals, the feedback gain K
[i]
v ∈ [−1, −0.45]

ensures a stable prediction model. As a trade-off between

the resulting settling time and damping, we have chosen

K
[i]
v = −0.59. Moreover, K = 99 scenarios are generated

for optimization — with (22), this implies an upper constraint

violation probability bound of 1%.

The performance of the stochastic scheme is compared

with a baseline MPC controller which only exploits a single

realization of the driver parameters: K
[1]
d = 0.6, τ

[1]
d = 1.2,

K
[2]
d = 0.8, τ

[2]
d = 1.5, K

[3]
d = 0.9, τ

[3]
d = 1.2, K

[4]
d = 1.1,

τ
[4]
d = 1.0 while Δv

[i]
d is set to zero for every agent.

For both MPC regimes, the remaining parameters are set

equally, i.e., using a sample time of 0.25 s and a horizon

length of N = 40 (i.e., a preview time of 10 s). With this

horizon length, the settling time is covered for 93% of

all sampled system models (based on a 5000 sample anal-

ysis) which has turned out to be sufficient. Furthermore,

the following weights are applied: Q[i] = 0.5, R[i] = 20,

S
[i]
a = 5, S

[i]
Δa = 1. While agent 3 has selected a set speed of

11.1m/s, all other agents apply the speed limit of 13.9m/s
as set speed. The driver selected upper velocity bound v[i]

is set 10% (i.e., 1.39m/s) higher than the speed limit.

Longitudinal accelerations are bounded by a
[i]
x = −7m/s2

and a
[i]
x = 4m/s2. Moreover, agent priorities are fixed as in

[9]: γ(1) = 1, γ(2) = 2, γ(3) = 4, γ(4) = 3. To solve OCP

(21), qpOASES [17] is utilized as QP solver.

B. Discussion of Results

In Fig. 5, the i-th row illustrates the motion trajectories of

agent i for the stochastic MPC scheme. The three respective

columns, highlight from left to right: 1) the agent’s path

coordinate trajectory along with the trajectories of conflicting

agents; 2) the agent’s actual (colored solid), maximum (solid

black) and minimum mean velocity (dashed gray) together

with the speed advice (colored dashed), the tolerated speed

offset (colored patch) and the set speed (dashed black); 3) the

actual vehicle acceleration. When agent i imposes a safety

constraint with respect to agent l, a colored polygon indicates

the coordinate interval over time that must not be entered by

the trajectory of agent i. The fifth row (scenario MPC) and

sixth row (baseline MPC) show a closer insight into the time

interval when agents are close to each other and collisions

might occur. For reasons of brevity, we do not illustrate any

motion trajectories for the baseline control scheme besides

those in the sixth row.

In the given scenario, agent 3, having the lowest priority,

crosses the intersection first by speeding up from 11.1m/s
to 12.6m/s with a moderate acceleration of 1m/s2 to avoid

collisions with agent 1 and agent 4. Evidently, the non-

convex problem formulation bears the advantage to let agents

cross in a sequence which is different from their priorities.

After agent 3, agent 1 passes the intersection without the

need to account for any other agent as he owns the highest

priority. Agent 2 crosses the intersection after agent 1 by

reducing his speed to 9.3m/s with a maximum deceleration

of 1.7m/s2. Finally, agent 4, who exhibits the second lowest

priority, crosses the intersection after agent 2. To safely avoid

a collision with agent 2, agent 4 needs to slow down to 8m/s
with a maximum deceleration of 2.3m/s2. For every agent,

it is evident that the corresponding speed advices are very

smooth and easy to follow for a human driver. Even despite a

time delay of up to 1.9 s, it can be recognized that the state

and input trajectories satisfy constraints and do not show

any noticeable oscillations. Without an appropriate feedback

gain, simulation studies have shown that severe oscillations

and unsmooth speed advices might occur.

The last two rows in Fig. 5 finally provide evidence

that the scenario MPC scheme is able to avoid collisions

between agents while the baseline MPC scheme, neglecting

uncertainties, is not. Although agent 2 does not violate safety

constraints for both strategies, agent 3 collides with agent 1

and agent 4 with agent 2 in case of the baseline controller.

We can conclude that, despite uncertainties, the stochastic

MPC scheme satisfies all our requirements.

VI. CONCLUSION AND FUTURE WORK

We have proposed a distributed stochastic MPC scheme

which provides speed advices to the driver in order to allow

for safe and efficient intersection crossing without any traffic

lights or signs. As an extension of our previous works, we

include the driver reaction time delay as an additional para-

metric uncertainty in our control concept. Simulation results

provide evidence that state, input and collision avoidance

constraints are satisfied in spite of uncertainty. Future work
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Fig. 5: Scenario MPC is able to avoid collisions among agents in spite of uncertainty while Baseline MPC is not.

aims at reducing the computational effort of the stochastic

OCP and at verifying results in experimental tests.
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