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Result derived last week during visit in Lund

Consider the following dynamics

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe − (kρρe + kννe)

where S(ωr) = −S(ωr)
T, kρ > 0, kν > 0, and ωr(t), ω̇r(t) bounded. Differentiating

V =
kρ
2
νT
eνe +

1

2
(kρρe + kννe)

T(kρρe + kννe)

along solutions yields (using xTS(ωr)x = 0):

V̇ = kρν
T
e ν̇e + (kρρ̇

T
e + kν ν̇

T
e)(kρρe + kννe)

= −kρν
T
eS(ωr)νe − kρν

T
e(kρρe + kννe) + kρρ

T
eS(ωr)(kρρe + kννe)+

+ kρν
T
e(kρρe + kννe) + kνν

T
eS(ωr)(kρρe + kννe)− kν(kρρe + kννe)

T(kρρe + kννe)

= −kν(kρρe + kννe)
T(kρρe + kννe) ≤ 0.
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Result derived last week during visit in Lund

Consider the following dynamics

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe − (kρρe + kννe)

where S(ωr) = −S(ωr)
T, kρ > 0, kν > 0, and ωr(t), ω̇r(t) bounded. Differentiating

V =
kρ
2
νT
eνe +

1

2
(kρρe + kννe)

T(kρρe + kννe)

along solutions yields (using xTS(ωr)x = 0):

V̇ = −kν(kρρe + kννe)
T(kρρe + kννe) ≤ 0.

Only negative semi-definite. LaSalle fails to conclude GAS. Nevertheless, consider

kρρ̇e + kν ν̇e = kρνe − S(ωr)(kρρe + kννe) + kν(kρρe + kννe)

We can hope to be able to conclude that both kρρe + kννe and kρνe converge to zero
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Questions

Assume that limt→∞ x(t) = 0. Do we have limt→∞ ẋ(t) = 0?

No: Consider x(t) = e−t sin e2t for which ẋ(t) = −e−t sin e2t + 2et cos e2t

Assume that x(t) is bounded and limt→∞ ẋ(t) = 0. Do we have limt→∞ x(t) = C for some constant
C?

No: Consider ẋ(t) = cos(ln(t+1))
t+1

for which x(t) = sin(ln(1 + t))

We need some results to complete the proof
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Commonly used tools for completing the proof

Lemma (Barbălat, 1959)

Let φ : R+ → R be a uniformly continuous function (e.g., φ̇ bounded). Suppose that
limt→∞

∫ t

0
φ(τ)dτ exists and is finite. Then lim

t→∞
φ(t) = 0.

Idea: For φ(t) use V̇(t).

Lemma (Micaelli, Samson, 1993)

Let f : R+ → R be any differentiable function. If limt→∞ f(t) = 0 and

ḟ(t) = f0(t) + η(t) t ≥ 0

where f0 is a uniformly continuous function (e.g., ḟ0 is bounded) and limt→∞ η(t) = 0, then

limt→∞ ḟ(t) = limt→∞ f0(t) = 0.

Idea: Signal chasing by (repeatedly) applying to signals that converge to zero
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Completing the proof of last week

Consider the following dynamics

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe − (kρρe + kννe)

where S(ωr) = −S(ωr)
T, kρ > 0, kν > 0, and ωr(t), ω̇r(t) bounded. Differentiating

V =
kρ
2
νT
eνe +

1

2
(kρρe + kννe)

T(kρρe + kννe)

along solutions yields (using xTS(ωr)x = 0):

V̇ = −kν(kρρe + kννe)
T(kρρe + kννe) ≤ 0.

Applying Barbălat to V̇ results in: kρρe + kννe converges to 0. Consider

kρρ̇e + kν ν̇e = kρνe − S(ωr)(kρρe + kννe) + kν(kρρe + kννe)

Applying Micaelli-Samson result in: kρνe converges to 0.
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Example (Panteley, Loría, Teel, 1999)

Consider the system

ẋ =


1

1+t
if x ≤ − 1

1+t

−x if |x| ≤ 1
1+t

− 1
1+t

if x ≥ 1
1+t

For each r > 0 and t0 ≥ 0 there exist k > 0 and γ > 0 such that for all t ≥ t0 and |x(t0)| ≤ r:

|x(t)| ≤ k|x(t0)|e−γ(t−t0) ∀t ≥ t0 ≥ 0

However, always a bounded (arbitrarily small) additive perturbation δ(t, x) and a constant t0 ≥ 0
exist such that the trajectories of the perturbed system ẋ = f(t, x) + δ(t, x) are unbounded.

Main reason for this negative result: the constants k and γ are allowed to depend on t0, i.e., for
each value of t0 different constants k and γ may be chosen.
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Stability definitions

Consider the system

ẋ = f(t, x) where f(t, 0) = 0 ∀t ≥ 0 (1)

• The equilibrium point x = 0 of (1) is said to be globally asymptotically stable (GAS) if for all
t0 ∈ R+ a function β ∈ KL exists such that for all x(t0) ∈ Rn

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0) ∀t ≥ t0 ≥ 0

• The equilibrium point x = 0 of (1) is said to be uniformly globally asymptotically stable (UGAS)
if a function β ∈ KL exists such that for all (t0, x(t0)) ∈ R+ × Rn

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0) ∀t ≥ t0 ≥ 0
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Robustness to perturbations for UGAS

Lemma (Khalil 1996, Lemma 5.3)

Let x = 0 be a uniformly asymptotically stable equilibrium point of the nominal system ẋ = f(t, x)
where f : R+ × Br → Rn is continuously differentiable, and the Jacobian

[
∂f
∂x

]
is bounded on Br,

uniformly in t. Then one can determine constants ∆ > 0 and R > 0 such that for all perturbations
δ(t, x) that satisfy the uniform bound ‖δ(t, x)‖ ≤ δ < ∆ and all initial conditions ‖x(t0)‖ ≤ R, the
solution x(t) of the perturbed system ẋ = f(t, x) + δ(t, x) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖ , t− t0) ∀t0 ≤ t ≤ t1 and ‖x(t)‖ ≤ ρ(δ) ∀t ≥ t1

for some β ∈ KL and some finite time t1, where ρ(δ) is a class K function of δ.
Furthermore, if x = 0 is a uniformly globally exponentially stable equilibrium point, we can allow
for arbitrarily large δ by choosing R > 0 large enough.
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Problem

Lesson learned from example

For robustness we need uniform global asymptotic stability.

Subject of this talk

How to show UGAS when we do not have a proper Lyapunov function, i.e, when V̇ is negative
semi-definite, but are able to complete the proof using Barbălat + signal chasing

After this talk, you (hopefully) know:
• How to complete a proof using Barbălat + signal chasing

• Using Barbălat + signal chasing shows only GAS, whereas we want UGAS.

• How to show UGAS using different tools
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Standard approach (general case)
More general case: ẋ1 = f1(x1, x2, t), ẋ2 = f2(x1, x2, t)

• Lyapunov function: V(x1, x2, t) positive definite.

• Derivative along dynamics: V̇(x1, t) negative semi-definite.

• Using Barbălat: x1 → 0.

• Using Micaelli, Samson: f1(0, x2, t) → 0, which implies x2 → 0.

Or even more general: ẋ1 = f1(x1, x2, x3, t), ẋ2 = f2(x1, x2, x3, t), ẋ3 = f3(x1, x2, x3, t)

• Lyapunov function: V(x1, x2, x3, t) positive definite.

• Derivative along dynamics: V̇(x1, t) negative semi-definite.

• Using Barbălat: x1 → 0.

• Using Micaelli, Samson: f1(0, x2, x3, t) → 0, which implies x2 → 0.

• Using Micaelli, Samson: f2(0, 0, x3, t) → 0, which implies x3 → 0.

Or even more general…

I this way we show global asymptotic stability. However, we look for uniform result!
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Matrosov like theorem (Loría et.al., 2005)

Consider the dynamical system

ẋ = f(t, x) x(t0) = x0 f(t, 0) = 0 (2)

f : R+ ×Rn → Rn locally bounded, continuous a.e., locally uniformly continuous in t. If there exist

◦ j differentiable functions Vi : R+ × Rn → R, bounded in t, and

◦ continuous functions Yi : Rn → R for i ∈ {1, 2, . . . j} such that
• V1 is positive definite and radially unbounded,

• V̇i(t, x) ≤ Yi(x), for all i ∈ {1, 2, . . . , j},
• Yi(x) = 0 for i ∈ {1, 2, . . . , k− 1} implies Yk(x) ≤ 0, for all k ∈ {1, 2, . . . , j},
• Yi(x) = 0 for all i ∈ {1, 2, . . . , j} implies x = 0,

then the origin x = 0 of (2) is uniformly globally asymptotically stable.

Question: how to determine suitable functions Vi and Yi (for i > 1)?
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Lund-result (revisited)
Dynamics: ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe − (kρρe + kννe)

Lypunov function candidate: V1 =
kρ
2
νT
eνe +

1

2
(kρρe + kννe)

T(kρρe + kννe)

Differentiating along solutions: V̇1 = −kν(kρρe + kννe)
T(kρρe + kννe) = Y1 ≤ 0

Furthermore: kρρ̇e + kν ν̇e = kρνe + kν(kρρe + kννe)− S(ωr)(kρρe + kννe)︸ ︷︷ ︸
ηConsider V2 = −(kρρe + kννe)

T(kρρ̇e + kν ν̇e). Then

V̇2 = −(kρρ̇e + kν ν̇e)
T(kρρ̇e + kν ν̇e)− (kρρe + kννe)

T(kρρ̈e + kν ν̈e)

= −(kρνe + η)T(kρνe + η)− (kρρe + kννe)
T(kρρ̈e + kν ν̈e)

= −k2ρν
T
eνe + 2ηTkρνe + ηTη − (kρρe + kννe)

T(kρρ̈e + kν ν̈e)︸ ︷︷ ︸
=0 for Y1=0

≤ Y2(ρe, νe)

Note that Y1 = 0 implies Y2 ≤ 0. Furthermore, Y1 = Y2 = 0 implies ρe = νe = 0.

Therefore: uniform global asymptotic stability.
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New standard approach for uniform results
More general case: ẋ1 = f1(x1, x2, t), ẋ2 = f2(x1, x2, t)

• Lyapunov function: V1(x1, x2, t) positive definite.

• Derivative along dynamics: V̇1(x1, t) ≤ Y1(x1) negative semi-definite.

• Use V2 = −xT1ẋ1. Then V̇2 = Y2.

• Note that Y1 = 0 implies Y2 = −f1(0, x2, t)
2 ≤ 0. Furthermore Y1 = Y2 = 0 implies x1 = x2 = 0.

• Conclusion: uniform global asymptotic stability.

Or even more general: ẋ1 = f1(x1, x2, x3, t), ẋ2 = f2(x1, x2, x3, t), ẋ3 = f3(x1, x2, x3, t)

• Lyapunov function: V1(x1, x2, x3, t) positive definite.

• Derivative along dynamics: V̇1(x1, t) ≤ Y1(x1) negative semi-definite.

• Use V2 = −xT1ẋ1. Then V̇2 = Y2.

• Y1 = 0 implies Y2 = −f1(0, x2, x3, t)
2 ≤ 0. Furthermore Y1 = Y2 = 0 implies x1 = x2 = 0.

• Use V3 = −xT2ẋ2. Then V̇3 = Y3.

• Y1 = Y2 = 0 implies Y3 = −f2(0, 0, x3, t)
2 ≤ 0. Also, Y1 = Y2 = Y3 = 0 implies x1 = x2 = x3 = 0.

• Conclusion: uniform global asymptotic stability.
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Conclusions

• We recalled the standard approach of using Barbălat + signal chasing

• We illustrated the need for uniform asymptotic stability

• We showed how to modify the standard approach for showing GAS to prove UGAS instead.
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