

Result derived last week during visit in Lund

Consider the following dynamics

$$\begin{split} \dot{\rho}_{e} &= -S(\omega_{r})\rho_{e} + \nu_{e} \\ \dot{\nu}_{e} &= -S(\omega_{r})\nu_{e} - (k_{\rho}\rho_{e} + k_{\nu}\nu_{e}) \end{split}$$

where $S(\omega_r) = -S(\omega_r)^T$, $k_\rho > 0$, $k_\nu > 0$, and $\omega_r(t)$, $\dot{\omega}_r(t)$ bounded. Differentiating

$$V = \frac{k_{\rho}}{2} \nu_{e}^{\mathsf{T}} \nu_{e} + \frac{1}{2} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})$$

along solutions yields (using $x^T S(\omega_r) x = 0$):

$$\begin{split} \dot{V} &= k_{\rho} \nu_{e}^{\mathsf{T}} \dot{\nu}_{e} + (k_{\rho} \dot{\rho}_{e}^{\mathsf{T}} + k_{\nu} \dot{\nu}_{e}^{\mathsf{T}}) (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) \\ &= -k_{\rho} \nu_{e}^{\mathsf{T}} S(\omega_{r}) \nu_{e} - k_{\rho} \nu_{e}^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) + k_{\rho} \rho_{e}^{\mathsf{T}} S(\omega_{r}) (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) + \\ &+ k_{\rho} \nu_{e}^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) + k_{\nu} \nu_{e}^{\mathsf{T}} S(\omega_{r}) (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) - k_{\nu} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) \\ &= -k_{\nu} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e}) \leq 0. \end{split}$$

Result derived last week during visit in Lund

Consider the following dynamics

$$\begin{split} \dot{\rho}_{e} &= -S(\omega_{r})\rho_{e} + \nu_{e} \\ \dot{\nu}_{e} &= -S(\omega_{r})\nu_{e} - (k_{\rho}\rho_{e} + k_{\nu}\nu_{e}) \end{split}$$

where $S(\omega_r) = -S(\omega_r)^T$, $k_\rho > 0$, $k_\nu > 0$, and $\omega_r(t)$, $\dot{\omega}_r(t)$ bounded. Differentiating

$$V = \frac{k_{\rho}}{2} \nu_{e}^{\mathsf{T}} \nu_{e} + \frac{1}{2} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})$$

along solutions yields (using $x^T S(\omega_r) x = 0$):

$$\dot{V} = -k_{\nu}(k_{\rho}\rho_{e} + k_{\nu}\nu_{e})^{T}(k_{\rho}\rho_{e} + k_{\nu}\nu_{e}) \leq 0.$$

Only negative semi-definite. LaSalle fails to conclude GAS. Nevertheless, consider

$$k_{\rho}\dot{\rho}_{e} + k_{\nu}\dot{\nu}_{e} = k_{\rho}\nu_{e} - S(\omega_{r})(k_{\rho}\rho_{e} + k_{\nu}\nu_{e}) + k_{\nu}(k_{\rho}\rho_{e} + k_{\nu}\nu_{e})$$

We can hope to be able to conclude that both $k_{\rho}\rho_{\rm e}+k_{\nu}\nu_{\rm e}$ and $k_{\rho}\nu_{\rm e}$ converge to zero

Questions

```
Assume that \lim_{t\to\infty} x(t) = 0. Do we have \lim_{t\to\infty} \dot{x}(t) = 0?
```

No: Consider
$$x(t) = e^{-t} \sin e^{2t}$$
 for which $\dot{x}(t) = -e^{-t} \sin e^{2t} + 2e^{t} \cos e^{2t}$

Assume that x(t) is bounded and $\lim_{t\to\infty}\dot{x}(t)=0$. Do we have $\lim_{t\to\infty}x(t)=C$ for some constant C?

No: Consider
$$\dot{x}(t) = \frac{\cos(\ln(t+1))}{t+1}$$
 for which $x(t) = \sin(\ln(1+t))$

We need some results to complete the proof

Commonly used tools for completing the proof

Lemma (Barbălat, 1959)

Let $\phi: \mathbb{R}_+ \to \mathbb{R}$ be a uniformly continuous function (e.g., $\dot{\phi}$ bounded). Suppose that $\lim_{t \to \infty} \int_0^t \phi(\tau) \mathrm{d}\tau$ exists and is finite. Then $\lim_{t \to \infty} \phi(t) = 0$.

Idea: For $\phi(t)$ use $\dot{V}(t)$.

Lemma (Micaelli, Samson, 1993)

Let $f: \mathbb{R}_+ \to \mathbb{R}$ be any differentiable function. If $\lim_{t \to \infty} f(t) = 0$ and

$$\dot{f}(t) = f_0(t) + \eta(t) \qquad \qquad t \ge 0$$

where f_0 is a uniformly continuous function (e.g., \dot{f}_0 is bounded) and $\lim_{t\to\infty}\eta(t)=0$, then $\lim_{t\to\infty}\dot{f}(t)=\lim_{t\to\infty}f_0(t)=0$.

Idea: Signal chasing by (repeatedly) applying to signals that converge to zero

Completing the proof of last week

Consider the following dynamics

$$\begin{split} \dot{\rho}_{\mathrm{e}} &= -\mathsf{S}(\omega_{\mathrm{r}})\rho_{\mathrm{e}} + \nu_{\mathrm{e}} \\ \dot{\nu}_{\mathrm{e}} &= -\mathsf{S}(\omega_{\mathrm{r}})\nu_{\mathrm{e}} - (k_{\rho}\rho_{\mathrm{e}} + k_{\nu}\nu_{\mathrm{e}}) \end{split}$$

where $S(\omega_r) = -S(\omega_r)^T$, $k_\rho > 0$, $k_\nu > 0$, and $\omega_r(t)$, $\dot{\omega}_r(t)$ bounded. Differentiating

$$V = \frac{k_{\rho}}{2} \nu_{e}^{\mathsf{T}} \nu_{e} + \frac{1}{2} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})^{\mathsf{T}} (k_{\rho} \rho_{e} + k_{\nu} \nu_{e})$$

along solutions yields (using $x^T S(\omega_r) x = 0$):

$$\dot{V} = -k_{\nu}(k_{\rho}\rho_{e} + k_{\nu}\nu_{e})^{T}(k_{\rho}\rho_{e} + k_{\nu}\nu_{e}) \leq 0.$$

Applying Barbălat to \dot{V} results in: $k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e}$ converges to 0. Consider

$$k_{\rho}\dot{\rho}_{e} + k_{\nu}\dot{\nu}_{e} = k_{\rho}\nu_{e} - S(\omega_{r})(k_{\rho}\rho_{e} + k_{\nu}\nu_{e}) + k_{\nu}(k_{\rho}\rho_{e} + k_{\nu}\nu_{e})$$

Applying Micaelli-Samson result in: $k_{\rho}\nu_{e}$ converges to 0.

Example (Panteley, Loría, Teel, 1999)

Consider the system

$$\dot{x} = \begin{cases} \frac{1}{1+t} & \text{if } x \le -\frac{1}{1+t} \\ -x & \text{if } |x| \le \frac{1}{1+t} \\ -\frac{1}{1+t} & \text{if } x \ge \frac{1}{1+t} \end{cases}$$

For each r > 0 and $t_0 \ge 0$ there exist k > 0 and $\gamma > 0$ such that for all $t \ge t_0$ and $|x(t_0)| \le r$:

$$|x(t)| \le k|x(t_0)|e^{-\gamma(t-t_0)} \qquad \forall t \ge t_0 \ge 0$$

However, always a bounded (arbitrarily small) additive perturbation $\delta(t,x)$ and a constant $t_0 \ge 0$ exist such that the trajectories of the perturbed system $\dot{x} = f(t,x) + \delta(t,x)$ are unbounded.

Main reason for this negative result: the constants k and γ are allowed to depend on t_0 , i.e., for each value of t_0 different constants k and γ may be chosen.

Stability definitions

Consider the system

$$\dot{x} = f(t, x)$$

where

$$f(t,0)=0$$

$$\forall t \geq 0$$

(1)

• The equilibrium point x=0 of (1) is said to be globally asymptotically stable (GAS) if for all $t_0 \in \mathbb{R}_+$ a function $\beta \in \mathcal{KL}$ exists such that for all $x(t_0) \in \mathbb{R}^n$

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0)$$

$$\forall t \geq t_0 \geq 0$$

• The equilibrium point x=0 of (1) is said to be uniformly globally asymptotically stable (UGAS) if a function $\beta \in \mathcal{KL}$ exists such that for all $(t_0, x(t_0)) \in \mathbb{R}_+ \times \mathbb{R}^n$

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0)$$

$$\forall t \geq t_0 \geq 0$$

Robustness to perturbations for UGAS

Lemma (Khalil 1996, Lemma 5.3)

Let x=0 be a uniformly asymptotically stable equilibrium point of the nominal system $\dot{x}=f(t,x)$ where $f:\mathbb{R}_+\times B_r\to\mathbb{R}^n$ is continuously differentiable, and the Jacobian $\left[\frac{\partial f}{\partial x}\right]$ is bounded on B_r , uniformly in t. Then one can determine constants $\Delta>0$ and R>0 such that for all perturbations $\delta(t,x)$ that satisfy the uniform bound $\|\delta(t,x)\|\leq \delta<\Delta$ and all initial conditions $\|x(t_0)\|\leq R$, the solution x(t) of the perturbed system $\dot{x}=f(t,x)+\delta(t,x)$ satisfies

$$\left\|x(t)\right\| \leq \beta(\left\|x(t_0)\right\|, t-t_0) \qquad \forall t_0 \leq t \leq t_1 \qquad \text{ and } \qquad \left\|x(t)\right\| \leq \rho(\delta) \qquad \forall t \geq t_1$$

for some $\beta \in \mathcal{KL}$ and some finite time t_1 , where $\rho(\delta)$ is a class \mathcal{K} function of δ . Furthermore, if x=0 is a uniformly globally exponentially stable equilibrium point, we can allow for arbitrarily large δ by choosing R>0 large enough.

Problem

Lesson learned from example

For robustness we need uniform global asymptotic stability.

Subject of this talk

How to show UGAS when we do not have a proper Lyapunov function, i.e, when \dot{V} is negative semi-definite, but are able to complete the proof using Barbălat + signal chasing

After this talk, you (hopefully) know:

- How to complete a proof using Barbălat + signal chasing
- Using Barbălat + signal chasing shows only GAS, whereas we want UGAS.
- How to show UGAS using different tools

Standard approach (general case)

More general case: $\dot{x}_1 = f_1(x_1, x_2, t), \dot{x}_2 = f_2(x_1, x_2, t)$

- Lyapunov function: $V(x_1, x_2, t)$ positive definite.
- Derivative along dynamics: $\dot{V}(x_1,t)$ negative semi-definite.
- Using Barbălat: $x_1 \to 0$.
- Using Micaelli, Samson: $f_1(0, x_2, t) \to 0$, which implies $x_2 \to 0$.

Or even more general: $\dot{x}_1 = f_1(x_1, x_2, x_3, t)$, $\dot{x}_2 = f_2(x_1, x_2, x_3, t)$, $\dot{x}_3 = f_3(x_1, x_2, x_3, t)$

- Lyapunov function: $V(x_1, x_2, x_3, t)$ positive definite.
- Derivative along dynamics: $\dot{V}(x_1, t)$ negative semi-definite.
- Using Barbălat: $x_1 \to 0$.
- Using Micaelli, Samson: $f_1(0, x_2, x_3, t) \to 0$, which implies $x_2 \to 0$.
- Using Micaelli, Samson: $f_2(0,0,x_3,t) \to 0$, which implies $x_3 \to 0$.

Or even more general...

I this way we show global asymptotic stability. However, we look for uniform result!

Matrosov like theorem (Loría et.al., 2005)

Consider the dynamical system

$$\dot{x} = f(t, x)$$
 $x(t_0) = x_0$ $f(t, 0) = 0$ (2)

 $f: \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$ locally bounded, continuous a.e., locally uniformly continuous in t. If there exist

- o j differentiable functions $V_i : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$, bounded in t, and
- o continuous functions $Y_i : \mathbb{R}^n \to \mathbb{R}$ for $i \in \{1, 2, ..., j\}$ such that
- V_1 is positive definite and radially unbounded,
- $\dot{V}_i(t,x) \leq Y_i(x)$, for all $i \in \{1,2,\ldots,j\}$,
- $Y_i(x) = 0$ for $i \in \{1, 2, ..., k-1\}$ implies $Y_k(x) \le 0$, for all $k \in \{1, 2, ..., j\}$,
- $Y_i(x) = 0$ for all $i \in \{1, 2, ..., j\}$ implies x = 0,

then the origin x = 0 of (2) is uniformly globally asymptotically stable.

Question: how to determine suitable functions V_i and Y_i (for i > 1)?

Lund-result (revisited)

Dynamics:
$$\begin{split} \dot{\rho}_{\rm e} &= -S(\omega_{\rm r})\rho_{\rm e} + \nu_{\rm e} \\ \dot{\nu}_{\rm e} &= -S(\omega_{\rm r})\nu_{\rm e} - (k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e}) \end{split}$$
 Lypunov function candidate:
$$\begin{aligned} V_1 &= \frac{k_{\rho}}{2}\nu_{\rm e}^T\nu_{\rm e} + \frac{1}{2}(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e})^T(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e}) \\ \dot{V}_1 &= -k_{\nu}(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e})^T(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e}) = \mathbf{Y}_1 \leq 0 \\ \end{split}$$
 Furthermore:
$$\begin{aligned} k_{\rho}\dot{\rho}_{\rm e} + k_{\nu}\dot{\nu}_{\rm e} &= k_{\rho}\nu_{\rm e} + k_{\nu}(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e}) - S(\omega_{\rm r})(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e}) \\ \dot{V}_2 &= -(k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e})^T(k_{\rho}\dot{\rho}_{\rm e} + k_{\nu}\dot{\nu}_{\rm e}) - (k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e})^T(k_{\rho}\ddot{\rho}_{\rm e} + k_{\nu}\ddot{\nu}_{\rm e}) \\ &= -(k_{\rho}\nu_{\rm e} + \eta)^T(k_{\rho}\nu_{\rm e} + \eta) - (k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e})^T(k_{\rho}\ddot{\rho}_{\rm e} + k_{\nu}\ddot{\nu}_{\rm e}) \\ &= -k_{\rho}^2\nu_{\rm e}^T\nu_{\rm e} + 2\eta^Tk_{\rho}\nu_{\rm e} + \eta^T\eta - (k_{\rho}\rho_{\rm e} + k_{\nu}\nu_{\rm e})^T(k_{\rho}\ddot{\rho}_{\rm e} + k_{\nu}\ddot{\nu}_{\rm e}) \leq \mathbf{Y}_2(\rho_{\rm e},\nu_{\rm e}) \end{aligned}$$

Note that $Y_1=0$ implies $Y_2\leq 0$. Furthermore, $Y_1=Y_2=0$ implies $\rho_e=\nu_e=0$.

Therefore: uniform global asymptotic stability.

New standard approach for uniform results

More general case: $\dot{x}_1 = f_1(x_1, x_2, t)$, $\dot{x}_2 = f_2(x_1, x_2, t)$

- Lyapunov function: $V_1(x_1, x_2, t)$ positive definite.
- Derivative along dynamics: $\dot{V}_1(x_1,t) \leq Y_1(x_1)$ negative semi-definite.
- Use $V_2 = -x_1^T \dot{x}_1$. Then $\dot{V}_2 = Y_2$.
- Note that $Y_1 = 0$ implies $Y_2 = -f_1(0, x_2, t)^2 \le 0$. Furthermore $Y_1 = Y_2 = 0$ implies $x_1 = x_2 = 0$.
- Conclusion: uniform global asymptotic stability.

Or even more general: $\dot{x}_1 = f_1(x_1, x_2, x_3, t), \dot{x}_2 = f_2(x_1, x_2, x_3, t), \dot{x}_3 = f_3(x_1, x_2, x_3, t)$

- Lyapunov function: $V_1(x_1, x_2, x_3, t)$ positive definite.
- Derivative along dynamics: $\dot{V}_1(x_1,t) \leq Y_1(x_1)$ negative semi-definite.
- Use $V_2 = -x_1^T \dot{x}_1$. Then $\dot{V}_2 = Y_2$.
- $Y_1 = 0$ implies $Y_2 = -f_1(0, x_2, x_3, t)^2 \le 0$. Furthermore $Y_1 = Y_2 = 0$ implies $x_1 = x_2 = 0$.
- Use $V_3 = -x_2^T \dot{x}_2$. Then $\dot{V}_3 = Y_3$.

Conclusions

- We recalled the standard approach of using Barbălat + signal chasing
- We illustrated the need for uniform asymptotic stability
- We showed how to modify the standard approach for showing GAS to prove UGAS instead.

