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Problem
How to control these networks?
Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)
Clearing
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Problem

Current status (after three decades)

Several policies exist that guarantee stability of the network

Remark
Stability is only a prerequisite for a good policy

Open issues
• Do existing policies yield satisfactory network performance?
• How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow)
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Approach

Notions from control theory
1. Generate feasible reference trajectory

2. Design (static) state feedback controller

3. Design observer

4. Design (dynamic) output feedback controller

Parallels with this problem
1. Determine desired system behavior

2. Derive non-distributed/centralized controller

3. Can state be reconstructed?

4. Derive distributed/decentralized controller
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Problem 1: Generate reference
Single machine
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Remarks

• Many existing policies assume non-idling a-priori
• Slow-mode optimal if (λ1

μ1
+ λ2

μ2
) + (λ2 − λ1)(1− λ2

μ2
) < 0.

• Trade-off in wasting capacity: idle⇔ switch more often
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Intersection
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Optimal schedule (data from Grontmij: A2/N279)
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Optimal schedule

Extended graph
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Event times
i t(i) t(i+ 6) i+6
1 0.0 31.3 7
2 6.8 31.3 8
3 10.5 35.3 9
4 31.3 35.3 10
5 31.3 6.8 11
6 35.3 5.5 12

Conflict graph
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Data
• Arrival rates: λi

• Service rates: μi

• Clearance times: σi,j
• Min/max green time: gmin

i , gmax
i .

• Min/max period: Tmin, Tmax.
• Conflict graph:
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Design variables
• x(i, j) fraction of period from event i to j
• T′ = 1/T reciprocal of duration of period

Constraints
• Stable system: ρi = λi/μi ≤ x(i, i+ n)
• Clearance time: σi,jT′ ≤ x(i, j)
• Minimal/maximal green time
• Minimal/maximal period
• Conflict:
x(i, i+n)+x(i+n, j)+x(j, j+n)+x(j+n, i) = 1

• Integer cycle:∑
(i,j)∈C+ x(i, j)−∑

(i,j)∈C− x(i, j) = zC.
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Objective

Minimize weighted average delay (Fluid, Webster, Miller, v.d. Broek):

n∑
i=1

ri
2λi(1− ρi)T

(
riλi +

s2i
1− ρi

+
riρ2i s

2
i T

2

(1− ρi)(T− ri)2((1− ρi)T− ri)

)

Concluding remarks for Problem 1
• Mixed integer convex optimization problem.
• Data (Grontmij) of real intersection in the Netherlands with 29 directions:

• Notebook Intel i5-4300U CPU 1.90GHZ with 16.0GB of RAM, Solver: SCIP 3.2.0
• Standard implementation: 48 hours.
• Our approach (plus advanced graph theoretical algorithms): 2 seconds.

• Network of intersections: (conflict) graph with components
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Problem 2: Feedback design

Consider single server with the following system data:

λ1 = 1 μ1 = 3 σ12 = 1 λ2 = 1 μ2 = 4 σ21 = 2

with periodic schedule:

Resulting steady state periodic wip evolution:
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From the periodic orbit we determine:

δ1 = 0 δ2 = 1

Policy
Mode 1: After σ21: serve 1 at μ1 until x1(t) = 0.

Mode 2: After σ12: serve 2 until x2(t) = 0 for at least δ2.
Serve at μ2 if x2 > 0, serve at λ2 if x2 = 0.
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Policy
Mode 1: After σ21: serve 1 at μ1 until x1(t) = 0.

Mode 2: After σ12: serve 2 until x2(t) = 0 for at least δ2.
Serve at μ2 if x2 > 0, serve at λ2 if x2 = 0.

State at start mode 1: X =
[
x1(ti) x2(ti)

]T
.

State at end mode 1: T1X =
[
x2(ti+1) x1(ti+1)

]T
.

Duration of mode: σ21 +
x1(ti)+λ1σ21

μ1−λ1
= x1(ti)+μ1σ21

μ1−λ1
.

T1X =

[
λ2

μ1−λ1
1

0 0

]
X+

[λ2μ1σ21

μ1−λ1

0

]
.
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Policy
Mode 1: After σ21: serve 1 at μ1 until x1(t) = 0.

Mode 2: After σ12: serve 2 until x2(t) = 0 for at least δ2.
Serve at μ2 if x2 > 0, serve at λ2 if x2 = 0.

State at start mode 2: X =
[
x2(ti) x1(ti)

]T
.

State at end mode 2: T2X =
[
x1(ti+1) x2(ti+1)

]T
.

Duration of mode: σ12 +
x2(ti)+λ2σ12

μ2−λ2
+ δ2 = x2(ti)+μ2σ12

μ2−λ2
+ δ2.

T2X =

[
λ1

μ2−λ2
1

0 0

]
X+

[λ1μ2σ12

μ2−λ2
+ λ1δ2
0

]
.
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Mappings:

T1X =

[
λ2

μ1−λ1
1

0 0

]
X+

[λ2μ1σ21

μ1−λ1

0

]

T2X =

[
λ1

μ2−λ2
1

0 0

]
X+

[λ1μ2σ12

μ2−λ2
+ λ1δ2
0

]

Monodromy operatorM = T2 ◦ T1:

MX =

[
λ1

μ2−λ2
1

0 0

]([
λ2

μ1−λ1
1

0 0

]
X+

[λ2μ1σ21

μ1−λ1

0

])
+

[λ1μ2σ12

μ2−λ2
+ λ1δ2
0

]

=

[ λ1λ2

(μ1−λ1)(μ2−λ2)
λ1

μ2−λ2

0 0

]
X+

[ λ1λ2μ1σ21

(μ1−λ1)(μ2−λ2)
+ λ1μ2σ12

μ2−λ2
+ λ1δ2

0

]
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Monodromy operatorM = T2 ◦ T1:

MX =

[ λ1λ2

(μ1−λ1)(μ2−λ2)
λ1

μ2−λ2

0 0

]
X+

[ λ1λ2μ1σ21

(μ1−λ1)(μ2−λ2)
+ λ1μ2σ12

μ2−λ2
+ λ1δ2

0

]

Since x2 = 0, we restrictM to x2 = 0 (using ρi = λi/μi) resulting in M̃:

x1(ti+2) = M̃x1(ti) =
ρ1ρ2

(1− ρ1)(1− ρ2)︸ ︷︷ ︸
A

x1(ti) +
ρ1ρ2μ1σ21

(1− ρ1)(1− ρ2)
+

λ1σ12

1− ρ2
+ λ1δ2︸ ︷︷ ︸

b

For ρ1 + ρ2 < 1 we have A < 1, and therefore lim
i→∞

x1(ti) = x∗1 =
b

1− A
.

Stability region
Fixed time controller: stabilizing for λ1 < 1, λ2 < 4

3 .

Dynamic controller: stabilizing for 1
3λ1 +

1
4λ2 < 1
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Operators for server with 3 buffers

T1X =

⎧⎪⎪⎨
⎪⎪⎩

[
(1−θ1)λ3
μ1−λ1

0 1

θ1 0 0
0 0 0

]
X+

[
λ3(μ1−θ1λ1)σ31

μ1−λ1

θ1λ1σ31
0

]
if (1−θ1)x1(ti)+(μ1−θ1λ1)σ31

μ1−λ1
≥ x2(ti)

μ2−λ2[
0

λ3
μ2−λ2

1

θ1 0 0
0 0 0

]
X+

[
0

θ1λ1σ31
0

]
if (1−θ1)x1(ti)+(μ1−θ1λ1)σ31

μ1−λ1
≤ x2(ti)

μ2−λ2

T2X =

⎧⎪⎪⎨
⎪⎪⎩

[
(1−θ3)λ2
μ3−λ3

0 1

θ3 0 0
0 0 0

]
X+

[
λ2(μ3−θ3λ3)σ23

μ3−λ3

θ3λ3σ23
0

]
if (1−θ3)x3(ti)+(μ3−θ3λ3)σ23

μ3−λ3
≥ x1(ti)

μ1−λ1
+δ1[

0
λ2

μ1−λ1
1

θ3 0 0
0 0 0

]
X+

[
λ2δ1

θ3λ3σ23
0

]
if (1−θ3)x3(ti)+(μ3−θ3λ3)σ23

μ3−λ3
≤ x1(ti)

μ1−λ1
+δ1

T3X =

⎧⎪⎪⎨
⎪⎪⎩

[
(1−θ2)λ1
μ2−λ2

0 1

θ2 0 0
0 0 0

]
X+

[
0
0
0

]
if (1−θ2)x2(ti)

μ2−λ2
≥ x3(ti)

μ3−λ3
+δ3[

0
λ1

μ3−λ3
1

θ2 0 0
0 0 0

]
X+

[
λ1δ3
0
0

]
if (1−θ2)x2(ti)

μ2−λ2
≤ x3(ti)

μ3−λ3
+δ3
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Problem 2: General case
Stability analysis of monodromy operatorM = Tn ◦ · · · ◦ T2 ◦ T1 is cumbersome.

Useful result by Feoktistova, Matveev, Lefeber, Rooda (2012)

Let T be an operator which:
• is piecewise affine, i.e. T x = Aix+ bi for x ∈ {Pix ≤ qi},
• is continuous,
• is monotone, i.e. Ai ≥ 0,
• is strictly dominated, i.e. bi > 0,
• has a fixed point, i.e. there exists x∗ such that x∗ = T x∗,
then
• the fixed point is unique, and
• attracts all solutions of xk+1 = T xk; x0 ∈ R

n
+, i.e. limk→∞ xk = x∗.
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Problem 2: General case

Useful Lemma’s
Composition: T2 ◦ T1 : A2(A1x+ b1) + b2 = A2A1︸ ︷︷ ︸

A

x+ A2b1 + b2︸ ︷︷ ︸
b

.

• Composition of piecewise affine operators is piecewise affine.
• Composition of continuous operators is continuous.
• Composition of monotone dominated (bi ≥ 0) operators is monotone dominated.

Consequence
If T1, . . . , Tn, are piecewise affine continuous monotone dominated, then
M = Tn ◦ · · · ◦ T1 is piecewise affine continuous monotone dominated.

In that case we only need to show thatM is strictly dominated and has a fixed point.
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Problem 2: General case

Concluding remarks

• Switching rules determine (mode)operators. Can relatively easily be chosen to be
piecewise affine continuous monotone dominated

• Only need to show thatM is strictly dominated (chose initial mode cleverly) and has a
fixed point.

• Robustness against parameters (only requirement on parameters: existence of fixed
point).
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Illustration problems 3 and 4: Kumar-Seidman
case

A B

λ = 1

x1 x2

x3x4

μ1 = 1
0.3 μ2 = 1

0.6

μ3 = 1
0.3μ4 = 1

0.6

σ14 = σ41 = 50 σ23 = σ32 = 50

Observation
Sufficient capacity (consider period of at least 1000).
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Desired behavior
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Resulting controller (solving Problem 2)

Mode (1,2): to (4,2) when both x1 = 0 and x2 + x3 ≥ 1000

Mode (4,2): to (4,3) when both x2 = 0 and x4 ≤ 83 1
3

Mode (4,3): to (1,2) when x3 = 0

Remarks

• Non-distributed/centralized controller
• Can be implemented using only synchronisation signals between servers
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Observability
Network Assumptions

• Clearing policy used for machine B
• At t = t1: 	 starts
• At t = t2 > t1: 	 stops

System state can be reconstructed at machine A

• x3(t2) = 0, and x3(t1 − 50) = x3(t1) = (t2 − t1)/0.6

• x2(t1 − 50) = 0, and x2(t2) =
∫ t2
t1−50

u1(τ)d τ

Observation
Observablity determined by network topology
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Distributed controller
Network Desired behavior

Distributed controller
Serving 1: Serve at least 1000
jobs until x1 = 0, then switch.
Let x̄1 be nr of jobs served.

Serving 2: Serve at least 1000
jobs until x2 = 0, then switch.

Serving 4: Let x̄4 be nr of jobs
in Buffer 4 after setup. Serve
x̄4 + 1

2 x̄1 jobs, then switch.

Serving 3: Empty buffer, then
switch.
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Conclusions
Control theory inspired approach
1. Determine desired system behavior (trajectory generation; Fleuren)
2. Derive non-distributed/centralized controller (state feedback; Feoktistova)
3. Determine observability/observer
4. Derive distributed/decentralized controller (output feedback)

Advantage
Problems can be considered separately

Centralized control
Approach can deal with
• Arbitrary networks
• Finite buffers
• Transportation delays

Decentralized control

• Observer based approach results in
new, tailor-made controllers that
perform better
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Future work

Research
• Centralized control

• Derive class of controllers (instead of only one)

• Decentralized control
• Observability (including tests)
• Observer design
• Stability analysis of distributed policies

• Stochastic extensions
• Analyze performance of derived (de)centralized controllers for stochastic queueing

networks
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