
Design of a supervisory controller for
Cooperative Intersection Control using

Model Predictive Control

Falco Creemers ∗ Alejandro Ivan Morales Medina ∗

Erjen Lefeber ∗ Nathan van de Wouw ∗,?

∗Department of Mechanical Engineering, Eindhoven University of
Technology, 5600 MB Eindhoven, The Netherlands (e-mail:

F.M.G.Creemers@alumnus.tue.nl, A.I.Morales.Medina@tue.nl,
A.A.J.Lefeber@tue.nl, N.v.d.Wouw@tue.nl).

Abstract: The Cooperative Intersection Control (CIC) methodology ensures a safe, smooth
traffic flow through an automated intersection by means of virtual platooning. In this paper,
we address the design of a centralised supervisory controller for CIC which optimises the
crossing sequence of vehicles. We propose an approach in which the intersection as a whole
is modelled as a hybrid system, which evolves in both continuous-time and in discrete-time.
This hybrid system model resembles a queueing system, and relates the entry of vehicles into
the intersection to a measure of the delay of their travel through the intersection. We design
a supervisory controller using Model Predictive Control (MPC), which aims to minimise the
vehicles’ average delay by controlling their access to the intersection. A simulation study based
on real-life data demonstrates the effectiveness of the MPC approach compared to a first-come-
first-served (FCFS) policy and a conventional traffic light controller. This study shows that
MPC achieves a faster transient response and a lower average delay, thereby increasing the
throughput of the intersection.

Keywords: Hybrid systems, Model Predictive Control, Autonomous vehicles, Cooperative
Intersection Control, Traffic control.

1. INTRODUCTION

The rapid increase in motorisation and urbanisation has
led to more and more traffic congestion, which, in turn,
results in increased delays in the transportation of people
and goods. Typically, traffic congestion occurs at road
intersections, since these are the places where the vehicles’
paths cross. Currently, access to an intersection is regu-
lated through stop signs, traffic lights, etc., each of which
require vehicles to wait for their turn, thereby limiting the
throughput of the intersection.

Recent advances in vehicle automation and wireless com-
munication are expected to improve both the safety and
efficiency of intersections. Various solutions to automate
an intersection have been proposed in recent years. For ex-
ample, a reservation-based method is proposed in Dresner
and Stone (2008), where vehicles can reserve regions in the
intersection for certain time slots, which an intersection
manager accepts on a first-come-first-served (FCFS) basis.
Other approaches focus on planning the trajectories of the
vehicles such that all vehicles can cross the intersection
safely. For instance, a scheduling-based method is pro-

? N. van de Wouw is also affiliated with the Civil, Environmental &
Geo-Engineering Department, University of Minnesota, U.S.A. and
with the Delft Center for Systems and Control, Delft University of
Technology, The Netherlands.

posed in Colombo and Vecchio (2015), where the set of
control actions which avoid a collision is determined. Other
works, such as Qian et al. (2015); Hult et al. (2016), use
optimal control techniques to coordinate the movement
of the vehicles through the intersection. The approach to
intersection management that this paper is focused on is
the Cooperative Intersection Control (CIC) methodology
proposed in Morales Medina et al. (2015, 2018). It is active
in a region around the intersection, called the Cooperation
Zone (CZ), and relies on so-called Virtual Cooperative
Adaptive Cruise Control (VCACC) to allow vehicles to
form virtual platoons of vehicles in the intersection. The
term ‘virtual’ refers to the fact that vehicles travelling
along different trajectories can also form a platoon. The
methodology is split into two levels: a supervisory level
which determines a vehicle’s access priority, which is cur-
rently done on a FCFS basis, and an execution level which
controls the longitudinal inter-vehicle dynamics.

Many of the proposed intersection management solutions
focus on controlling and optimising the dynamics of the
vehicles’ movement through the intersection. However,
optimisation of the crossing sequence is typically not
addressed and the crossing sequence is often pre-defined
or is determined on a FCFS basis. The performance of an
automated intersection can be improved by optimising the
access protocol determining the crossing sequence.

Preprints, 5th IFAC Conference on
Analysis and Control of Chaotic Systems
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

Copyright © 2018 IFAC 63



Vehicle arrivals

Intersection

State of the intersection

Supervisory

controller

Access to CZ

Fig. 1. The system representation used to optimise the
crossing sequence.

The current paper presents a Model Predictive Control
(MPC) strategy to optimise the crossing sequence. MPC
relies on dynamic models of the system to be optimised
while satisfying given constraints and is often used in in-
dustrial processes such as power generation or in chemical
plants. In these applications, the controlled variables are
typically continuous-valued, whereas the supervisory con-
troller controls the sequence of discrete vehicles. Addition-
ally, logical relationships among the states of the system
determine the timing of the vehicle sequence. This affects
the implementation of the system, which is described for
the scheduling of industrial process in Gallestey et al.
(2003), and Creemers (2017) describes the implementation
of the supervisory controller.

The main contribution of this paper is the design of
a centralised supervisory controller which optimises the
crossing sequence within the CIC methodology of Morales
Medina et al. (2015, 2018). This design is based on a model
abstraction of the intersection as a queueing system, which
is formulated in the hybrid systems framework proposed
in Goebel et al. (2009, 2012). This model evolves both
in discrete-time and in continuous-time, which allows for
a description using integer queue lengths while also de-
scribing the exact time between any two vehicle arrivals or
departures at/into the intersection. The intersection model
gives a measure of the vehicles’ average delay, and is used
in the design of an MPC strategy. The resulting controller
is able to minimise the vehicles’ average delay while also
respecting access timing constraints which ensure a safe
crossing of the vehicles through the intersection.

The outline of this paper is as follows. The intersection
is modelled as a hybrid system in Section 2. The control
problem is formalised in Section 3. Section 4 describes
the design of the supervisory controller. In Section 5, a
simulation study is presented to show the effectiveness of
the designed controller. This paper concludes in Section 6.

2. INTERSECTION MODEL

In CIC, the supervisory level and the execution level
jointly control the behaviour of the vehicles in the CZ,
as described in Morales Medina et al. (2015, 2018). To
optimise the crossing sequence, a simplified system rep-
resentation is used, which is shown in Fig. 1. Here, the
‘intersection’ block includes the whole of the Cooperation
Zone (CZ) and the dynamics of the vehicles in it, which
are controlled by the execution-level controller, which
guarantees a (virtual) distance between vehicles in the
intersection forming a (virtual) platoon. The intersection
is abstracted as a queueing system, where vehicles wait
in queues outside the CZ, while the supervisory controller
manages their access into the CZ. The CZ and the vehicles
waiting in queues are schematically depicted in Fig. 2.

Start of CZ

Queue 1

Queue 2

Queue 3 (empty)
Queue 4 (empty)

Queue 5

Fig. 2. A schematic depiction of the Cooperation Zone
(CZ) showing vehicles waiting in queues outside the
CZ or travelling through the CZ. Based on intersec-
tion S4 of Fleuren and Lefeber (2016).

δdes δdes

q1

q1q2

q2

qout;q2

qout;q2

qout;q1

qout;q1

vehicle 1 vehicle 1

vehicle 2vehicle 2

Fig. 3. Two situations with different vehicle sequences,
changing the desired virtual inter-vehicle distances
δdes. The coloured boxes give the current positions
of each vehicle. The outlined boxes are projections of
the other vehicle onto the vehicles’ own trajectory.

The intersection model aims to describe the arrivals and
departures of individual vehicles at their queues. A safe
crossing is ensured by enforcing a service time between
any two subsequent vehicle departures into the CZ.

2.1 Service time

The service time T s is defined through the virtual inter-
vehicle distance δdes of the first vehicle in a queue, which
is guaranteed by the execution-level controller to ensure
a vehicle’s safe crossing. This distance varies with the
trajectories and sequence of the vehicles, as depicted in
Fig. 3. For general intersections, a vehicle’s trajectory is
determined by its incoming queue and its exit lane. This
paper considers a simplified intersection where each queue
has a single corresponding exit lane, which ensures that
the service time of all queues does not vary over time due
to vehicles in a queue having different trajectories.

Then the virtual inter-vehicle distance between a depar-
ture from queue q1 ∈ Q = {1, . . . , nl}, with nl the number
of queues, and a subsequent departure from queue q2 ∈ Q
is defined as a function of the queues of those vehicles
δdes(q1, q2). This calculation is based on the layout of the
intersection and the inter-vehicle spacing policy, discussed
in detail in Morales Medina et al. (2015, 2018). The service
time T s

q1,q2 between two vehicles is then given by

T s
q1,q2 =

δdes(q1, q2, )

V
, (1)

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

64



with V the vehicle velocity and where T s
q1,q2 = 0 if the

trajectories of the vehicles do not intersect. The velocity
V is assumed to be constant, which can be (approximately)
guaranteed by the execution-level controller.

2.2 Hybrid system model

The intersection is abstracted as a queueing system which
considers the arrival and departure of individual vehicles
at/from queues. An accurate description of the queueing
system dynamics urges both a continuous-time and a
discrete-time description. Namely, arrivals and departures
may not occur precisely at the sampling instants of a
discretised model, and enforcing the service times requires
keeping track of the continuous-time elapsed between
departures into the intersection. On the other hand, a
discrete-time model easily describes integer queue lengths.
Therefore, the intersection is modelled as a hybrid system
in the framework of Goebel et al. (2009, 2012). Such a
system evolves in hybrid time (t, j) and is of the form

ż = f(z, u) for z ∈ C, z+ = g(z, u) for z ∈ D, (2)

where z ∈ Rn is the state, u ∈ Rm is the input, f is the
flow map, g is the jump map, C is the flow set, D is the
jump set and z+ = z(t, j + 1). The arc that the system
follows through the hybrid time domain (t, j) is called the
solution φ.

The evolution of the intersection in hybrid time is governed
by the arrival or departure of individual vehicles. Both are
modelled as instantaneous events which make the jump set
D active. Otherwise, the flow set C is active. Arrivals to
queue q ∈ Q are given by an external disturbance wa

q (t),
and departures are given by the control input uq(t). They
are modelled as

uq(t) =

{
1 if a vehicle departs from queue q at time t,

0 otherwise,
(3)

with vector form u(t) = [u1(t), . . . , unl
(t)]
> ∈ {0, 1}nl

and wa(t) defined analogously. Being external inputs, both
signals are defined solely in continuous time. These inputs
are defined in the hybrid time domain as being in the
domain of the solution, i.e. for all (t, j) ∈ dom φ, as

u(t, j) =

{
u(t), j = min{j∗|(t, j∗) ∈ dom φ},
0, j 6= min{j∗|(t, j∗) ∈ dom φ}, (4)

and wa(t, j) defined analogously. This definition ensures
that each unique event in continuous time corresponds
with a unique event in hybrid time.

Before defining the sets C and D, a minimum inter-event
time must be enforced to prevent the occurrence of Zeno
behaviour, in which an infinite number of jumps occur in a
finite time interval. This requires the following assumption.

Assumption 1. ∀t ≥ 0 s.t. uq(t) = 1 for some queue q,
there exists an εu > 0 such that uq(t′, j′) = 0 ∀t′ ∈
(t, t+ εu] and (t′, j′) ∈ dom φ. Additionally, ∀t ≥ 0 s.t.
wa

q (t) = 1 for some queue q, there exists an εw > 0 such
that wa

q (t′, j′) = 0 ∀t′ ∈ (t, t+ εw] and (t′, j′) ∈ dom φ.

The validity of this assumption will be enforced in the
definition of the flow and jump sets through the use
of inter-event timers. The minimum inter-departure time
εu will be guaranteed through a constraint of the MPC

controller. The minimum inter-arrival time εw is trivially
satisfied for small εw given the bounded vehicle velocity V
and the finite, strictly positive length of a vehicle.

An inter-departure timer tc,q(t, j) and an inter-arrival
timer tw,q(t, j) are defined for every queue q ∈ Q which
count the time since the last departure/arrival at each
queue. Their dynamics are given by

ṫc,q(t, j) = 1 (5)

tc,q(t, j + 1) =

{
tc,q(t, j) if uq(t, j) = 0,

0 otherwise,
(6)

with vector form tc(t, j) = [tc,1(t, j), . . . , tc,nl
(t, j)]

> ∈
Rnl

≥0. The dynamics for tw,q(t, j) are defined analogously.

Using these timers, the flow and jump sets are defined such
that the system only jumps in discrete time if both 1) an
event occurs at some queue, and 2) the inter-event timer of
that queue has passed the minimum inter-event time. If the
minimum inter-event time has not passed, the event is not
valid and the system continues to flow in continuous time.
Otherwise, a vehicle could be allowed into the intersection
too early, potentially risking a collision. To link arrivals
with tw(t, j) and link departures with tc(t, j), two flow
sets and two jump sets are defined. The flow and jump set
Cu,Du dependent on vehicle departures are given by

Cu = {u(t, j) = 0nl} ×
{
tc(t, j) ∈ Rnl

≥0

}
⋃
{u(t, j) ∈ {0, 1}nl} \ {0nl}

× {tc(t, j) | ∃q ∈ Q s.t. uq(t, j) = 1 ∧ tc,q(t, j) < εu} ,
Du = {u(t, j) ∈ {0, 1}nl} \ {0nl}
× {tc(t, j) | tc,q(t, j) ≥ εu∀q ∈ Q s.t. uq(t, j) = 1} ,

(7)

where 0nl is the zero vector of length nl. The flow and
jump sets dependent on vehicle arrivals Cw,Dw are defined
analogously using wa(t, j), tw(t, j) and εw.

With these sets, the system flows in continuous-time if
both Cu and Cw are active, and jumps in discrete-time if
Du or Dw are active. This formalised by the conditions

(u(t, j), tc(t, j)) ∈ Cu ∧ (wa(t, j), tw(t, j)) ∈ Cw, (8)

(u(t, j), tc(t, j)) ∈ Du ∨ (wa(t, j), tw(t, j)) ∈ Dw. (9)

The remaining system dynamics involve two states. First,
the dynamics of the queue lengths xq(t, j) are given by

ẋq(t, j) = 0,

xq(t, j + 1) = xq(t, j) + wa
q (t, j)− uq(t, j),

(10)

with vector form x(t, j) = [x1(t, j), . . . , xnl
(t, j)]

> ∈ Nnl
0 .

The final state is the queue activity mq(t, j) ∈ {0, 1}.
When a vehicle leaves a queue, that queue becomes active
to signal that a vehicle has recently left that queue. A
queue then becomes inactive once the inter-departure time
tc,q(t, j) has passed the maximum service time. Thus, the
hybrid dynamics of mq(t, j) are given by

ṁq(t, j) = 0,

mq(t, j + 1) =


1 if uq(t, j) = 1,

0 if tc,q(t, j + 1) ≥ max
i∈Q|{q}

T s
q,i,

mq(t, j) otherwise,
(11)

with m(t, j) = [m1(t, j), . . . ,mnl
(t, j)]

> ∈ {0, 1}nl .

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

65



The full state of the system is given by

z(t, j) =
[
x(t, j)> tc(t, j)

> tw(t, j)> m(t, j)>
]>
, (12)

and the full hybrid dynamics are described by

ẋq(t, j) = 0,

ṫc,q(t, j) = 1,

ṫw,q(t, j) = 1,

ṁq(t, j) = 0,

xq(t, j + 1) = xq(t, j) + wa(t, j)− u(t, j),

tc,q(t, j + 1) =

{
tc,q(t, j) if uq(t, j) = 0,

0 otherwise,

tw,q(t, j + 1) =

{
tw,q(t, j) if wa

q (t, j) = 0,

0 otherwise,

mq(t, j + 1) =


1 if uq(t, j) = 1,

0 if tc,q(t, j + 1) ≥ max
i∈Q|{q}

T s
q,i,

mq(t, j) otherwise,

(13)

for every queue q ∈ Q. The continuous-time dynamics in
(13) are active if the flow condition (8) is satisfied, and the
discrete-time dynamics are active if the jump condition (9)
is satisfied, as in the standard form of (2).

Finally, the measured output of the system y(t, j) is equal
to the state of the system z(t, j), which is given by

y(t, j) = z(t, j). (14)

As shown in Fig. 1, this output is used solely by the
controller to optimise the crossing sequence.

3. PROBLEM STATEMENT

We consider a general intersection model described by (13)
for every queue q ∈ Q. The problem to be solved is to
design a control strategy which minimises the delay that
the vehicles in the queues experience, while respecting
the service times between vehicle departures into the
CZ. The objective function to be minimized and the
constraints to be respected are described in more detail in
the next section. We assume that the designed controller
is centralised using roadside infrastructure and has full
knowledge of the state of the intersection.

4. CONTROLLER DESIGN

This section discusses the design of the supervisory con-
troller for the hybrid system. This controller must optimise
the control input u(t, j) so as to minimise the average
delay of the vehicles in the intersection. At the same
time, the service times must be respected between any two
vehicle departures, which acts as a set of constraints on
the control input. Given the combination of an optimisa-
tion objective and constraints, a Model Predictive Control
(MPC) approach is used. MPC predicts the behaviour of
the controlled system, subject to given constraints, over a
finite continuous-time horizon. It then selects the control
actions that minimise a given cost function.

As there is little research on MPC for hybrid systems,
a discrete-time MPC controller is used which samples
the system and uses a discretised version of (13) in its

predictions. To achieve a feedback loop, the controller only
implements the first step of its optimal input trajectory,
repeating its optimisation every time-step.

For the sake of brevity, the discretised system is not
presented in this paper; it can be found in Creemers
(2017). Here, the discretised system is written as

z(k + 1) = F (z(k), wa(k), u(k)),

y(k) = z(k).
(15)

To match the definitions of wa
q (t), uq(t) in (3), wa

q (k) and
uq(k) are equal to 1 if there is a vehicle arrival/departure
in the interval (tk−1, tk], and zero otherwise. This requires
∆t to be such that there is at most a single arrival or
departure at each queue between two sampling instances.
This can be guaranteed by choosing ∆t ≤ max {εu, εw},
which also ensures that wa(k) and u(k) remain in the flow
and jump sets as defined in (7).

The remaining components of the problem setting for
the MPC controller design are the cost function, the
constraints, and a disturbance model predicting the arrival
of vehicles, which are presented next.

4.1 Constraints

It is necessary to place constraints on the control input to
enforce the service times between any two subsequent ve-
hicle departures. Otherwise, unsafe situations could result
if the service times are not respected.

The service times are enforced through two sets of con-
straints. First, assume that a vehicle in queue q2 follows
a vehicle which has departed from some queue q1, with
q1, q2 ∈ Q. Then the vehicle from queue q2 may not depart
from its queue if the inter-departure time of some active
queue q1 is smaller than T s

q1,q2 , i.e., tc,q1 < T s
q1,q2 . If a

queue is inactive, then the service times of that queue have,
by definition, passed and that queue does not need to be
taken into account. On the other hand, if tc,q1 ≥ T s

q1,q2 for
all active queues, the vehicle in queue q2 may depart into
the CZ. These constraints are formulated as
uq2(k) = 0 if ∃q1 ∈ Q s.t.(

mq1(k) = 1 ∧ tc,q1(k) < T s
q1,q2

)
,

uq2(k) ∈ {0, 1} if @q1 ∈ Q s.t.(
mq1(k) = 1 ∧ tc,q1(k) < T s

q1,q2

)
,

(16)

for every q2 ∈ Q with respect to all other queues q1 ∈ Q.

The constraints of (16) constrain vehicle departures based
on previous departures. The second set of constraints deals
with the fact that multiple vehicles could depart at the
same time if uq2 ∈ {0, 1} for more than a single queue q2.
Let there be two vehicles from queues q and i who wish to
depart at the same time, with q, i ∈ Q. This can only be
permitted if the trajectories of those vehicles do not cross,
in which case T s

q,i = T s
i,q = 0. This constraint is given by[

uq(k)
ui(k)

]
6=
[
1
1

]
if T s

q,i > 0, (17)

which must hold for all pairs q, i ∈ Q such that i > q. It
does not need to be defined for all pairs q, i ∈ Q, since this
would create multiple identical (redundant) constraints.

The notation of the input constraints is shortened through
the use of a state-dependent input set U(m(k), tc(k)),

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

66



which follows from (16) and (17). Then the constraints
on the control input are written as

u(k) ∈ U(m(k), tc(k)). (18)

4.2 Disturbance model

The disturbance model is used to predict the arrival
of vehicles. Without it, the controller would base its
optimisation solely on the current queue lengths without
taking into account possible differences in the vehicle
arrival rates of those queues. The disturbance model
employs deterministic uniform vehicle inter-arrival times
with an average arrival rate of λq vehicles per second for
queue q ∈ Q. The predicted arrival of a vehicle is given by

ŵa
q (k) =

{
1 if tw,q(k) ≥ λ−1q .

0 otherwise.
(19)

Given the stochastic and time-varying nature of the actual
arrival process, the current average arrival rate λq(k) is
estimated using a moving average window as

λq(k) =
1

∆tNw

Nw∑
i=0

wa
q (k − i), (20)

with wa
q (k) = 0 for k < 0, and λ(k) = [λ1(k), . . . , λnl

(k)]
>

.
The moving average window makes it possible for the
controller to deal with variations in the arrival rate,
provided that this variation occurs over a time-span longer
than the window length Nw.

The notation of the disturbance model is shortened as

ŵa(k) = Fw(tw(k), λ(k)). (21)

Although this disturbance model does not fully capture the
real-world arrival process, which is typically stochastic, the
prediction horizon is generally short enough so that few
vehicle arrivals will occur in this time, and the prediction
does not become too inaccurate.

4.3 MPC problem formulation

The full MPC optimisation problem is now given by

min
u(k),...,u(k+Np−1)

J(k) =

Np−1∑
i=0

c>x(k + i),

s.t.

z(k + i+ 1) = F (z(k + i), ŵa(k + i), u(k + i)) ∀i ∈ N ,
x(k + i) ∈ Nnl

0 ∀i ∈ N ,
tc(k + i), tw(k + i) ∈ Rnl

≥0 ∀i ∈ N ,
m(k + i) ∈ {0, 1}nl ∀i ∈ N ,
u(k + i) ∈ U(m(k + i), tc(k + i)) ∀i ∈ N ,
ŵa(k + i) = Fw(tw(k + i), λ(k)) ∀i ∈ N .

(22)
with prediction steps N = {0, . . . , Np − 1}. The cost
function is chosen such to minimise the average delay of
the vehicles arriving at the intersection. A measure of the
average delay is given by the queue lengths, since the only
delay that vehicles experience is the time that they spend
in the queues. Thus, a linear cost function with weighting
coefficients c is chosen. This weighs every vehicle in each
queue equally and is chosen to prevent the controller from
favouring long queues while neglecting shorter queues with

low arrival rates. Additionally, note that a linear cost
function in itself does not cause instability because the
queue lengths are non-negative.

After solving the optimisation problem, the controller pro-
vides only the first element of its optimal input trajectory,
u(k). The discrete-time signal is converted to continuous-
time in the form of (3) as

uq(t) =

{
1 if uq(k) = 1 at time t = tk,

0 otherwise,
(23)

which ensures that vehicles only depart at the sampling
instances of the controller, between which uq(t) = 0.

5. SIMULATION RESULTS

To show the benefit of the MPC approach, we compare
its performance to the results of a vehicle-actuated traffic
light, which empties each queue in some cycle, and of the
FCFS policy currently used in Morales Medina et al. (2015,
2018). Simulations are performed in Simulink, where the
hybrid system is implemented using the Hybrid Equations
Toolbox by Sanfelice et al. (2014), and the controller is
implemented using HYSDEL3 by Torrisi et al. (2000) and
the Multi-Parametric Toolbox 3 by Herceg et al. (2013).

The simulations are performed using the real-life data
of intersection S4 of Fleuren and Lefeber (2016). This
intersection has five queues, each with its own unique
trajectory as depicted in Fig. 2. To better compare the
behaviour of each controller, vehicles arrive according to
deterministic inter-arrival times with arrival rates equal to

λ =
[

370
3600

164
3600

194
3600

167
3600

705
3600

]>
(24)

vehicles per second.

The simulations are performed using two sets of ser-
vice times: for human drivers and for vehicles automated
through CIC. This allows for a comparison of the cur-
rent state-of-practice, which is a traffic light with human
drivers, with vehicles automated through CIC using either
an FCFS policy or the MPC controller proposed here to
regulate access of the automated vehicles into the inter-
section. The service times for human drivers are equal to

T s
human =


1.9 0 0 4 0
0 2 0 5 5
0 0 2.2 0 5
6 4 0 2 5
0 5 4 4 2

 . (25)

The service times for automated vehicles are based on the
desired inter-vehicle distances in CIC. In Morales Medina
et al. (2015, 2018), this is given by δdes = r + hV , with r
the stand-still inter-vehicle distance in meters and h the
headway time in seconds. For subsequent vehicles coming
from the same queue, these are r = 8 and h = 0.3. For
subsequent vehicles coming from different queues, they are
r = 10 and h = 0.5. With V = 30 km/h, this gives

T s
CIC =


1.26 0 0 1.7 0

0 1.26 0 1.7 1.7
0 0 1.26 0 1.7

1.7 1.7 0 1.26 1.7
0 1.7 1.7 1.7 1.26

 . (26)

Table 1 gives the cycle of the traffic light. The MPC
controller uses a prediction horizon of Np = 35 time

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

67



Table 1. The cycle of the traffic light.

Mode Queues green Green until

1 1, 2, 3 Queues 2 and 3 are empty
2 1, 5 Both queues are empty
3 3, 4 Queue 4 is empty

0 100 200 300 400 500 600
0

20

T
L

0 100 200 300 400 500 600
0

20

F
C

F
S

0 100 200 300 400 500 600

Time [s]

0

20

M
P

C

Fig. 4. The queue lengths over time for the five-lane
intersection for the traffic light (TL), First-Come-
First-Served (FCFS) and MPC controllers.

steps, and a sampling time of ∆t = 0.425 seconds. To
make a fair comparison, the other control methods use the
same sampling time. The initial queue lengths are equal

to x(t0, j0) = [33 19 27 22 9]
>

. The results are shown in
Fig. 4. The average steady-state costs are 3.03 for human
drivers with the traffic light, compared to 0.24 for the
FCFS policy and 0.21 for MPC with automated vehicles.

Fig. 4 clearly shows the differences in the transient
response among the three controllers. The traffic light goes
through its cycle, emptying two or three queues at a time,
and reaches steady-state after about 500 seconds. On the
other hand, the FCFS policy constantly switches between
the five queues, reaching steady-state after about 200
seconds. Finally, the MPC controller occasionally switches
between queues 4 and 5, while keeping queues 1, 2 and 3
short, and reaches steady-state after only 100 seconds. It
is clear from these results that MPC outperforms both the
FCFS policy and the traffic light in its transient response.
MPC similarly outperforms both the FCFS policy and the
traffic light in steady-state. Additionally, it is clear that
automating vehicles, which decreases the service times
from (25) to (26), leads to a significant reduction in the
average steady-state cost of a factor of 13–14.

Finally, the simulations, involving both the simulation of
the queuing model and solving the optimization problem
each sampling period, run faster than real-time, which in-
dicates that the real-time implementation of the proposed
approach is indeed feasible.

6. CONCLUSIONS

This paper presents a Model Predictive Control (MPC)
approach to optimise the crossing sequence for the Coop-
erative Intersection Control methodology first presented in

Morales Medina et al. (2015, 2018). First, the intersection
is modelled as a hybrid system, which describes the ar-
rival and departure of individual vehicles at queues at the
boundary of the Cooperation Zone. Then, the controller is
designed using MPC, which minimises the queue lengths
and respects the service times between any two vehicles
to guarantee safe passage through the intersection. Simu-
lation results show that MPC achieves a faster transient
response and a steady-state response with lower average
costs than both an FCFS policy and a traffic light.

REFERENCES

Colombo, A. and Vecchio, D.D. (2015). Least restric-
tive supervisors for intersection collision avoidance: A
scheduling approach. IEEE Transactions on Automatic
Control, 60(6), 1515–1527.

Creemers, F. (2017). Optimal Cooperative Intersection
Control. Master’s thesis, Eindhoven University of Tech-
nology, the Netherlands.

Dresner, K. and Stone, P. (2008). A multiagent approach
to autonomous intersection management. Journal of
Artificial Intelligence Research, 31, 591–656.

Fleuren, S. and Lefeber, E. (2016). Data of real-
life intersections for fixed-time traffic light control.
URL https://pure.tue.nl/ws/files/26651263/
DataOfRealLifeIntersections.pdf.

Gallestey, E. et al. (2003). Using model predictive control
and hybrid systems for optimal scheduling of industrial
processes. Automatisierungstechnik, 51(6), 285–293.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2009). Hybrid
dynamical systems. IEEE Control Systems Magazine,
29(2), 28–93.

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2012). Hybrid
Dynamical Systems: modeling, stability, and robustness.
Princeton University Press.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M.
(2013). Multi-Parametric Toolbox 3.0. In Proc. of the
European Control Conference, 502–510.

Hult, R., Zanon, M., Gros, S., and Falcone, P. (2016).
Primal decomposition of the optimal coordination of
vehicles at traffic intersections. In 2016 IEEE 55th
Conference on Decision and Control (CDC), 2567–2573.

Morales Medina, A.I., van de Wouw, N., and Nijmeijer,
H. (2015). Automation of a t-intersection using vir-
tual platoons of cooperative autonomous vehicles. In
2015 IEEE 18th International Conference on Intelligent
Transportation Systems (ITSC), 1696–1701.

Morales Medina, A.I., van de Wouw, N., and Nijmeijer,
H. (2018). Cooperative intersection control based on
virtual platooning. IEEE Transactions on Intelligent
Transportation Systems, 19(6), 1727–1740.

Qian, X., Gregoire, J., de La Fortelle, A., and Moutarde,
F. (2015). Decentralized model predictive control for
smooth coordination of automated vehicles at intersec-
tion. In 2015 European Control Conference, 3452–3458.

Sanfelice, R.G., Copp, D.A., and Nanez, P. (2014).
Hybrid Equations (HyEQ) Toolbox. URL http://
www.mathworks.com/matlabcentral/fileexchange/
41372-hybrid-equations-toolbox-v2-01.

Torrisi, F., Bemporad, A., and Mignone, D. (2000). HYS-
DEL — A Tool for Generating Hybrid Models. URL
http://people.ee.ethz.ch/~cohysys/hysdel/.

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

68


