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SUMMARY

In this paper we address the tracking problem for a class of non-holonomic chained-form control systems.
We present a simple solution for both the state feedback and the dynamic output feedback problem. The
proposed controllers are linear and render the tracking error dynamics globally K-exponentially stable. We
also deal with both control problems under input saturation. Application of the results to the control of
wheeled mobile robots is illustrated by means of simulations of a car pulling a single trailer. Copyright
( 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

In recent years the control, and in particular the stabilization, of non-holonomic dynamic systems
has received considerable attention. One of the reasons for this is that no smooth stabilizing static
state-feedback control law exists for these systems, since Brockett's necessary condition for
smooth stabilization is not met [3]. For an overview we refer to the survey paper [21] and
references cited therein.

Although the stabilization problem for non-holonomic control systems is now well understood,
the tracking control problem has received less attention. In fact, it is unclear how the stabilization
techniques available can be extended directly to tracking problems for non-holonomic systems.

In References [7, 8, 17, 27, 28] tracking control schemes have been proposed based on the
linearization of the corresponding error model. All these papers solve the local tracking problem
for some classes of nonholonomic systems. To our knowledge, the "rst global tracking control
law was proposed in Reference [36] for a two-wheel-driven mobile car. Other global results can
be found in References [6, 12, 13, 15, 31].

In this paper we study the tracking problem for the class of non-holonomic systems in chained
form [27]. It is well known that many mechanical systems with non-holonomic constraints



can be locally, or globally, converted to the chained form under coordinate change and state
feedback.

A disadvantage of most of the aforementioned tracking controllers is their lack of a clear
interpretation. Complicated changes of co-ordinates and di$cult Lyapunov analysis are needed
to show that the proposed control laws yield asymptotic stability of the tracking error dynamics.

The purpose of this paper is to develop simple tracking controllers for the class of non-
holonomic systems in chained form. Based on a result for (time-varying) cascaded systems [32]
we divide the tracking error dynamics into a cascade of two linear sub-systems which we can
stabilize independently of each other with simple (i.e., linear) controllers.

Using the same approach we also consider the tracking problem for chained form systems by
means of dynamic output-feedback. To our knowledge, the only papers that addressed the
dynamic output-feedback problem are References [1, 2] that concern the stabilization problem
and References [12, 24] dealing with the tracking problem. A comparative separation in linear
subsystems has been used in Reference [29] for solving the tracking problem for a chained-form
system of order 3, and in Reference [35] for solving the stabilization of general chained-form
systems.

Last, we partially deal with the tracking control problem under input constraints. The only
results on saturated tracking control of non-holonomic systems that we are aware of, are
Reference [12] which deals with this problem for a mobile robot with two degrees of freedom, and
Reference [14] that deals with general chained form systems.

The organization of the paper is as follows: In Section 2 we present the class of systems and
state the problem formulation. Based on the theory from Section 2, Section 3 deals with the design
of simple tracking-controllers, for both the state-feedback case and for the output-feedback case.
Also both control problems under input saturation are studied in this section. Section 4 illustrates
the presented design methods with simulations of an articulated vehicle and comparisons with
other recent design methods are made. Finally, Section 5 concludes the paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

In this section we introduce de"nitions and theorems used in the remainder of this paper and
formulate the problem under consideration. We start with some basic stability concepts in
Section 2.1, present a result for cascaded systems in Section 2.2 and recall some results in Section
2.3 from linear systems theory we use. We conclude this section with the problem formulation in
Section 2.4.

2.1. Stability

To start with, we recall some basic concepts (see e.g. References [19, 42]).

Dexnition 2.1
A continuous function a : [0, a)P[0, R) is said to belong to class K if it is strictly increasing

and a(0)"0.

Dexnition 2.2
A continuous function b : [0, a)][0, R)P[0,R) is said to belong to class KL if, for each
"xed s, the mapping b (r, s) belongs to class K with respect to r and, for each "xed r, the mapping
b(r, s) is decreasing with respect to s and b (r, s)P0 as sPR.
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Consider the system

xR "f (t, x), f (t, 0)"0, ∀t*0 (1)

with x3Rn and f (t, x) piecewise continuous in t and locally Lipschitz in x.

Dexnition 2.3
System (1) is uniformly stable if for each e'0 there is d"d(e)'0, independent of t

0
, such that

Ex(t
0
)E(dNEx(t)E(e, ∀t*t

0
*0 (2)

Dexnition 2.4
System (1) is globally uniformly asymptotically stable (GUAS) if it is uniformly stable and

globally attractive, that is, there exists a class KL function b ( ), ) ) such that for every initial state
x(t

0
):

Ex(t)E)b (Ex(t
0
)E, t!t

0
), ∀t*t

0
*0 (3)

Dexnition 2.5
System (1) is globally exponentially stable (GES) if there exist k'0 and c'0 such that for any

initial state x(t
0
):

Ex (t)E)Ex(t
0
)Ek exp[!c(t!t

0
)] (4)

A slightly weaker notion of exponential stability is the following:

Dexnition 2.6 (cf. [37])
We call System (1) globally K-exponentially stable if there exist c'0 and a class K function

i( ) ) such that

Ex(t)E)i (Ex(t
0
)E) exp[!c(t!t

0
)] (5)

2.2. Cascaded systems

Consider the system

zR
1
"f

1
(t, z

1
)#g(t, z

1
, z

2
)z

2

zR
2
"f

2
(t, z

2
)

(6)

where z
1
3Rn, z

2
3Rm, f

1
(t, z

1
) is continuously di!erentiable in (t, z

1
) and f

2
(t, z

2
), g(t, z

1
, z

2
) are

continuous in their arguments, and locally Lipschitz in z
2

and (z
1
, z

2
), respectively.

We can view system (6) as the system

&
1
: zR

1
"f

1
(t, z

1
) (7)

that is perturbed by the state of the system

&
2
: zR

2
"f

2
(t, z

2
) (8)

When &
2

is asymptotically stable, we have that z
2

tends to zero, which means that the
z
1

dynamics in (6) asymptotically reduces to &
1
. Therefore, we can hope that asymptotic stability

of both &
1

and &
2

implies asymptotic stability of (6).
Unfortunately, this is not true in general. However, from the proof presented in Reference [32]

it can be concluded that:
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Theorem 2.7 (based on [32])
Cascaded system (6) is GUAS if the following three assumptions hold:

f assumption on &
1
: the system zR

1
"f

1
(t, z

1
) is GUAS and there exists a continuously

di!erentiable function <(t, z
1
) : R

`
]RnPR that satis"es

=
1
(z

1
))<(t, z

1
))=

2
(z

1
), ∀t*0, ∀z

1
3Rn, (9)

L<
Lt

#

L<
Lz

1

) f
1
(t, z

1
))0, ∀Ez

1
E*g (10)

KK
L<
Lz

1
KKEz

1
E)c<(t, z

1
), ∀Ez

1
E*g (11)

where =
1
(z

1
) and =

2
(z

1
) are positive de"nite proper functions and c'0 and g'0 are

constants,
f assumption on the interconnection: the function g (t, z

1
, z

2
) satis"es for all t*t

0
:

Eg(t, z
1
, z

2
)E)h

1
(Ez

2
E)#h

2
(Ez

2
E)Ez

1
E (12)

where h
1
, h

2
: R

`
PR

`
are continuous functions,

f assumption on &
2
: the system zR

2
"f

2
(t, z

2
) is GUAS and for all t

0
*0:

P
=

tÒ

Ez
2
(t
0
, t, z

2
(t
0
))Edt)i (Ez

2
(t
0
)E) (13)

where the function i ()) is a class K function.

Remark 2.8
Notice the assumption on &

1
is slightly weaker than the one presented in Reference [32].

However, the authors of Reference [32] showed the result also to hold under the assumptions
mentioned above by (almost) exactly copying their proof.

Lemma 2.9 (see [31])
If in addition to the assumptions in Theorem 2.7 both zR

1
"f

1
(t, z

1
) and zR

2
"f

2
(t, z

2
) are

globally K-exponentially stable, then the cascaded system (6) is globally K-exponentially stable.

2.3. Linear time-varying systems

Consider the linear time-varying system

zR"

0 2 2 2 0

t (t) 0 2 2 0

0 } } F

F } } } F

0 2 0 t (t) 0

z#

1

0

F

F

0

u

hgggggigggggj
A (t)

hij

B (t)

y"[0 2 2 0 1]
hggggiggggj

C (t)

z (14b)

(14a)
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where z3Rm and let '(t, t
0
) denote the state-transition matrix for the system zR"A(t)z. We recall

two de"nitions from linear control theory (cf. References [16, 34]).

Dexnition 2.10
The pair (A (t), B (t)) is uniformly completely controllable (UCC) if there exist d, e

1
, e

2
'0 such

that for all t'0:

e
1
I)P

t`d

t

'(t, q)B(q)B(q)T'T(t, q) dq)e
2
I (15)

Dexnition 2.11
The pair (A(t), C (t)) is uniformly completely observable (UCO) if there exist d, e

1
, e

2
'0 such

that for all t'0:

e
1
I)P

t

t~d
'T(q, t!d)C(q)TC(q)'(q, t!d) dq)e

2
I (16)

From linear systems theory several methods are available to exponentially stabilize the linear
time-varying system (14) via state or dynamic output-feedback, in case the pairs (A (t), B(t)) and
(A(t), C(t)) are uniformly completely controllable and observable, respectively.

Assumption 2.12
We assume that t (t) : [0, R)PR is a bounded continuously di!erentiable Lipschitz function

that does not converge to zero. More precise, we assume that

f there exists a constant M such that for all t: Dt(t)D)M,
f t(t) is a continuously di!erentiable function with respect to t,
f there exists a constant ¸ such that for all t

1
, t

2
3[0, R): Dt (t

1
)!t (t

2
)D)¸Dt

1
!t

2
D,

f there exist d'0 and e'0 such that for all t*0 there exists an s3[t, t#d] such that
Dt(s)D*e.

Proposition 2.13
Assume t (t) satis"es the conditions of Assumption 2.12. Then system (14) is uniformly

completely controllable and uniformly completely observable.

Proof. This is a direct consequence of Theorem 2 in Reference [18]. K

Theorem 2.14
Consider system (14) in closed loop with the controller

u"!k
1
z
1
!k

2
t(t)z

2
!k

3
z
3
!k

4
t(t)z

4
!2 (17)

where k
i
(i"1, 2, m) are such that the polynomial

jm#k
1
jm~1#2#k

m~1
j#k

m
(18)

is Hurwitz (i.e. has its roots in the left-half of the open complex plane). If t(t) meets Assumption
2.12, then the closed-loop system (14, 17) is GES.

Proof. See the appendix. K
Remark 2.15

Notice we use a linear controller of the form u"K (t)x with a special choice of the gain K(t).
Clearly, several other choices can be made. One possibility is to use the gain as known from
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&standard linear control theory' [34] as we used in Reference [24], or a gain as proposed in
Reference [5] (cf. Reference [25]), based on pole-placement [41, 40] or based on any robust
design method for LTV systems.

Theorem 2.16
Consider system (14) in closed loop with the controller

u"!k
1
zL
1
!k

2
t (t)zL

2
!k

3
zL
3
!k

4
t (t)zL

4
!2 (19)

where zL is generated from the observer

zLQ"

0 2 2 2 0

t (t) 0 2 2 0

0 } } F

F } } } F

0 2 0 t (t) 0

zL#

1

0

F

F

0

u#

F

l
4
t (t)

l
3

l
2
t (t)

l
1

(y!yL )

yL "[0 2 2 0 1]zL (20b)

(20a)

and k
i
, l

i
(i"1, 2 , m) are such that the polynomials

jm#k
1
jm~1#2#k

m~1
j#k

m
jm#l

1
jm~1#2#l

m~1
j#l

m

(21)

are Hurwitz (i.e. have their roots in the left half of the open complex plane). If t (t) meets
Assumption 2.12, then the closed-loop system (14), (19) and (20) is GES.

Proof. See the appendix. K

2.4. Problem formulation

The class of chained-form non-holonomic systems we study in this paper is given by the following
equations:

xR
1
"u

1

xR
2
"u

2

xR
3
"x

2
u
1

(22)

F

xR
n
"x

n~1
u
1

where x"(x
1
,2, x

n
) is the state, u

1
and u

2
are inputs.

Consider the problem of tracking a reference trajectory (x
r
, u

r
) generated by the chained-form

system

xR
1,r

"u
1,r

xR
2,r

"u
2,r
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xR
3,r

"x
2,r

u
1,r

(23)

F

xR
n, r

"x
n~1,r

u
1,r

where we assume u
1, r

(t) and u
2,r

(t) to be continuous functions of time. This reference trajectory
can be generated by any of the motion planning techniques available from the literature.

When we de"ne the tracking error x
e
"x!x

r
we obtain as tracking error dynamics

xR
1,e

"u
1
!u

1,r
"u

1
!u

1,r

xR
2,e

"u
2
!u

2,r
"u

2
!u

2,r

xR
3,e

"x
2
u
1
!x

2, r
u
1,r

"x
2,e

u
1,r

#x
2
(u

1
!u

1, r
) (24)

F F

xR
n,e

"x
n~1

u
1
!x

n~1, r
u
1,r

"x
n~1,e

u
1,r

#x
n~1

(u
1
!u

1,r
)

The state-feedback tracking control problem then can be formulated as

Problem 2.17 (State-feedback tracking control problem).
Find appropriate state feedback laws u

1
and u

2
of the form

u
1
"u

1
(t, x, x

r
, u

r
) and u

2
"u

2
(t, x, x

r
, u

r
) (25)

such that the closed-loop trajectories of (24,25) are globally uniformly asymptotically stable.
Consider system (22) with output

y"C
x
1

x
n
D (26)

then it is easy to show (see e.g. Reference [1]) that system (22) with output (26) is locally
observable at any x3Rn.

Now we can formulate the dynamic output-feedback tracking problem as

Problem 2.18 (Dynamic output-feedback tracking control problem)
Find appropriate control laws u

1
and u

2
of the form

u
1
"u

1
(t, xL , y, x

r
, u

r
) and u

2
"u

2
(t, xL , y, x

r
, u

r
) (27)

where xL is generated from an observer

xLQ "f (t, xL , y, x
r
, u

r
) (28)

such that the closed-loop trajectories of (24), (27), (28) are globally uniformly asymptotically
stable.

3. CONTROLLER DESIGN

As mentioned in the introduction, our goal is to "nd simple controllers that globally stabilize the
tracking error dynamics (24). The approach used in Reference [15] is based on the integrator
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backstepping idea [4, 20, 22, 39] which consists of searching a stabilizing function for a subsystem
of (24), assuming the remaining variables to be controls. Then, new variables are de"ned,
describing the di!erence between the desired dynamics and the true dynamics. Subsequently
a stabilizing controller for this &new system' is looked for.

This approach has the advantage that it can lead to globally stabilizing controllers for systems
in chained form. A disadvantage, however, is that the controller is also expressed in these &new
coordinates'. When written in the &original' chained-form coordinates, usually complex expres-
sions are obtained. Especially since a change of coordinates is required to bring the dynamics (24)
in a triangular form suitable for applying the integrator backstepping technique.

To arrive at simple controllers, our approach is di!erent. We use the ideas of cascaded systems
[11, 26, 30] but in particular the result for time-varying systems is presented [32]. With the result
of Theorem 2.7 in mind, we try to look for a subsystem which, with a stabilizing control law, can
be written in the form zR

2
"f

2
(t, z

2
) and is asymptotically stable. In the remaining dynamics we

can then replace the appearance of z
2

by 0, leading to the system zR
1
"f

1
(t, z

1
). As a result we can

write the system as (6). If both the subsystems zR
1
"f

1
(t, z

1
) and zR

2
"f

2
(t, z

2
) are asymptotically

stable we might be able to conclude asymptotic stability of the overall system by means of
Theorem 2.7.

One could remark that for arriving at the chained form, usually complex changes of coordi-
nates and state feedback are needed. Therefore, a simple controller in chained-form co-ordinates
is no guarantee for a simple controller in the co-ordinates of the original model. However, using
the same idea simple controllers in the original co-ordinates can also be found, as was shown in
Reference [31] for a two-wheel-driven mobile car.

Consider the tracking error dynamics

xR
1,e

"u
1
!u

1, r

xR
2,e

"u
2
!u

2, r

xR
3,e

"x
2,e

u
1,r

#x
2
(u

1
!u

1,r
) (29)

F

xR
n,e

"x
n~1,e

u
1,r

#x
n~1

(u
1
!u

1,r
)

It is very easy to stabilize only the x
1,e

dynamics, for example by using

u
1
"u

1,r
!k

1
x
1,e

, k
1
'0 (30)

Clearly, other choices can be made as well.
Once the x

1,e
dynamics are asymptotically stable, we have determined a subsystem of the form

zR
2
"f

2
(t, z

2
). In order to arrive at the zR

1
"f

1
(t, z

1
) dynamics, we can assume we already have

stabilized the xR
1,e

dynamics, e.g. we assume x
1,e

(t),0. As a result also u
1
(t)!u

1,r
(t),0. Then

the remaining dynamics become

xR
2,e

"u
2
!u

2, r

xR
3,e

"x
2,e

u
1,r

(31)
F

xR
n,e

"x
n~1,e

u
1,r
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which is equivalent to

xR
2,e

xR
3,e
F

F

xR
n,e

"

0 2 2 2 0

u
1,r

(t) 0 2 2 0

0 } } F

F } } F

0 2 0 u
1,r

(t) 0

x
2,e

x
3,e
F

F

x
n,e

#

1

0

F

F

0

(u
2
!u

2,r
) (32)

hij
z5 1

hggggggiggggggj
A (t)

hij
z1

hij

B

Now we only have to make sure that system (32) in closed loop with a suitably chosen feedback
controller for u

2
is asymptotically stable, and hope that Theorem 2.7 enables us to conclude

asymptotic stability of the tracking error dynamics (29).
As a result, we have reduced the tracking control problem to the problem of "nding a control

law for u
1

that stabilizes the linear system

xR
1,e

"u
1
!u

1, r
(33)

and "nding a control law for u
2

that stabilizes the LTV system (32).

3.1. State-feedback

In order to solve the state-feedback tracking control problem (Problem 2.17) we stabilize systems
(32) and (33). For stabilizing (32) we use the result of Theorem 2.14 and for stabilizing (33) we use
(30). As a result we get

Theorem 3.1
Consider the tracking error dynamics (29). Assume that u

1,r
(t) satis"es Assumption 2.12 and

that x
2,r

,2, x
n~1,r

are bounded.
Then the control law

u
1
"u

1, r
!k

1
x
1,e

u
2
"u

2, r
!k

2
x
2,e

!k
3
u
1,r

(t)x
3,e

!k
4
x
4,e

!k
5
u
1,r

(t)x
5,e2

(34)

results in closed-loop dynamics that are globally K-exponentially stable, provided k
1
'0 and

k
i
(i"2,2, n) are such that the polynomial

jn~1#k
2
jn~2#2#k

n~1
j#k

n
(35)

is Hurwitz (i.e. has its roots in the left-half of the open complex plane).

Proof. We can see the closed-loop system (29), (34) as a system of form (6) where

z
1
"[x

2,e
,2, x

n,e
]T (36)

z
2
"x

1,e
(37)

f
1
(t, z

1
)"(A (t)!BK(t))z

1
(38)

f
2
(t, z

2
)"!k

1
z
2

(39)

g(t, z
1
, z

2
)"!k

1
[0, x

2
, x

3
,2, x

n~1
]T (40)
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with

A(t)"

0 2 2 2 0

u
1,r

(t) } F

0 } } F

F } } } F

0 2 0 u
1,r

(t) 0

, B"

1

0

F

F

0

, K (t)"

k
2

k
3
u
1,r

(t)

k
4

k
5
u
1, r

(t)

F

T

(41)

To be able to apply Theorem 2.7 we need to verify the three assumptions:
f Assumption on &

1
: Due to the assumption on u

1,r
(t) we have from Theorem 2.14 that

zR
1
"f

1
(t, z

1
) is GES (and therefore GUAS). From converse Lyapunov theory (see e.g.

Reference [19]) the existence of a suitable < is guaranteed.
f Assumption on connecting term: Since x

2, r
,2, x

n~1,r
are bounded, we have

Eg(t, z
1
, z

2
)E)k

1A KK
0

x
2,r
F

x
n~1,r

KK#KK
0

x
2,e
F

x
n~1,e

KK B (42)

)k
1
M#k

1
Ez

1
E (43)

f Assumption on &
2
: Follows from GES of zR

2
"!k

1
z
2
.

Therefore, we conclude GUAS from Theorem 2.7. Since both &
1

and &
2

are GES, Lemma 2.9
gives the desired result. K

Remark 3.2
Since the control law (20) is a static state feedback we know from Brockett [3] that stabilization

is not possible. This explains why we need to assume that u
1,r

(t) satis"es Assumption 2.12. In
Reference [35] a stabilization result using a comparative separation in linear subsystems can be
found.

3.2. Dynamic output-feedback

In order to solve the dynamic output-feedback tracking control problem (Problem 2.18) we
stabilize the systems

xR
2,e

xR
3,e
F

F

xR
n,e

"

0 2 2 2 0

u
1,r

(t) 0 2 2 0

0 } } F

F } } F

0 2 0 u
1,r

(t) 0

x
2,e

x
3,e
F

F

x
n,e

#

1

0

F

F

0

(u
2
!u

2, r
) (44)

y
1
"x

n,e
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and
xR
1,e

"u
1
!u

1, r (45)
y
2
"x

1,e
For stabilizing (44) we use the result of Theorem 2.16 and for stabilizing (33) we use again (30). As
a result we obtain

Theorem 3.3
Consider the tracking error dynamics (29). Assume that u

1,r
(t) satis"es Assumption 2.12 and

that x
2,r

,2, x
n~1,r

are bounded.
Then the control law

u
1
"u

1,r
!k

1
x
1,e (46)

u
2
"u

2,r
!k

2
xL
2,e

!k
3
u
1,r

(t)xL
3,e

!k
4
xL
4,e

!k
5
u
1,r

(t)xL
5,e2

where [xL
2,e

,2, xL
n,e

]T is generated by the observer

xLQ
2,e

xLQ
3,e
F

F

xLQ
n,e

"

!k
2

!k
3
u
1,r

(t) 2 2 2

u
1, r

(t) 0 2 2 0

0 } } F

F } } F

0 2 0 u
1, r

(t) 0

xL
2,e

xL
3,e
F

F

xL
n,e

#

F

l
5
u
1,r

(t)

l
4

l
3
u
1,r

(t)

l
2

(x
n,e

!xL
n,e

) (47)

results in closed-loop dynamics that are globally K-exponentially stable, provided that k
1
'0

and k
i
, l

i
(i"2,2, n) are such that the polynomials

jn~1#k
2
jn~2#2#k

n~1
j#k

n
jn~1#l

2
jn~2#2#l

n~1
j#l

n

(48)

are Hurwitz (i.e., have their roots in the left-half of the open complex plane).

Proof. We can see the closed-loop system (29) and (34) as a system of form (6) where

z
1
"[x

2,e
,2, x

n,e
, xJ

2,e
,2, xJ

n,e
]T (49)

z
2
"x

1,e
(50)

f
1
(t, z

1
)"C

A(t)!BK(t) !BK(t)

0 A (t)!¸ (t)CDz
1

(51)

f
2
(t, z

2
)"!k

1
z
2

(52)

g(t, z
1
, z

2
)"!k

1
[0, x

2
, x

3
,2 , x

n~1
, 0,2, 0]T (53)
hij
(n~1)

and xJ
i,e
"x

i,e
!xL

i,e
(i"2,2, n). To be able to apply Theorem 2.7 we need to verify the three

assumptions:

f Assumption on &
1
: Due to the assumption on u

1,r
(t) we have from Theorem 2.16 that

zR
1
"f

1
(t, z

1
) is GES (and therefore GUAS). From converse Lyapunov theory (see e.g.

Reference [19]) the existence of a suitable < is guaranteed.
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f Assumption on connecting term: Since x
2, r

,2, x
n~1,r

are bounded, we have again

Eg(t, z
1
, z

2
)E)k

1
M#k

1
Ez

1
E (54)

f Assumption on &
2
: Follows from GES of zR

2
"!k

1
z
2
.

Therefore, we conclude GUAS from Theorem 2.7. Since both &
1

and &
2

are GES, Lemma 2.9
gives the desired result. K

3.3. Saturated control

As in Reference [14] we can consider Problems 2.17 and 2.18 under the additional design
constraint that

Du
1
(t)D)u

1,.!9
∀t*0 (55)

where u
1,.!9

is a constant such that sup
t
Du

1, r
(t)D(u

1,.!9
.

It is obvious that if we replace the expression u
1
"u

1,r
!k

1
x
1,e

with

u
1
"u

1,r
!p (x

1,e
) (56)

where p ()) is any di!erentiable function that satis"es

f xp(x) '0 for all xO0,
f sup

s
Dp(s)D)u

1,.!9
!sup

t
Du

1,r
(t) D,

f dp/dx (0)'0.

the results of Theorems 3.1 and 3.3 still hold.
More interesting is the case where we not only assume the design constraint (55) on u

1
, but also

a design constraint on u
2
:

Du
2
(t)D)u

2,.!9
∀t*0 (57)

where u
2,.!9

is a constant such that sup
t
Du

2, r
(t)D(u

2,.!9
. To our knowledge, no saturated

controller for stabilizing the general LTV system (14) has been derived in the literature yet.
However, for the case that u

1, r
is constant for all t, system (14) reduces to a time-invariant linear

system. In that case the results of Reference [38] can be used to solve the problem for both the
state and dynamic output-feedback problem.

4. SIMULATIONS: CAR WITH TRAILER

In this section we apply the proposed state- and output-feedback designs for the tracking control
of a well-known benchmark problem; a towing car with a single trailer, see e.g. References
[15, 27, 35].

The state con"guration of the articulated vehicle consists of the position of the car, (x
#
, y

#
), the

steering angle /, and the angles, (h
0
, h

1
), of the car and the trailer with respect to the x-axis, see

Figure 1. The rear wheels of the car and the trailer are aligned with the chassis and are not
allowed to slip sideways. The two input signals are the driving velocity of the front wheels, l, and
the steering velocity, u.
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Figure 1. Car with a trailer, see Reference [27].

The kinematic equations of motion for the vehicle can be described by (cf. Reference [27]),

xR
#
"l cos h

0

yR
#
"l sin h

0

/Q "u (58)

hQ
0
"

1

l
tan/

hQ
1
"

1

d
1

l sin (h
0
!h

1
)

Via a (local) change of co-ordinates the system can be transformed to the following system in
chained form:

xR
1
"u

1

xR
2
"u

2

xR
3
"u

1
x
2

(59)

xR
4
"u

1
x
3

xR
5
"u

1
x
4

We refer to Reference [15] for explicit expressions of the transformation.
For the simulations, we have considered tracking of a reference model (23) moving along

a straight line,

u
1,r

"1, u
2,r

"0

LINEAR CONTROLLERS 255

Copyright ( 2000 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2000; 10:243}263



Figure 2. The tracking errors xce and yce for the state-feedback controller (SF), the output-feedback
controller (OF) and the state-feedback controller in Reference [15]. Note that xce is identical for SF and OF.

with the initial conditions

x
ir
(0)"0.0, i"1,2, 5

x
1
(0)"1.0, x

2
(0)"x

3
(0)"x

4
(0)"x

5
(0)"0.5 (60)

The state-feedback (SF) and the output feedback controller (OF) used in the simulations are

u
1,SF

"u
1,r

!k
1
x
1,e

(61)

u
2,SF

"u
2,r

!k
2
x
2,e

!k
3
u
1,r

x
3,e

!k
4
x
4,e

!k
5
u
1,r

x
5,e

(62)

u
1,OF

"u
1,r

!k
1
x
1,e

(63)

u
2,OF

"u
2,r

!k
2
xL
2,e

!k
3
u
1,r

xL
3,e

!k
4
xL
4,e

!k
5
u
1,r

xL
5,e

(64)

where the &controller polynomial' (48) has all the roots in j"!2 and the &observer polynomial'
(48) has its roots in j"!3.

In Figure 2 the behaviour of the closed-loop system for the state-feedback controller (SF) and
the output-feedback controller (OF) are compared to a recently presented state-feedback control-
ler, J&N(106-7), based on a backstepping design [15].

u
2,JN

"!k
4
z
4
!2k

4
z
2
!u

1r
(3z

3
#z

1
) (65)

u
1,JN

"u
1r
!k

5
z
5
![k

4
z
4
#2k

4
z
2
#u

1r
(3z

3
#z

1
)]Cz1#z

3
!

5

2
z
2
z
5
!z

4
z
5
#

(2z
1
#z

3
)z2

5
6 D (66)
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Figure 3. State feedback control with and without saturated u
2
.

where

z
1
"x

5
!x

4
x
1,e

#1
2

x
3
x2
1,e

!1
6

x
2
x3
1,e

z
2
"x

4
!x

3
x
1,e

#1
2

x
2
x2
1,e

z
3
"x

3
!x

2
x
1,e

(67)

z
4
"x

2

z
5
"x

1,e

For the case of constant u
1,r

we can apply the ideas from [38] for bounded control also on u
2
.

Figure 3 and 4 show the tracking error in the y-direction using bounded control of u
2

for the
state-feedback and the output-feedback case. The saturated state-feedback controller [38] has the
structure

u
1,4!5

"u
1, r

!p
1
(x

1,e
) (68)

u
2,4!5

"u
2, r

!

4
+
i/1

eip
2
(y

i
) (69)

where

y
1

y
2

y
3

y
4

"

1 0 0 0

1 e 0 0

1 e2#e e3 0

1 e3#e2#e e5#e4#e3 e6

x
2,e

x
3,e

x
4,e

x
5,e

(70)
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Figure 4. Output feedback control with and without saturated u
2
.

and the saturated output-feedback controller uses the state estimations from observer (47) in
a certainty equivalence sense.

5. CONCLUDING REMARKS

In this paper we addressed the problem of designing simple global tracking controllers
for non-holonomic systems in chained form under both state and dynamic output
feedback.

We divided the (nonlinear) tracking control problem into two simpler and &independent' linear
control problems. We showed by means of cascaded system theory that the two linear controllers
that solve the two linear control problems also solve the tracking problem.

The state and dynamic output feedback tracking problem under input saturation were globally
solved in case we have input saturation only on u

1
. In case of input saturation on u

1
and u

2
both

problems were solved for constant u
1,r

.
We illustrated our results by means of a simulation of a car with a trailer.
Challenging questions that remain open are the tracking problem under input saturation on

u
1

and u
2

for arbitrary u
1,r

and the study for robustness of the proposed schemes.

APPENDIX A. PROOFS OF THEOREMS 2.14 AND 2.16

To start with, we consider the stability of the di!erential equation

dm

dtm
y (t)#a

1

dm~1

dtm~1
y (t)#2#a

m~1

d

dt
y(t)#a

m
y (t)"0 (A1)
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For this system we can de"ne the Hurwitz determinants

*
i
"K

a
1

a
3

a
5

2 a
2i~1

1 a
2

a
4

2 a
2i~2

0 a
1

a
3

2 a
2i~3

0 1 a
2

2 a
2i~4

F F F F F

0 0 0 2 a
i

K (i"1,2, m) (A2)

where if an element a
j
appears in *

i
with j'i it is assumed to be zero. It is well known [9] that

system (A1) is asymptotically stable, if and only if the determinants *
i
are all positive. Less known

is a proof of this result by means of the second method of Lyapunov. If we de"ne

b
1
"*

1
, b

2
"

*
2

*
1

, b
3
"

*
3

*
1
*
2

, b
i
"

*
i~3

*
i

*
i~2

*
i~1

(i"4,2, m) (A3)

it was shown in Reference [33] that system (A1) can also be represented as

wR "

!b
1

!b
2

0 2 0

1 0 } } F

0 } } } 0

F } } } !b
m

0 2 0 1 0

w (A4)

Di!erentiating the Lyapunov function candidate

<"b
1
w2

1
#b

1
b
2
w2
2
#2#b

1
b
2
2b

m~1
w2
m~1

#b
1
b
2
2b

m
w2
m

(A5)

(which is positive de"nite if and only if the determinants *
i
are all positive) along solutions of (A4)

results in

<Q "!b2
1
w2
1

(A6)

Asymptotic stability then can be shown by invoking LaSalle's theorem [23].
Inspired by the result of Reference [33] we look for a state-transformation z"Sw, that

transforms the system (74) into

zR"

!a
1

!a
2

2 2 !a
m

1 0 2 2 0

0 } } F

F } } } F

0 2 0 1 0

z (A7)

To start with, we de"ne

z
m
"w

m
(A8)
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Since wR
m
"w

m~1
and we would like zR

m
"z

m~1
we de"ne

z
m~1

"w
m~1

(A9)

Since wR
m~1

"w
m~2

!b
m
w

m
and we would like zR

m~1
"z

m~2
we de"ne

z
m~2

"w
m~2

!b
m
w

m
(A10)

Proceeding similarly we de"ne all z
k
and obtain an expression that looks like

z
k
"w

k
#s

k,k`2
)w

k`2
#s

k,k`4
)w

k`4
#2 (A11)

By this construction of the state-transformation, we are guaranteed to meet the m!1 "nal
equations of (A7). The only thing that remains to be veri"ed is if the equation for zR

1
holds. From

the structure displayed in (A11) we know the matrix S is non-singular, so therefore we can write

zR
1
"!a

1
z
1
!a

2
z
2
!2!a

n
z
n
, a

i
3R, (i"1,2, m). (A12)

The characteristic polynomial of the transformed system then becomes

jm#a
1
jm~1#2#a

m~1
j#a

m
(A13)

Since a state-transformation does not change the characteristic polynomial and we know from
Reference [33] that the characteristic polynomial of (A4) equals

jm#a
1
jm~1#2#a

m~1
j#a

m
(A14)

clearly a
i
"a

i
(i"1,2, m).

Before we can prove Theorems 2.14 and 2.16 we need to remark one thing about this
transformation. When we de"ne ¹"S~1, we know that

w
1
"z

1
#t

1,3
z
3
#t

1,5
z
5
#2 (A15)

w
2
"z

2
#t

2,4
z
4
#t

2,6
z
6
#2 (A16)

But also wR
1
"!a

1
w
1
!b

2
w
2

(notice that b
1
"a

1
). Therefore,

wR
1
"zR

1
#t

1,3
zR
3
#t

1,5
zR
5
#2 (A17)

"(!a
1
z
1
!a

2
z
2
!2!a

n
z
n
)#t

1,3
z
2
#t

1,5
z
4
#2 (A18)

"[!a
1
z
1
!a

3
z
3
!2]#[(t

1,3
!a

2
)z

2
#(t

1,5
!a

4
)z

4
#2] (A19)

So obviously

w
1
"z

1
#

a
3

a
1

z
3
#

a
5

a
1

z
5
#2 (A20)

Knowing this state-transformation and (A20) we can start proving Theorems 2.14 and 2.16.
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Proof of Theorem 2.14. The closed-loop system (14) ad (17) is given by

zR"

!a
1

!a
2
u
1, r

(t) !a
3

!a
4
u
1,r

(t) 2

u
1,r

(t) 0 2 2 0

0 } } F

F } } } F

0 2 0 u
1, r

(t) 0

z (A21)

This can we rewritten as

zR"u
1, r

(t)

!a
1

!a
2

2 2 !a
m

1 0 2 2 0

0 } } F

F } } } F

0 2 0 1 0

z#(u
1,r

(t)!1)

a
1
z
1
#a

3
z
3
#2

0

F

F

0

(A22)

When we apply the change of co-ordinates z"Sw as de"ned before, we obtain

wR "u
1,r

(t)

!b
1

!b
2

0 2 0

1 0 } } F

0 } } } 0

F } } } !b
m

0 2 0 1 0

w#(u
1, r

(t)!1)

1 * 2 *
0 } } F

F } } *
0 2 0 1

a
1
w

1
0

F

F

0

(A23)

which (using a
1
"b

1
) can we rewritten as

wR "

!b
1

!b
2
u
1, r

(t) 0 2 0

u
1,r

(t) 0 } } F

0 } } } 0

F } } } !b
m
u
1,r

(t)

0 2 0 u
1,r

(t) 0

w (A24)

Consider the Lyapunov function candidate

<"b
1
w2

1
#b

1
b
2
w2
2
#2#b

1
b
2
2b

m~1
w2
m~1

#b
1
b
2
2b

m
w2
m

(A25)

which is positive de"nite if and only if

jm#a
1
jm~1#2#a

m~1
j#a

m
(A26)

is a Hurwitz-polynomial. Di!erentiating (A25) along solutions of (A24) results in

<Q "!b2
1
w2
1

(A27)
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It is well known [19] that the origin of system (A24) is GES if the pair

A
!b

1
!b

2
u
1, r

(t) 0 2 0

u
1,r

(t) 0 } } F

0 } } } 0

F } } } !b
m
u
1,r

(t)

0 2 0 u
1,r

(t) 0

, [b
1
, 0, 2, 0]B (A28)

is uniformly completely observable (UCO).
If u

1,r
(t) satis"es Assumption 2.12 it follows immediately from Theorem 2 in Reference [18]

that the pair (A28) is UCO, which completes the proof. K

Proof of Theorem 2.16. We can write the closed-loop system (14, 19, 20) as

C
zR
zJ R D"C

A(t)!BK(t) !BK(t)
0 A(t)!¸(t)CD C

z
zJ D (A29)

where zJ"z!zL .
Since u

1,r
(t) satis"es Assumption 2.12 and k

i
, l

i
are such that the polynomials (21) are Hurwitz,

we know from Theorem 2.14 that the systems zR"[A(t)!BK(t)]z and zJR"[A (t)!¸ (t) C]zJ are
GES.

Then the result follows immediately from Theorem 2.7, (since K(t) is bounded), and the fact
that a LTV system which is GUAS also is GES [10, 19]. K
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