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Abstract— The automation of road intersections has signif-
icant potential to improve traffic throughput and efficiency.
While the related control problem is usually addressed assum-
ing fully automated vehicles, we will focus on the problem of
issuing appropriate speed advices to the driver in order to
optimize traffic flow in intersections without any traffic lights or
signs. Therefore, a distributed scenario-based model predictive
control regime is proposed which accounts for uncertainties
in the driver reaction to speed advices issued by the control
system. In the scenario approach, we draw independently and
identically distributed samples from a bounded uncertainty
set and optimize over scenarios which reflect a potential
driver reaction. Based on the number of samples, we can give
guarantees on avoiding collisions under acting uncertainties.
Simulation results demonstrate that the scenario approach is
capable of avoiding collisions when the driver reacts uncertain
while the nominal approach is not.

I. INTRODUCTION
Road intersections bare significant potential for improve-

ment of traffic flow and fuel efficiency. The potential might
be highest for highly or fully automated vehicles, however,
it might still be a long way to achieve a maturity suitable for
series production. On the contrary, advanced driver assistance
systems (ADAS) are already available in the market for a
long time. For this reason, this paper will discuss the problem
of how to issue appropriate speed advices to the driver
in order to achieve safe intersection crossing. Therefore,
vehicle-to-vehicle (V2V) communication is assumed to be
available to exchange information with other vehicles.

A. Related Work

Automating road intersection is a frequently discussed
topic in the research community, see [1] for a comprehensive
survey. In most cases, a high level of automation is presumed
without including the driver into the control loop. For these
kind of control problems various algorithmic solutions have
already been proposed, amongst others originating from the
field of hybrid system theory [2], multi-agent systems [3],
scheduling-based approaches [4] or model predictive control
(MPC) [5], [6]. Moreover, intersection coordination problems
have been transferred to a virtual platooning problem, see [7].

We contemplate MPC as a favorable type of method to
solve control problems that have to deal with constraints
explicitly and have to incorporate anticipated (future) trajec-
tories of conflicting vehicles. For fully automated vehicles,
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we have proposed a distributed MPC-based approach in [6]
which shall now be extended for the case when the driver is
(an uncertain) part of the control loop.

B. Main Contribution and Outline

The control problem to be solved can clearly be stated as
issuing appropriate speed advices to the driver for safe and
efficient intersection crossing - instead of directly demanding
an acceleration from the vehicle as it is done in the fully
automated case. Consequently, the driver can be seen as a
controller that translates speed advices into vehicle acceler-
ations. The challenging part is the potentially time-varying
driver reaction to speed advices. As such, the driver can be
recognized as an uncertain part of the control loop. To the
best authors’ knowledge, such kind of MPC-based control
scheme for the application of intersection automation with
the driver as an uncertain part of the control loop has not
yet been investigated in previous works.

The distributed MPC control regime proposed in this work
explicitly accounts for these uncertainties already in the con-
trol design by leveraging a scenario-based MPC framework.
In scenario MPC, independently and identically distributed
(i.i.d) samples are drawn from a bounded uncertainty set
and eventually optimization is carried out over all scenarios
which reflect a potential driver reaction. Thereby, constraints
have to be satisfied for every scenario. In consequence,
constraints are fulfilled by chance such that we can give
guarantees on avoiding collisions under acting uncertainties.
Scenario MPC has recently solely been applied in centralized
control schemes like lane change assistance [8] or powertrain
control of hybrid electric vehicles [9]. Simulation results
eventually prove that the distributed scenario MPC approach
is able to avoid collisions when the driver reacts uncertain
while the distributed approach, that does not account for
uncertainties, is not. It should be noted that this contribution
primarily aims at evaluating the potential of the distributed
scenario MPC approach for intersection automation. A real-
time capable implementation of the algorithm is not subject
of the paper and is considered as part of ongoing research.

The remainder of the paper is organized as follows. Sec-
tion II outlines the MPC prediction model being composed
of a kinematic vehicle model and a driver reaction model.
In section III, a distributed MPC-based control scheme, not
taking uncertainties into account, is introduced. To accom-
modate uncertainties in the driver reaction, section IV ex-
tends that scheme to a scenario-based approach. Simulation
results in section V finally demonstrate the efficacy of the
distributed scenario MPC scheme.



II. MODELING

For control purposes, a dynamic process model of each
agent is required to eventually apply it in the MPC regime
that is in charge of intersection automation. Generally, only
single intersection scenarios as depicted in Fig. 1 are con-
sidered in the scope of this contribution. Further assump-
tions are: (1) all vehicles are driven by a human driver;
(2) the desired route and velocity of every agent passing
the intersection are a priori known and do not change
during the maneuver; (3) all vehicles are equipped with V2V
communication; (4) data that has been send out at time k is
available to every other vehicle at time k+1; (5) system states
are measurable and not subject to uncertainty. By considering
the driver as part of the control loop, the prediction model
is composed of two main parts: vehicle kinematics and the
driver reaction to a speed advice.

A. Vehicle Kinematics

The dynamic behavior of every agent i ∈ A with
A , {1, . . . , NA} is formulated in terms of its acceleration
a
[i]
x , velocity v[i] and path coordinate s[i] in the agent’s

reference frame with respect to the vehicle’s geometric
center, see Fig. 1. The origin of agent i’s path coordinate
reference frame refers to the first collision point s[i]c,l with
agent l or, in case there are no collision points, to the agent’s
initial position. The time evolution of velocity and position
is represented in a pure kinematic fashion through a double
integrator, i.e.

v̇[i] = a[i]x , ṡ[i] = v[i]. (1)

Moreover, powertrain dynamics are modeled as a first order
lag element, i.e.,

ȧ[i]x = − 1

T
[i]
ax

a[i]x +
1

T
[i]
ax

a
[i]
x,ref (2)

where T [i]
ax denotes the dynamic powertrain time constant of

agent i and a[i]x,ref the corresponding demanded acceleration.

B. Driver Reaction Model

With the driver being a part of the control loop, the
control system is supposed to issue a speed advice v

[i]
ref

to the driver who will then translate this advised speed
into a vehicle reference acceleration a

[i]
x,ref . In literature,

a very common approach is to represent the driver action
as a proportional controller [10], [11]. We adapt that idea
and extend it by additionally considering that drivers are
not able to exactly follow a particular speed advice. As
such, the advised speed v

[i]
ref is assumed to be subject to

some additive bounded uncertainty ∆v
[i]
ref . From an HMI

perspective, introducing the ∆v
[i]
ref allows for showing an

allowed speed interval instead of a particular speed which is
much more convenient for a human driver. Eventually, the
vehicle reference acceleration can be then written as

a
[i]
x,ref = K

[i]
d (v

[i]
ref + ∆v

[i]
ref − v

[i]). (3)
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Fig. 1. Model of the conflict resolution problem

Consequently, the driver reaction model is subject to the
unmeasurable parametric uncertainty θ[i] , K

[i]
d and the

unmeasurable additive uncertainty ∆v
[i]
ref . Apparently, the

driver reaction might vary over time, not at least due to
varying attention or traffic complexity. As such, K [i]

d and
∆v

[i]
ref are considered to be time-varying but bounded, i.e.

K
[i]
d ∈ [K

[i]
d , K

[i]

d ], (4)

∆v
[i]
ref ∈ [∆v

[i]
ref , ∆v

[i]
ref ]. (5)

In future work, also further uncertainties like the driver
reaction time will be considered.

C. Resulting Prediction Model

Eventually, agent dynamics being composed of vehicle
kinematics and the driver reaction can be summarized in
terms of a linear parameter-varying model of the form

Σ[i] ,

{
ẋ[i] = A

[i]
θ x

[i] +B
[i]
θ u

[i] + E
[i]
θ w

[i]

y[i] = C [i]x[i]
(6)

with A[i]
θ =

−1/T [i]
ax

−K[i]
d /T [i]

ax
0

1 0 0
0 1 0

, B[i]
θ =

K[i]
d /T [i]

ax

0
0


E

[i]
θ = B

[i]
θ , C [i] =

[
0 1 0

]
.

The notation A
[i]
θ is used as an abbreviation of A[i](θ[i])

to accommodate notational convenience. Moreover, the state
vector x[i] = [a

[i]
x , v[i], s[i]]T is composed of the agent’s

acceleration, velocity and path coordinate while the control
input u[i] = v

[i]
ref is the advised speed that is issued to the

driver. The exogenous disturbance w[i] = ∆v
[i]
ref refers to

the tolerable velocity offset to the speed advice. We assume
the states and inputs to be constrained by polyhedral sets,
i.e., x[i] ∈ X [i] and u[i] ∈ U [i]. For predictive control, we



finally discretize (6) by using a zero-order hold discretization
technique such that we obtain

Σ
[i]
k ,

{
x
[i]
k+1 = A

[i]
θ,kx

[i]
k +B

[i]
θ,ku

[i]
k + E

[i]
θ,kw

[i]
k

y
[i]
k = C

[i]
k x

[i]
k

(7)

D. Inter-Vehicle Distances
The distance between two agents is defined according to

[6]. Particularly, the collision points s[l]c,i respectively s
[i]
c,l,

which correspond to the intersection of spacial trajectories
of two agents i, l ∈ A, are determined first. In case two
agents are not in conflict, we define s[i]c,l = s

[l]
c,i =∞. Then,

for the distance between agents i ∈ A and l ∈ A holds

d
[i]
l =

{
|s[i] − s[i]c,l|+ |s[l] − s

[l]
c,i| , s

[i]
c,l, s

[l]
c,i 6=∞

∞ , otherwise
(8)

Thus, the distance between two agents is the sum of the
absolute distances d[i]c,l = |s[i] − s[i]c,l| and d

[l]
c,i = |s[l] − s[l]c,i|

to their respective collision point if spacial trajectories are
intersecting and infinite otherwise.

III. DISTRIBUTED NOMINAL CONTROL

This section will outline the distributed control problem
when not accounting for uncertainties - subsequently referred
to as nominal control approach. The problem of coordinating
vehicles though intersections by issuing speed advices to the
driver is embedded in a MPC-based framework.

A. Local / Agent-wise Objectives
The distributed control regime exhibits objectives that refer

solely to the individual agent i ∈ A while collision avoidance
is a global objective which couples the agents. By separating
the entire control problem in that way, we apply a primal
decomposition technique to establish a distributed control
problem out of the centralized counterpart. Subsequently,
{·}(k+j|k) refers to the predicted value of variable {·} at
the future time step k + j when the current time step is k.

Referring to the local objectives, the velocity v
[i]
(k+j|k)

of every agent i at the predicted time k + j should be
close to the speed limit v[i]limit,(k+j|k) to optimize traffic
flow. Thereby, the speed limit either refers to the actual
speed limit or a virtual speed limit to ensure safe driving
like e.g. on curved roads. To achieve convenient speed
advices to the driver which do not change too frequently, the
step change ∆u

[i]
(k+j|k) = ∆v

[i]
ref,(k+j|k) of the advised speed

should ideally be kept small. Finally, we aim at minimizing
longitudinal accelerations and jerk to allow for efficient and
comfortable driving. These objectives can be summarized as
the following quadratic cost function

J [i](x
[i]
0 , u

[i]
(·|k)) , Q[i]

Hp∑
j=1

(v
[i]
limit,(k+j|k) − v

[i]
(k+j|k))

2

+R[i]
Hu−1∑
j=0

∆u
[i],2
(k+j|k) (9)

+ S[i]

Hp∑
j=1

a
[i],2
x,(k+j|k) + T [i]

Hp∑
j=1

∆a
[i],2
x,(k+j|k)

where x
[i]
0 = x

[i]
k denotes the initial condition of

agent i at time k, u[i](·|k) = [u
[i]
(k|k), . . . , u

[i]
(k+Hu−1|k)]

T the
control actions of agent i over the control horizon of
length Hu, Hp the length of the prediction horizon,
∆u

[i]
(k+j|k) = u

[i]
(k+j|k) − u

[i]
(k+j−1|k) the step change of the

control input while Q[i] > 0, R[i] > 0,S[i] > 0 and T [i] > 0
are positive weighting coefficients.

Besides objectives that are translated into cost function
(9), further objectives are incorporated into the problem
formulation as constraints. First, the minimum and maximum
advised speed should be bounded such that no negative speed
is advised and such that legal speed limits are obeyed. This
objective translates into the input constraint

u
[i]
(k+j|k) ∈ U

[i]
(k+j|k) ,

{
u ∈ R | 0 ≤ u ≤ u[i](k+j|k)

}
(10)

for j ∈ {0, . . . ,Hu − 1}. Second, we need to constrain
absolute accelerations, resulting from the driver reaction on
the speed advice, to a reasonable range to foster safe driving.
We therefore introduce a state constraint of the form

x
[i]
(k+j|k) ∈ X

[i] ,
{
ξ ∈ R3 |a[i]x ≤ [ξ]1 ≤ a[i]x

}
(11)

with [ξ]1 referring to the longitudinal acceleration as first
system state for j ∈ {1, . . . ,Hp}. To guarantee local and
global convergence of the distributed control scheme, we
have proposed a minimum mean velocity constraint in [6]
to ensure that the prediction horizon at least covers the coor-
dinate set S [i]c , [s

[i]
c,in, s

[i]
c,out] in which potential collisions

might occur between agents. If the optimization problem of
agent i is not feasible, we want the agent to conduct an
emergency braking maneuver in a brake safe distance d[i]brake,
i.e., when entering the set S [i]cb , [s

[i]
c,in − d

[i]
brake, s

[i]
c,out], see

Fig. 1. As such, we constrain the mean velocity of agent i
over the prediction horizon by

1

Hp + 1

Hp∑
j=0

v
[i]
(k+j|k) ≥ v

[i]
mean. (12)

If agent i, has approached the brake safe distance, i.e.
s
[i]
k ∈ S

[i]
cb , and the agents with higher priority have not

yet left the conflict set, v[i]mean is obtained by dividing the
remaining distance to s[i]c,out by the preview time covered by
the prediction horizon. In this way, the agents with lower
priority cover at least the entire conflict region with their
predictions. Otherwise, v[i]mean is set to zero.

B. Collision Avoidance

Collision avoidance is actually the most important objec-
tive that has to be ascertained by the control regime. To
define collision avoidance constraints, we follow the same
approach as in [6]. Therefore, we define the set of agents
l ∈ A having a joint collision point with agent i ∈ A, i.e.

A[i]
c ,

{
l ∈ A | l 6= i ∧ s[i]c,l 6=∞

}
. (13)



Then, we can claim collision avoidance in the intersection
through the following safety constraint

d
[i]
l,(k+j|k) ≥ d

[i]
safe,l,(k+j|k), ∀l ∈ A

[i]
c (14)

for j ∈ {1, . . . ,Hp} where d[i]safe,l,(k+j|k) denotes the desired
safety distance (considering vehicle dimensions) of agent i
to agent l. Purely imposing constraint (14) pairwise on the
agents and solving the local optimization problems might
cause convergence issues of the distributed control scheme.
As such, a unique priority is assigned to every agent i ∈ A
through a bijective prioritization function γ : A → N+ where
a lower value corresponds to a higher priority, see [6].
Consequently, if and only if γ(l) < γ(i), agent l is allowed
to pass the joint collision point without considering agent i.
In this work, we assume that priorities are fixed once when
the scenario is established and remain constant for the entire
maneuver. Now, we can define the prioritized conflict set

A[i]
c,γ ,

{
l ∈ A | l 6= i ∧ γ(l) < γ(i) ∧ s[i]c,l 6=∞

}
(15)

and restrict the considered agents in (14) to the setA[i]
c,γ . With

the definition of d[i]l,(k+j|k) in (8), we can rearrange (14) in
the form of the non-convex quadratic inequality constraint

(s
[i]
(k+j|k) − s

[i]
c,l)

2 ≥ (d
[i]
safe,l,(k+j|k) − d

[l]
c,i,(k+j|k))

2, (16)

∀l ∈ A[i]
c,γ : d

[l]
c,i,(k+j|k) < d

[i]
safe,l,(k+j|k)

for j ∈ {1, . . . ,Hp} which only considers agents with higher
priority and where the non-squared right side of the inequal-
ity is greater than zero. In all other cases, we do not need to
impose the constraint as it is satisfied anyway. In this context,
we assume d[l]c,i,(k+j|k) to be broadcasted via V2V communi-
cation by the other agents. Besides these collision avoidance
constraints, no rear-end collision avoidance constraints are
considered in the problem formulation. We can reasonably
assume that the driver is in charge of avoiding rear-end
collisions with other agents after intersection crossing.

C. Optimal Control Problem

Eventually, all objectives can be summarized as a non-
convex quadratically constrained quadratic optimization
problem that can be solved independently by each agent:

Distributed Nominal OCP, ∀i ∈ A :

min
u
[i]

(·|k)

J [i](x
[i]
0 , u

[i]
(·|k)) (17)

s.t. system dynamics (7)
safety constraints (16)
input (10) & state constraints (11), (12)

The non-convex quadratically constrained quadratic prob-
lem (QCQP) is eventually solved using SDP relaxation with
radomization [12]. Therefore, our optimization approach in
[6] has been tailored for this control problem.

Remark 1: The nominal MPC scheme considers the pro-
portional driver gain K [i]

d to be constant. Thus, the controller
model might mismatch with the actual driver gain present in

the system to be controlled. Moreover, ∆vref is assumed to
be zero when it comes to predicting the future evolution of
system states. In consequence, there might be a mismatch
between the predicted and actual system behavior which in
consequence can lead to constraint violations.

Finally, the operation of the distributed control regime can
be summarized as sketched in Algorithm 1.

Algorithm 1: Distributed MPC at time k, Agent i ∈ A
1) Receive data via V2X: Receive the trajectories d[l]i,(·|k)

of all agents l ∈ A, l 6= i at time k
2) Optimize control actions: Formulate and solve OCP

of agent i, obtail optimal control sequence u[i],∗(·|k).
3) Broadcast predicted trajectory via V2X: Compute

distances d[i]l,(·|k) of agent i to collision point with other
agents l and broadcast information.

4) Apply Control: Apply the first element u[i],∗(k|k) of the

optimal control sequence u[i],∗(·|k) to the plant.
5) Increment time: k = k + 1. Go to 1).

IV. DISTRIBUTED SCENARIO-BASED CONTROL

This section will outline how the nominal control approach
can be extended to an uncertainty-aware control scheme
using scenario MPC. The main aim is to avoid collisions
even when uncertainties in the driver reaction are present.

A. Preliminaries
According to [13], [14], we formally define the terms

uncertainty and scenario as follows.
Definition 1: Uncertainty

Lets assume that all uncertainties, including parametric
uncertainties and exogenous disturbances are lumped in a
single variable δ. Then, the uncertainties δ are i.i.d. random
variables on the probability space (∆, P ) where ∆ is the
support set and P the probability measure on ∆.

Definition 2: Scenario
Define δ

[κ]
(k|k), . . . , δ

[κ]
(k+Hp−1|k) to be a sequence of i.i.d.

samples of the uncertainty δk at time k over the prediction
horizon. Then, a scenario is an aggregate of that sequence,
i.e., σ[κ]

k , {δ[κ](k|k), . . . , δ
[κ]
(k+Hp−1|k)}.

B. Scenario Model Predictive Control
As previously indicated, the distributed scenario-based

control approach relies on optimization over scenarios which
have been sampled randomly and which reflect a potential
driver reaction. When extending the nominal control ap-
proach, generally steps 2) and 3) in Algorithm 1 have to be
modified. Particularly, step 2) is composed of the sub-steps
outlined in Algorithm 2.

Algorithm 2: Scenario OCP at time k, Agent i ∈ A
1) Scenario Generation: Sample K scenarios σ[κ]

k .
2) Scenario Constraints: Impose input, state and safety

constraints for every scenario σ[κ]
k .

3) Scenario Optimization: Solve a single OCP which
optimizes over K scenarios s.t. scenario constraints.

In the remainder of this section, we will explain each step
of Algorithm 2. The modification of step 3) in Algorithm 1
will be covered as part of the scenario constraints section.



1) Scenario Generation: Assuming that the driver re-
action does not change during a short time frame, the
driver gain K

[i,κ]
d ∈ [K

[i]
d , K

[i]

d ] for scenario κ ∈ K,
K , {1, . . . ,K} is fixed over the prediction horizon. How-
ever, every scenario still covers a different realization of the
driver gain. In contrast, the offset ∆v

[i,κ]
ref to the advised

speed might vary over a short time horizon and is as
such sampled from the interval [∆v

[i]
ref , ∆v

[i]
ref ] over the

prediction horizon. Consequently, with each scenario κ ∈ K,
the following sampled system model is obtained

Σ
[i,κ]
k ,

{
x
[i,κ]
k+1 = A

[i,κ]
θ,k x

[i,κ]
k +B

[i,κ]
θ,k u

[i]
k + E

[i,κ]
θ,k w

[i,κ]
k

y
[i,κ]
k = C

[i]
k x

[i,κ]
k

(18)

2) Scenario Constraints: After generating K scenarios,
input, state and safety constraints of the nominal OCP (17)
have to be imposed separately for every scenario κ ∈ K. As
such, the original input constraints (10) and state constraints
(11) on the acceleration are expanded to

u
[i,κ]
(k+j|k) ∈ U

[i]
(k+j|k), ∀j ∈ {0, . . . ,Hu − 1}, ∀κ ∈ K (19)

and x[i,κ](k+j|k) ∈ X
[i]
(k+j|k), ∀j ∈ {1, . . . ,Hp}, ∀κ ∈ K (20)

In the same fashion, the minimum mean velocity constraint
has to be imposed for every scenario, i.e.

1

Hp + 1

(
v
[i]
k +

Hp∑
j=1

v
[i,κ]
(k+j|k)

)
≥ v[i]mean, ∀κ ∈ K (21)

The definition of safety constraints becomes more chal-
lenging as these rely on the sampled trajectories of the
other agents l ∈ A[i]

c,γ . To avoid that every agent l has
to transmit all its sampled trajectories d[l,κ]c,i,(·|k), causing a
huge amount of data to be transmitted via V2V, we follow
another approach. More in detail, agent l determines its
path coordinate trajectories s[i,κ](·|k) for every scenario κ ∈ K.
Then, agent l determines its minimum and maximum path
coordinate at the predicted time step k + j, i.e.

s
[l]
(k+j|k) , min

κ∈K
s
[l,κ]
(k+j|k), s

[l]
(k+j|k) , max

κ∈K
s
[l,κ]
(k+j|k). (22)

In this way, we can consider an artificially enlarged agent l
with an additional length

∆L
[l]
(k+j|k) , s

[l]
(k+j|k) − s

[l]
(k+j|k) (23)

and a new artificial geometric center

ŝ
[l]
(k+j|k) ,

1

2

(
s
[l]
(k+j|k) + s

[l]
(k+j|k)

)
(24)

The trajectory d
[l]
c,i,(·|k) that is then broadcasted via V2V

communication is determined based on the artificial vehicle
position ŝ[l](·|k). Additionally, the added vehicle length ∆L

[l]
(·|k)

is transmitted to the other agent as well. Finally, the safety
constraints for agent i and scenario κ ∈ K can be stated as

(s
[i,κ]
(k+j|k) − s

[i]
c,l)

2 ≥ (d
[i,κ]
safe,l,(k+j|k) − d

[l]
c,i,(k+j|k))

2, (25)

∀l ∈ A[i]
c,γ : d

[l]
c,i,(k+j|k) < d

[i,κ]
safe,l,(k+j|k)

with d
[i,κ]
safe,l,(k+j|k) , d

[i]
safe,l,(k+j|k) + ∆L

[l]
(k+j|k).

3) Scenario Optimization: To state the scenario OCP, the
cost function (9) has to be evaluated for scenario κ ∈ K
which will subsequently be denoted as J [i,κ](x

[i]
0 , u

[i]
(·|k)).

Optimizing on average over all scenarios subject to all
scenario constraint yields the distributed scenario OCP:

Distributed Scenario OCP, ∀i ∈ A :

min
u
[i]

(·|k)

1

K

K∑
κ=1

J [i,κ](x
[i]
0 , u

[i]
(·|k)) (26)

s.t. system dynamics (18)
safety constraints (25)
input (19) & state constraints (20), (21)

The scenario OCP features a significantly higher number of
constraints which challenges a real-time solution. As part of
ongoing research, we are working on this topic. Currently,
we are applying a tailored version of our implementation in
[6] to solve the OCP.

C. Safety Constraint Violation Probability

In [13], [15], for a centralized scheme it is proven that by
drawing i.i.d. samples of the uncertainty, scenario constraints
are satisfied by chance. In the distributed setting, the uncer-
tainties of every agent i ∈ A, are independent from each
other. As such, samples and scenarios can also be generated
independently from each other. By finally broadcasting the
worst case scenarios to the other agents, it can be shown
that we obtain at least the same upper probability bound on
constraint violation as in the centralized case.

Focusing on safety constraint violation, lets denote the set
of path coordinates at time k + j which satisfies (25) for
scenario κ ∈ K as S [i,κ]safe,(k+j|k). With a control input vector
of dimension one, the upper bound on constraint violation
for any sampled scenario κ̃ is given by

Pr
{
s
[i,κ̃]
(k+j|k) /∈

⋂
κ∈K
S [i,κ]safe,(k+j|k)

}
≤ 1

1 +K
. (27)

for every time step k + j of the OCP, see [14] for a proof.

V. SIMULATION RESULTS

A. Simulation Setup

To demonstrate the efficacy of the scenario-based approach
in a first numerical study, an urban four way intersection sce-
nario with four agents is investigated, see Fig. 2. Every agent
has a length of L[i] = 4.87 m, a width of W [i] = 1.85 m

and a dynamic powertrain time constant of T [i]
ax = 0.3 s. The

driver parameters in the simulation model have been selected

Agent 4 (Prio. 4)

Agent 3 (Prio. 3)Agent 1 (Prio. 1) 

Agent 2 (Prio. 2)

Fig. 2. Intersection scenario: Four straight passing agents.
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Fig. 3. Scenario-based MPC vs. Nominal MPC: Scenario MPC is capable of avoiding collisions when uncertainties are present

as: K [1]
d = 0.55, K [2]

d = 1.0, K [3]
d = 0.1 and K

[4]
d = 1.2.

Moreover, we want all drivers not to follow the speed limits
exactly. Therefore, we have defined a constant speed offset
∆vref for the entire simulation that is superimposed by a
bounded noise (zero mean, max. amplitude 0.1 m/s) to better
reflect an actual human driver: ∆v

[1]
ref = 0.5 m/s, ∆v

[2]
ref =

0.2 m/s, ∆v
[3]
ref = 0.4 m/s, ∆v

[4]
ref = −0.3 m/s. To study the

case when having a model mismatch between the simulation
model and the controller model, we have set the MPC model
parameters to the following values: K [1]

d = 0.6, K [2]
d =

1.2, K [3]
d = 0.5 and K

[4]
d = 0.9. In the chosen scenario,

all agents pass the intersection straight. The initial condi-
tions of the scenario are: v[i]0 = 13.9 m/s, s[1]0 = −68.3 m,
s
[2]
0 = −69.0 m, s[3]0 = −72.3 m and s[4]0 = −81.3 m. As we

are considering an urban environment, the speed limit v[i]limit
has been set to 13.9 m/s. For defining agent priorities, we

have used the same time-to-react (TTR) criteria as in [6].
Herewith, we obtain the following time-invariant priorities:
γ(1) = 1, γ(2) = 2, γ(3) = 3, γ(4) = 4.

The local MPC controllers are parametrized equally using
a sample time of 0.25 s, a horizon length of Hu = Hp = 20
(i.e. a preview time of 5 s) as well as the following weighting
coefficients: Q[i] = 0.5, R[i] = 1, S[i] = 1, T [i] = 1.
Furthermore, the longitudinal acceleration is constrained by
a
[i]
x = −9 m/s2 and a[i]x = 5 m/s2. The upper velocity bound
v
[i]
ref is set to 110% of the (artificial) speed limit. For the

scenario approach, we have selected the number of scenarios
to be K = 99 which relates to a constraint violation
probability of at most 1%. Moreover, we have chosen K [i]

d =

0.1, K
[i]

d = 1.2 (i.e. an error v[i]ref − v[i] of 3 m/s relates to
a demanded acceleration interval of 0.3 m/s2 to 3.6 m/s2)
and ∆v

[i]
ref = −1.5, ∆v

[i]
ref = 1.5 (i.e. ≈ ±5 km/h) as



uncertainty intervals bounds. To solve the local OCPs, SDPA
[16] is applied as SDP solver in the same setting as in [6].

B. Discussion of Results

Fig. 3 illustrates a comprehensive overview of simulation
results. In the first four rows, the state and input trajectories
of each agent i are given in row i for the scenario approach.
For reasons of brevity, we have omitted the particular state
and inputs trajectories for the nominal control scheme. From
left to right, we present (1) the path coordinate trajectory
along with the trajectory of conflicting agents, (2) the actual,
minimum mean and maximum velocity along with the speed
advice and the speed limit and (3) the vehicle acceleration.
In the first column, a path coordinate of zero refers to the
first collision point in the reference frame of agent i. In case
of a conflict with a high priority agent, a colored polygon
indicates the area that must no be intersected by the trajectory
of agent i. The fifth and sixth row depict a closer insight into
the conflict region for the scenario approach (fifth row) as
well as the nominal approach (sixth row) to compare the
effect of accounting for uncertainties compared to the case
when neglecting them.

In the first four rows of Fig. 3, the results for the scenario
approach are depicted. Particularly, agent 1 (green) has the
highest priority and crosses the intersection first. As we have
defined speed offsets in the simulation setup, agent 1 is
driving slightly faster that the advised speed. Agent 2 (blue)
and agent 3 (red) are not conflicting as they are driving
in opposite directions. However, both agent have to ensure
that a safe distance is maintained to agent 1. An enlarged
illustration of the respective conflict region is provided in the
fifth row of Fig. 3. As agent 3 is reacting in a more moderate
way (K [3]

d = 0.1) compared to agent 2 (K [2]
d = 1.0), a

lower advised speed can be recognized for that agent. Finally,
agent 4 is crossing the intersection with a safe distance to
agent 2 and agent 3. As such, all agents are able to cross the
intersection safely. For the nominal control regime, however,
collisions occur between agent 3 and agent 1 (sixth row,
second column) as well as between agent 4 an agent 3 (sixth
row, third column) as a consequence of uncertainty.

It can be concluded that the scenario approach is able
to avoid collisions with other agents when uncertainties
are present in the driver reaction. To achieve this aim,
we consequently have to sacrifice performance and keep
larger safety distances than actually required. This behavior,
though, is reasonable as the control system indeed has to
account for all potential driver reactions that are specified
by the intervals [K

[i]
d ,K

[i]

d ] and [∆v
[i]
ref ,∆v

[i]
ref ]. Moreover,

speed recommendations are always smooth such that these
could actually be followed by a human driver. Likewise,
the resulting accelerations are smooth such that comfortable
driving can be assured. In essence, all requirements that have
been stated in section III are met for the scenario approach.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a distributed MPC approach to safely
coordinate vehicles through intersections by issuing speed

advices to the driver. To accommodate uncertain driver reac-
tion, we have proposed a distributed scenario MPC approach
which optimizes over a finite number of randomly sampled
scenarios. Simulation results demonstrate that the scenario-
based approach is able to avoid collisions when the driver
reaction is uncertain while the nominal scheme is not. Our
ongoing research is dedicated to solve the large scenario
optimization problem in real-time.
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