Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions

Controller design for flow networks of switched servers with setup times

Erjen Lefeber

Eindhoven University of Technology

AG Meeting March 26, 2008, Eindhoven

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
•			000000		00000	
Motiva	tion					

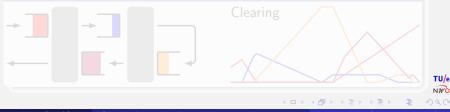
TU/e N₩O

イロン イヨン イヨン イヨン

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	●0	O	000000	O	00000	00
Problem						

Problem

How to control these networks?


Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	●0	O	000000	O	00000	00
Problem						

Problem

How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

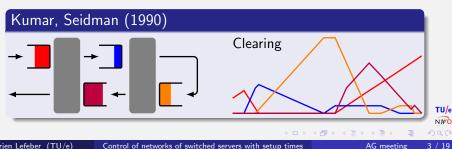
Current approach

Start from policy, analyze resulting dynamics

Kumar, Seidman (1990)

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	●0	O	000000	O	00000	00
Problem						

Problem


How to control these networks?

Decisions: When to switch, and to which job-type

Goals: Minimal number of jobs, minimal flow time

Current approach

Start from policy, analyze resulting dynamics

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	⊙●	O	000000	O	00000	00
Problem						

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

• Do existing policies yield satisfactory network performance?

• How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow

< ロ > < 同 > < 回 > < 回 > < 回 >

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	○●	O	000000	O	00000	
Problem						

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

• Do existing policies yield satisfactory network performance?

• How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow)

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	○●	O	000000	O	00000	
Problem						

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow)

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	⊙●	O	000000	O	00000	00
Problem						

Several policies exist that guarantee stability of the network

Remark

Stability is only a prerequisite for a good policy

Open issues

- Do existing policies yield satisfactory network performance?
- How to obtain pre-specified network behavior?

Main subject of study (modest)

Fixed, deterministic flow networks (not evolving, constant inflow)

> < </p>
> < </p>
> < </p>

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	•	000000	O	00000	00
Approad	ch					

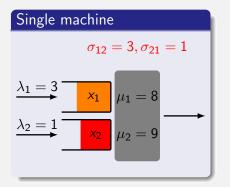
Notions from control theory

- Generate feasible reference trajectory
- Obsign (static) state feedback controller
- Oesign observer
- Oesign (dynamic) output feedback controller

Parallels with this problem

- Determine desired system behavior
- 2 Derive non-distributed/centralized controller
- ③ Can state be reconstructed?
- Oerive distributed/decentralized controller

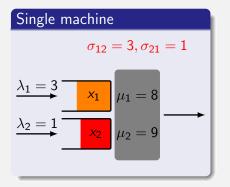
Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	•	000000	O	00000	00
Approad	ch					


Notions from control theory

- Generate feasible reference trajectory
- Obsign (static) state feedback controller
- Oesign observer
- Oesign (dynamic) output feedback controller

Parallels with this problem

- Determine desired system behavior
- ② Derive non-distributed/centralized controller
- O Can state be reconstructed?
- Oerive distributed/decentralized controller


Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	•00000	O	00000	
Example	1: Sing	le machi	ne			

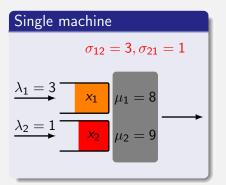
TU/e

< ロ > < 同 > < 回 > < 回 > < 回 >

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	•00000	O	00000	00
Example	1: Sing	le machi	ne			

State

<i>x</i> 0	remaining setup time
xi	buffer contents $(i = 1, 2)$
т	$mode \in \{1,2\}$

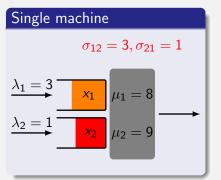

Input

$$u_0 \quad \text{activity} \in \{ \textcircled{0}, \textcircled{0}, \textcircled{0}, \textcircled{0} \}$$
$$u_i \quad \text{service rate step } i = 1, 2$$

イロト イヨト イヨト イヨト

TU/e

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	•00000	O	00000	00
Example	1: Sing	gle machi	ne			



Continuous dynamics

$$\dot{x}_{0}(t) = \begin{cases} -1 & \text{if } u_{0} \in \{\mathbf{0}, \mathbf{0}\} \\ 0 & \text{if } u_{0} \in \{\mathbf{0}, \mathbf{0}\} \end{cases}$$
$$\dot{x}_{1}(t) = \lambda_{1} - u_{1}(t)$$
$$\dot{x}_{2}(t) = \lambda_{2} - u_{2}(t)$$

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	•00000	O	00000	
Example	1: Sing	gle machi	ne			

Continuous dynamics $\dot{x}_0(t) = \begin{cases} -1 & \text{if } u_0 \in \{\mathbf{0}, \mathbf{2}\} \\ 0 & \text{if } u_0 \in \{\mathbf{0}, \mathbf{2}\} \end{cases}$ $\dot{x}_1(t) = \lambda_1 - u_1(t)$ $\dot{x}_2(t) = \lambda_2 - u_2(t)$

Discrete event dynamics $x_0 := \sigma_{21}$ m := 1 if $u_0 = \mathbf{0}$ and m = 2 $x_0 := \sigma_{12}$ m := 2 if $u_0 = \mathbf{0}$ and m = 1

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	00000	O	00000	
Example	1: Sing	le machi	ne			

Input contraints

$\mathit{u}_0 \in \{0,2\}$	$u_1 = 0$	$u_2 = 0$	if $x_0 > 0$
$u_0 \in \{ \textcircled{0}, 2 \end{matrix}\}$	$u_1 \leq \mu_1$	$u_2 = 0$	if $x_0 = 0$, $x_1 > 0$, $m = 1$
$u_0 \in \{ \textcircled{0}, 2 \end{matrix}\}$	$u_1 \leq \lambda_1$	$u_2 = 0$	if $x_0 = 0$, $x_1 = 0$, $m = 1$
$\mathit{u}_0 \in \{0, @\}$	$u_1 = 0$	$u_2 \le \mu_2$	if $x_0 = 0$, $x_2 > 0$, $m = 2$
$\mathit{u}_0 \in \{ 0, @ \}$	$u_1 = 0$	$u_2 \leq \lambda_2$	if $x_0 = 0$, $x_2 = 0$, $m = 2$

Objective

Minimize:

$$\limsup_{t \to \infty} \frac{1}{t} \int_0^t x_1(\tau) + x_2(\tau) \,\mathrm{d}\,\tau \qquad \text{or} \qquad \frac{1}{T} \int_0^t x_1(\tau) \,\mathrm{d}\,\tau$$

Erjen Lefeber (TU/e) Control of networks of switched servers with setup times

イロン イヨン イヨン イヨン

TU/e

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	00000	O	00000	
Example	1: Sing	le machi	ne			

Input contraints

$\mathit{u}_0 \in \{0,2\}$	$u_1 = 0$	$u_2 = 0$	if $x_0 > 0$
$u_0 \in \{ \textcircled{0}, 2 \end{matrix}\}$	$u_1 \leq \mu_1$	$u_2 = 0$	if $x_0 = 0$, $x_1 > 0$, $m = 1$
$u_0 \in \{ \textcircled{0}, 2 \end{matrix}\}$	$u_1 \leq \lambda_1$	$u_2 = 0$	if $x_0 = 0$, $x_1 = 0$, $m = 1$
$u_0 \in \{ 0, @ \}$	$u_1 = 0$	$u_2 \le \mu_2$	if $x_0 = 0$, $x_2 > 0$, $m = 2$
$\textit{u}_0 \in \{\textbf{0}, \textcircled{2}\}$	$u_1 = 0$	$u_2 \leq \lambda_2$	if $x_0 = 0$, $x_2 = 0$, $m = 2$

Objective

Minimize:

$$\limsup_{t \to \infty} \frac{1}{t} \int_0^t x_1(\tau) + x_2(\tau) \,\mathrm{d}\,\tau \qquad \text{or} \qquad \frac{1}{T} \int_0^T x_1(\tau) + x_2(\tau) \,\mathrm{d}\,\tau$$

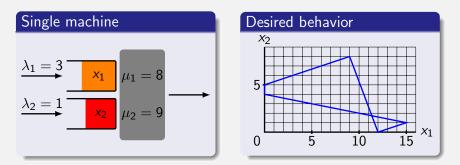
∃ →

・ロン ・日ン ・ヨン・

TU/e NWO

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	00
Desired	behavior					

Remarks

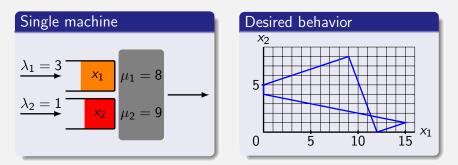

- Many existing policies assume non-idling a-priori
- Slow-mode optimal if $\left(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}\right) + (\lambda_2 \lambda_1)(1 \frac{\lambda_2}{\mu_2}) < 0.$
- Trade-off in wasting capacity: idle \Leftrightarrow switch more often

Erjen Lefeber (TU/e) Control of networks of switched servers with setup times

A (10) × A (10) × A

TU/e

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Desired	behavio	r				


Remarks

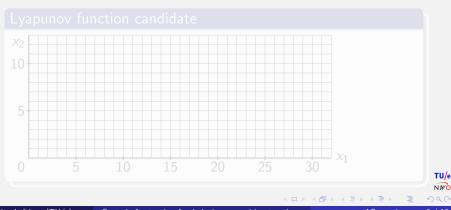
- Many existing policies assume non-idling a-priori
- Slow-mode optimal if $\left(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}\right) + (\lambda_2 \lambda_1)(1 \frac{\lambda_2}{\mu_2}) < 0.$
- Trade-off in wasting capacity: idle \Leftrightarrow switch more often

Erjen Lefeber (TU/e) Control of networks of switched servers with setup times

TU/e

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	00
Desired	behavior					

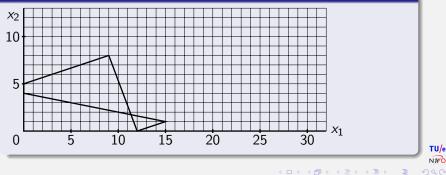
Remarks


- Many existing policies assume non-idling a-priori
- Slow-mode optimal if $\left(\frac{\lambda_1}{\mu_1} + \frac{\lambda_2}{\mu_2}\right) + (\lambda_2 \lambda_1)(1 \frac{\lambda_2}{\mu_2}) < 0.$
- Trade-off in wasting capacity: idle \Leftrightarrow switch more often

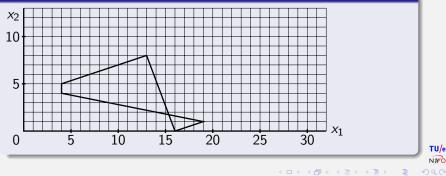
TU/e

< □ > < 同 > < 三 > <

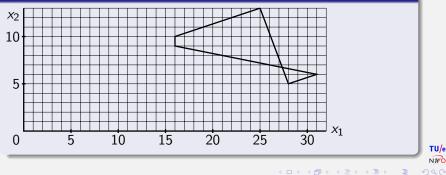
Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	
Control	ler desig	n				


Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

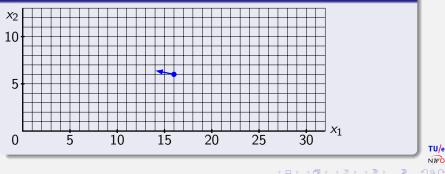
Erjen Lefeber (TU/e) Control of networks of switched servers with setup times


Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Control	ler desig	n				

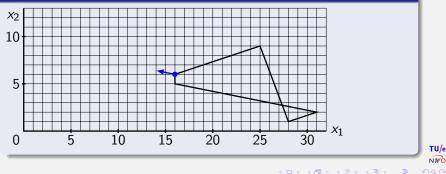
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level


Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Control	ler desig	n				

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level


Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	
Control	ler desig	n				

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level


Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	00
Control	ler desig	n				

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Control	ler desig	n				

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	
Control	ler desig	n				

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

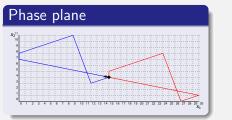
Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Control	ler desig	n				

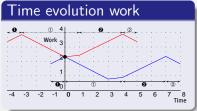
Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

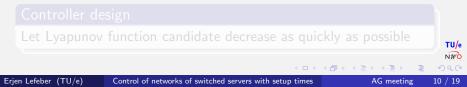
Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	
Control	ler desig	n				

Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Control	ler desig	n				


Lyapunov: if energy is decreasing all the time \Rightarrow system settles down at constant energy level

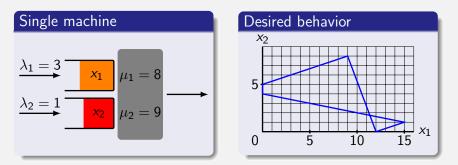



Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Control	ler desig	n				

Lyapunov function candidate

The smallest additional mean amount of work from all feasible curves for state (work: $x_1/\mu_1 + x_2/\mu_2$).

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	0000€0	O	00000	
Control	ler desig	n				

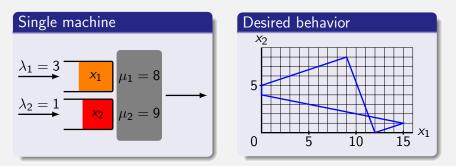

Lyapunov function candidate

The smallest additional mean amount of work from all feasible curves for state (work: $x_1/\mu_1 + x_2/\mu_2$).

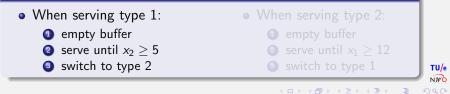
Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	00000●	O	00000	
Control	ler desigi	n (Result)			

Resulting Controller, cf. [Lefeber, Rooda (2006)]

- When serving type 1:
 - empty buffer
 - \bigcirc serve until $x_2 \ge 5$
 - switch to type 2


- When serving type 2:
 - empty buffer
 -) serve until $x_1 \geq 12$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・


switch to type

TU/e

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions	
O	00	0	00000●	O	00000		
Controller design (Result)							

Resulting Controller, cf. [Lefeber, Rooda (2006)]

AG meeting

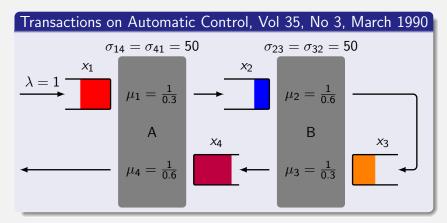
11 / 19

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions	
O	00	0	00000●	O	00000		
Controller design (Result)							

Resulting Controller, cf. [Lefeber, Rooda (2006)]

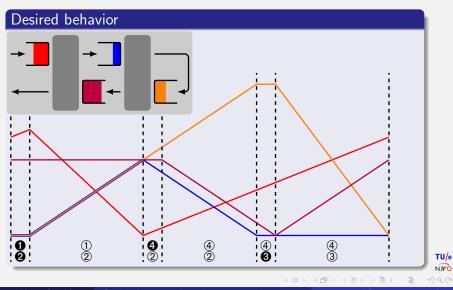
Erjen Lefeber (TU/e) Control of networks of switched servers with setup times

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	●	00000	00
Recap						

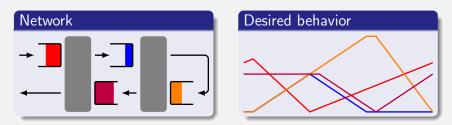

Notions from control theory

- Generate feasible reference trajectory
- Obsign (static) state feedback controller
- Oesign observer
- Oesign (dynamic) output feedback controller

Parallels with this problem


- Determine desired system behavior
- ② Derive non-distributed/centralized controller
- O Can state be reconstructed?
- Oerive distributed/decentralized controller

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	00
Desired	behavio	r				



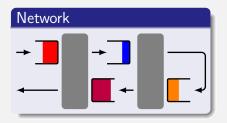
Erjen Lefeber (TU/e)

Control of networks of switched servers with setup times

14 / 19 AG meeting

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	
Resultin	g contro	oller				

Resulting controller


Mode (1,2): to (4,2) when both $x_1 = 0$ and $x_2 + x_3 \ge 1000$ Mode (4,2): to (4,3) when both $x_2 = 0$ and $x_4 \le 83\frac{1}{3}$ Mode (4,3): to (1,2) when $x_3 = 0$

Remark:

Non-distributed/centralized controller

< ロ > < 同 > < 三 > <

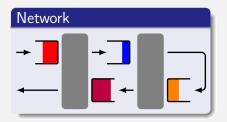
Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	00
Observa	bility					

Assumptions

- Clearing policy used for machine B
- At $t = t_1$: ③ starts

• At
$$t = t_2 > t_1$$
: ③ stops

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・


System state can be reconstructed at machine A

• $x_3(t_2) = 0$, and $x_3(t_1 - 50) = x_3(t_1) = (t_2 - t_1)/0.6$ • $x_2(t_1 - 50) = 0$, and $x_2(t_2) = \int_{t_2-50}^{t_2} u_1(\tau) \, \mathrm{d} \, \tau$

Observation

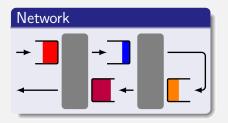
Observablity determined by network topology

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	00
Observa	bility					

Assumptions

- Clearing policy used for machine B
- At $t = t_1$: ③ starts

• At
$$t = t_2 > t_1$$
: (3) stops


System state can be reconstructed at machine A

•
$$x_3(t_2) = 0$$
, and $x_3(t_1 - 50) = x_3(t_1) = (t_2 - t_1)/0.6$
• $x_2(t_1 - 50) = 0$, and $x_2(t_2) = \int_{t_1 - 50}^{t_2} u_1(\tau) d\tau$

Observation

Observablity determined by network topology

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	00
Observa	bility					

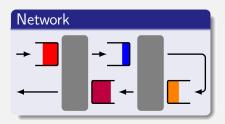
Assumptions

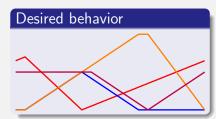
- Clearing policy used for machine B
- At $t = t_1$: ③ starts

• At
$$t = t_2 > t_1$$
: ③ stops

System state can be reconstructed at machine A

•
$$x_3(t_2) = 0$$
, and $x_3(t_1 - 50) = x_3(t_1) = (t_2 - t_1)/0.6$


•
$$x_2(t_1 - 50) = 0$$
, and $x_2(t_2) = \int_{t_1 - 50}^{t_2} u_1(\tau) \,\mathrm{d}\,\tau$


Observation

Observablity determined by network topology

Erjen Lefeber (TU/e) Control of networks of switched servers with setup times

Distributed controller

Serving 1: Serve at least 1000 jobs until $x_1 = 0$, then switch. Let \bar{x}_1 be nr of jobs served.

Serving 4: Let \bar{x}_4 be nr of jobs in Buffer 4 after setup. Serve $\bar{x}_4 + \frac{1}{2}\bar{x}_1$ jobs, then switch. Serving 2: Serve at least 1000 jobs until $x_2 = 0$, then switch.

Serving 3: Empty buffer, then switch.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Erjen Lefeber (TU/e) Control of networks of switched servers with setup times

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	●○
Conclus	sions					

- Oetermine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized contro

 Observer based approach results in new, tailor-made controllers that perform better

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	●○
Conclus	sions					

- Oetermine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized contro

 Observer based approach results in new, tailor-made controllers that perform better

< ロ > < 同 > < 三 > <

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	●○
Conclus	sions					

- Determine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Derive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized contro

 Observer based approach results in new, tailor-made controllers that perform better

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
0	00	O	000000	O	00000	●○
Conclus	ions					

- Determine desired system behavior (trajectory generation)
- ② Derive non-distributed/centralized controller (state feedback)
- Oerive distributed/decentralized controller (output feedback)

Advantage

All three problems can be considered separately

Centralized control

Approach can deal with

- Arbitrary networks
- Finite buffers
- Transportation delays

Decentralized control

 Observer based approach results in new, tailor-made controllers that perform better

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	○●
Future v	vork					

Research

Centralized control

- Modify existing approach to overcome some shortcomings
- Derive class of controllers (instead of only one)
- Finite buffers: reachability of desired orbit
- Deal with parametric uncertainty; robustness if parameters are either different or time-varying.
- Decentralized control
 - Observability (including tests)
 - Observer design
 - Stability analysis of distributed policies
- Stochastic extensions
 - Analyze performance of derived (de)centralized controllers for stochastic queueing networks

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	○●
Future v	vork					

Research

- Centralized control
 - Modify existing approach to overcome some shortcomings
 - Derive class of controllers (instead of only one)
 - Finite buffers: reachability of desired orbit
 - Deal with parametric uncertainty; robustness if parameters are either different or time-varying.
- Decentralized control
 - Observability (including tests)
 - Observer design
 - Stability analysis of distributed policies
- Stochastic extensions
 - Analyze performance of derived (de)centralized controllers for stochastic queueing networks

> < 同 > < 三 > <</p>

Motivation	Problem	Approach	Example 1	Recap	Example 2	Conclusions
O	00	O	000000	O	00000	○●
Future v	vork					

Research

- Centralized control
 - Modify existing approach to overcome some shortcomings
 - Derive class of controllers (instead of only one)
 - Finite buffers: reachability of desired orbit
 - Deal with parametric uncertainty; robustness if parameters are either different or time-varying.
- Decentralized control
 - Observability (including tests)
 - Observer design
 - Stability analysis of distributed policies
- Stochastic extensions
 - Analyze performance of derived (de)centralized controllers for stochastic queueing networks

19 / 19

AG meeting