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In this case, we can view m k  = 0 which is the smallest nonnegative 
integer for pmkX < (1<~/1<). Now, for any X > 0 , O  < p < 1, and let 
mk be either the m k  determiped by (A12) :r mk = 0 by (A13); from 
(A1 l), there must exist an m 5 mk (or m = 0 if mk = 0) such that 
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Abshurct-It is shown by means of an example that the projection 

(A14) 
algorithm does not always converge. 

Note th? 0 < -yk < ( I i Z / l i )  is sufficient for ( A l l )  to hold explains 
why m 5 mk. This shows that S,tep 8 of our algorithm will 
terminate for certain m‘.  Since p” 2 p m k ,  from (A12) and 
(A13), p” X 2 min{PX, b’(Ii-*/I<)}. Let 7 E $Ii-z *min{pX, 
/3(1<~/1<)}, then T is finite and positive, and 

Then, each iteration of our algorithm ensures a decrement of the 
objective function by at least the amount rllikll;. Since J ( z )  is 
bounded from below, we assume c E IR is a lower bound of J ( r ) ,  
then from (A15), we have 

Then, by (A16), l l i k l l g  5 ( J ( x o ) - c / ~ )  < CO, and (A7) shows 
0 that limk-, OJ( e k )  = 0. 
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I. INTRODUCTION 

It is well known that parameter identification of linear systems 
depends very much on the excitation of the signals. Generally speak- 
ing, all identification algorithms require the signals to be sufficiently 
exciting. In applications such as adaptive control, however, excitation 
is often not possible. The question then arises how useful the standard 
identification schemes are. In this note we consider the case where the 
data can be modeled exactly by a linear time invariant discrete-time 
model. It is a fact, that for such systems recursive least squares always 
produce a convergent sequence of parameter estimates, although it is 
of course not guaranteed that the limit will be the true parameter [l] .  

For the projection algorithm a similar result or its negation is to the 
best of our knowledge not available in the literature. Properties that 
can be derived without any assumptions on the signals can be found 
in [l] .  Nothing is said about convergence there (see also [2, Problem 
12.141). In [3], the algorithm is used for adaptive pole assignment. 
Since the adaptive algorithm could be analyzed without proving 
convergence of the parameter estimates, the possible convergence 
is not studied there either. 

In this note we show by means of an example that the projection 
algorithm does not necessarily converge. This is in contrast with 
recursive least squares. 

The construction of the counter example is as follows. Firstly we 
construct a sequence of real vectors that satisfies at least some of the 
properties of the projection algorithm and which does not converge. 
Secondly we show that the sequence could as well have been obtained 
by applying the projection algorithm to an appropriate input/output 
system. Hence, rather than fitting the estimates to the data, we fit the 
data to the estimates. 

11. THE PROJECTION ALGORITHM 
For the sake of completeness, we briefly describe the projection 

algorithm. Let the system be described by 

y(k + 1) = e T d ( k )  e € R”. (1) 

The projection algorithm is defined as follows: Suppose that the 
estimate of 8 at time k is 8k, define Gk+l := ( 8  E R” I y( k -I- 1)  = 
O T d ( k ) } .  Define 8k+1 as the orthogonal projection of 8 k  on G k + l .  

The recursion is given by 

Notice that Gk+l contains the true parameter e. Regardless of the 
input sequence, the following two properties hold. 

2) limk--(Ok+l - 8,) = 0. 
Property 2.1: 1) For all k :  116 - @ k + l l l  5 118 - O k l l .  
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It is obvious that from Property 2.1 we cannot conclude that 0, is 
a fundamental sequence, and in fact we will see that it need not be. 
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Fig. 1 .  The set S. 

III. A COUNTEREXAMPLE 
The idea of the counterexample is that we will first construct a 

1) ( a k + l ,  b k + l )  is obtained from (ab ,  b k )  by orthogonally pro- 
jecting the latter onto a line passing through a fixed point. 

2) The sequence does not converge. 

sequence ( a k ,  b k )  E W2 with the properties that: 

Notice that this sequence is constructed in a similar way as the 
sequence of estimates in the projection algorithm. Subsequently we 
will show that the particular sequence is equal to the sequence 
of estimates produced by applying the projection algorithm to a 
particular first-order system. That will establish the claim that the 
algorithm does not necessarily produce a convergent sequence of 
estimates. The key idea is that we fit the data to the estimates rather 
than the estimates to the data. 

A.  Construction of the Sequence 

The sequence { a k ,  b k }  will be defined inductively 

(ao, bo)  := (1/2,4). (3) 

Suppose now that ( a k ,  b k )  has been constructed. Let L k  be the line 
passing through (1/2,1)  and ( a k , b k ) .  Define ( a k + l , b k + l )  as the 
orthogonal projection on a line Lk+1 yet to be defined. L k + 1  will 
be a line passing through (1/2,1)  with the property that the distance 
between ( a k ,  b k )  and its orthogonal projection on L k + 1  is exactly 
l / ( k  + 1). There are two possibilities for L k + 1 ,  one which requires 
a clockwise rotation of LI, to obtain L k + l  and one for which this 
rotation would be counter clockwise. This freedom of choice will 
now be used as follows. Define the region S := {(a, b)  I -1 < 
-2a < b - 2 A b > l}. See Fig. 1. Determine the two possibilities 
for ( a k + l ,  b k + l ) .  When both points are in s, rotate L k  in the same 
direction as Lk-1 was rotated to obtain L k ,  to get Lk+l,  otherwise 
rotate Lk in the opposite direction. L1 of course requires a counter 
clockwise rotation of LO. Notice that now every (ak, b k )  E S. Of 
course, the recursion could in principle be written in formulas; we 
feel, however, that this would not add much to our understanding. 

Lemma 3.1: i) The sequence { ( a k ,  b t ) }  is well-defined. ii) The 
sequence { (an- ,  b k ) }  does not converge. 

Proof: 
i) Define T k  := d ( 1 / 2  - a k ) 2  + (1 - b k ) 2  and b k f l  := 

J (ak+ l  - a k ) 2  + ( b k + l  - b k ) 2 .  From the construction it 
follows that 

Since b k + l  = l / ( k  + 1) it follows that 

If we disregard for a moment the restriction imposed by S, we 
conclude that ( a k + l ,  b k + l )  can be constructed from ( a k ,  b k )  

provided T:  - l / ( k  + 1)2 > 0. Now, from (5) it follows that 

k 

hence we should have r: > ir2/6, since in our case rg = 9, 
this condition is satisfied. 
As a byproduct we obtain that limk-mr: = 9 - r 2 / 6 .  It 
should be clear that from this we can also conclude that the 
requirement that ( a & ,  b k )  E S does not impose a restriction on 
the existence of the sequence. 

ii) From the fact that rk +. d v  and since b k + l  = 
1/(k + l ) ,  it follows that L ( L k ,  Lk+1) is 0 ( 1 / k  + 1). There- 
fore the sequence of lines { L k }  does not converge and hence 
nor does { ( a k ,  b k ) } .  0 

Lemma 3.2: Consider the ilo system 

There exists an input sequence { ~ ( k ) } ,  such that the projection 
algorithm, initialized in (ao,  b o )  generates { ( a k ,  b k ) }  as the sequence 
of estimates. 

Proof: This is now easy. All we have to do is make sure that 
at time k + 1,  Gk+l = Lk+l, or equivalently, (ak+l ,  b k + l )  E Gk+1 

and y(k) # 0. Otherwise stated v(k) has to be such that 

Hence we should take 

Since (ak+l, b k + l )  E s, this can indeed be done. 

y(k)  will be nonzero. From (8) it follows that 
To complete the proof we have to check that for all k the output 

(9) 

Since y (0 )  = 1, and since ( a k + l ,  b k + l )  E s, it follows from (9) 
that y(k)  # 0. 

Notice that since ( a k ,  b k )  E S, we actually have that the sequences 
U and y are bounded. 0 

We have now proved the following theorem. 
Theorem 3.3: There exists a system of the form ( l ) ,  a bounded 

input sequence U and an initialization of the projection algorithm, 
such that the resulting sequence of estimates does not converge. 

IV. CONCLUSION 

By means of an example, we have shown that the sequence of 
estimates generated by the projection algorithm does not necessarily 
converge. Of course, the sequence of inputs needed for the example 
is fairly artificial. In applications such as adaptive control, however, 
it is most desirable to derive as many properties of the identification 
part as possible without having to rely on the specific nature of 
the input. For the input will depend in a highly nonlinear fashion 
on the estimates. Our construction shows that convergence is not 
automatically among the properties that can be derived without 
additional assumptions on the input sequence. 
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A Comment on the Method of the Closest Unstable 
Equilibrium Point in Nonlinear Stability Analysis 

E. Noldus and M. Loccufier 

Abstract-A counterexample is presented to a theorem which has been 
proposed as a theoretical basis for the method of the closest unstable 
equilibrium point to estimate asymptotic stability regions in nonlinear 
systems. An additional condition is formulated under which the theorem 
is valid. Its implications on the applicability of the method are discussed. 

I. INTRODUCTION 
The method of the closest unstable equilibrium point (c.u.e.p.) is 

a well-known direct method of the Lyapunov type for estimating re- 
gions of asymptotic stability (RAS) in nonlinear systems analysis. The 
method has been described, among others, by Chiang et al. [l], [2] 
and various applications, for example to the power system transient 
stability problem have been reported [3]-[5]. Its basic principle is the 
following: Consider an autonomous nonlinear dynamical system 

j: = f ( x )  (1) 

where s E R" represents the state and f(.) satisfies the sufficient 
conditions for the existence and the uniqueness of the solutions for 
given initial conditions. Suppose that a scalar function V(x) E C', 
T 2 1, can be found such that along the solutions of (1) 

(2) 

By (2), V ( s )  is a Lyapunov function of (1) in R". Let is be a locally 
asymptotically stable (1.a.s.) equilibrium state and let O(?.,) C R" 
be its exact RAS. Suppose that on the stability boundary 
V(x) reaches an absolute minimum at x = 2,  and let 

br(x)  5 0,Vx E R" 
= o a . . i : = o .  

niiii T'(x) = V(2,) = Vm,n. (3) 
z E B R ( P , )  

Then it is well known that 
system (1) [l]. Furthermore for any k in the interval 

is an unstable equilibrium point of the 

V(2s) < 5 V" 
the set 

s 2 { x ; V ( x ) < k )  

is the union of a number of connected, disjoint subsets 

s=s1 uszu.'.us,; 
s,nS, = 0 for i # j 
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Fig. 1. 
level values k, for the numerical values a = 2, b = 1, p = 0.8. 

Phase portrait of the system (5), (6) and level sets as1 for varying 

one of which, say S1 contains 2,.  This subset SI is a RAS for E, 

s1 G o ( i s ) .  

The largest stability region SI is obtained for k = I k , .  In [ 11 Chiang 
and Thorp have reported a theorem pertaining to the existence of 
the minimum Vmin, and a scheme for computing the corresponding 
stability region S1 based on it. 

Theorem [I]: If system (1) has a Lyapunov function V ( x )  in R" 
which satisfies (2) and if O(2;. , )  is not dense in R", then I;,,, as 
defined by (3) exists and E, is an unstable equilibrium state. 

The proof relies on the property that if for IC = q the set 31 is 
a closed and bounded neighborhood of E, which contains no other 
equilibria, and if for some p > q there are no equilibrium states in 
the set S l l k I p  - S l ( k z q  then 

- - 

- 
S1 IkIp is also closed and bounded. (4) 

In Section I1 a counterexample to this result and to the property (4) 
is presented. It is pointed out, however, that the theorem is valid 
under the additional assumption that all trajectories on the stability 
boundary dO(E,) are bounded for t 2 0. Section 111 discusses the 
implications of this proposition for the c.u.e.p. method. 

11. EXAMPLE 
Consider an example of the form 

where x E R2 and 

with 

and a > 0, b > 0 and / I .  > 0. Then 
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. .  V ( s )  = [TI'? = -x 's  (7) 

~ I ~ 'I 1 ' 1  I 


