

# Modeling, Validation and Control of Manufacturing Systems

Erjen Lefeber

June 27, 2005, Thematic Institute on

Information and Material Flows in Complex Networks



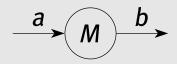
Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**FU/e** 

**Control Framework** 


Approximation model

Validation

Control

Conclusions

Machine



```
proc M(a : ?lot, b : !lot, t_e, c_e^2 : real) =
|[u : \rightarrow real, x : lot
|u := \Gamma(t_e, c_e^2)
;*[true\rightarrow a?x; \Delta \sigma u; b!x]
]|
```

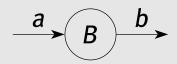
Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**U/e** 

**Control Framework** 


Approximation model

Validation

Control

Conclusions

### **Buffer**



```
proc B(a : ?lot, b : !lot) =

|[x : lot, xs : lot*

|xs := []

;*[true; a?x \rightarrow xs := xs ++ [x]

[len(xs) > 0; b! hd(xs) \rightarrow xs := tl(xs)

]

]
```



Introduction to  $\chi$ 

From real fab to DEM

Effective process times

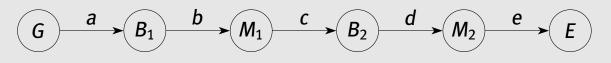
**Control Framework** 

Approximation model

Validation

Control

Conclusions


# **Generator and Exit**

type lot = real

proc 
$$G(a : !lot, t_a : real) = |[*[true \rightarrow a!\tau; \Delta t_a]]|$$

```
proc E(a : ?lot) =
|[x : lot
|*[true\rightarrow a?x; !"Flow time: ", x - \tau, "\ n"]
]|
```

### Overall model



```
clus F() =

|[a, b, c, d, e : -lot | G(a, 3.0)

|| B(a, b) || M(b, c, 1.0, 1.0)

|| B(c, d) || M(d, e, 2.0, 1.0)

|| E(e)

||
```

```
Introduction to \chi
From real fab to DEM
```

**e** 

Effective process times

```
Control Framework
```

Approximation model

Validation

Control





Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# **Discrete Event Modeling of a real factory**

- raw process time t<sub>0</sub> and c<sub>0</sub>
- setups *t*<sub>s</sub> and *c*<sub>s</sub>
- TBF *t*<sub>f</sub> and *c*<sub>f</sub>, TTR *t*<sub>r</sub> and *c*<sub>r</sub>
- operator delays
- rework
- ...(!)

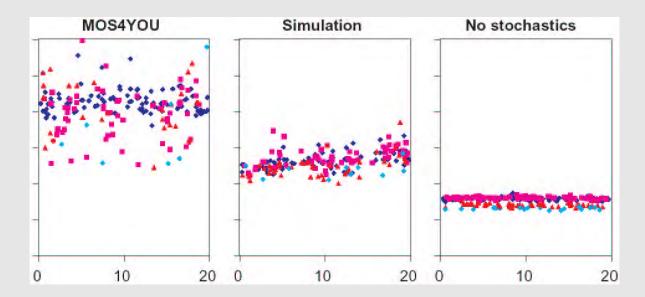
Introduction to  $\chi$ 

From real fab to DEM

Effective process times

TU/e

**Control Framework** 


Approximation model

Validation

Control

Conclusions

# Results



- smaller mean flow time
- smaller variance flow time

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

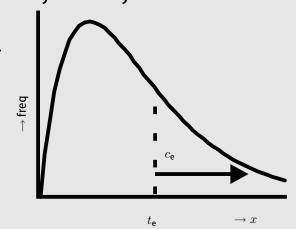
**e** 

**Control Framework** 

Approximation model

Validation

Control


Conclusions

# The effective process time method

- raw process time t<sub>0</sub> and c<sub>0</sub>
- setups *t*<sub>s</sub> and *c*<sub>s</sub>
- TBF *t*<sub>f</sub> and *c*<sub>f</sub>, TTR *t*<sub>r</sub> and *c*<sub>r</sub>
- operator delays
- rework
- ...(!)

Idea:

Combine all disturbances in one single EPT probability density function

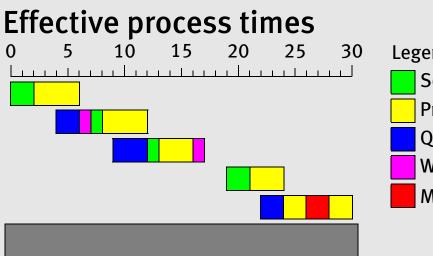


# technische universiteit eindhoven

Introduction to  $\chi$ 

From real fab to DEM

Effective process times


**Control Framework** 

Approximation model

Validation

Control

Conclusions



Legend

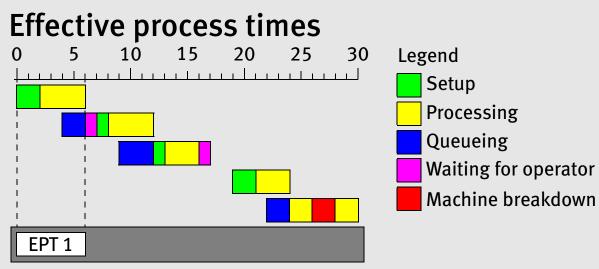
Setup
Processing
Queueing
Waiting for operator
Machine breakdown



# technische universiteit eindhoven

Introduction to  $\chi$ 

From real fab to DEM


Effective process times

Control Framework

Approximation model

Validation

Control

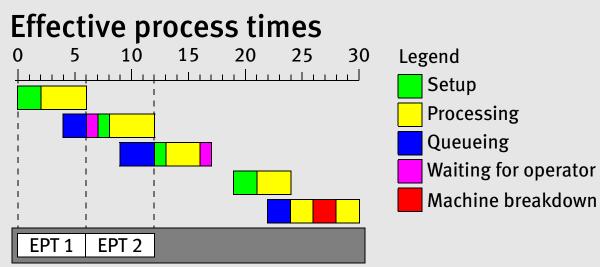




# technische universiteit eindhoven

Introduction to  $\chi$ 

From real fab to DEM


Effective process times

**Control Framework** 

Approximation model

Validation

Control

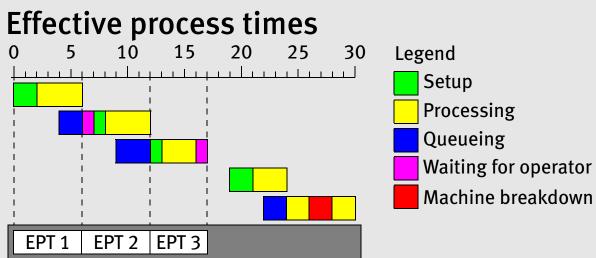






Introduction to  $\chi$ 

From real fab to DEM


Effective process times

**Control Framework** 

Approximation model

Validation

Control

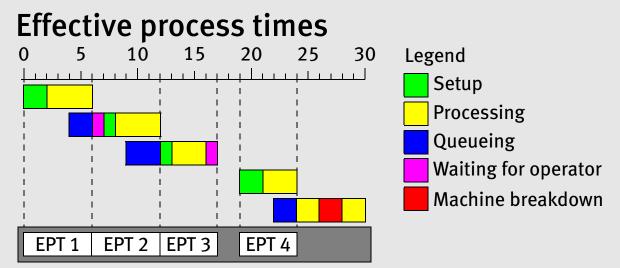




# technische universiteit eindhoven

Introduction to  $\chi$ 

From real fab to DEM


Effective process times

Control Framework

Approximation model

Validation

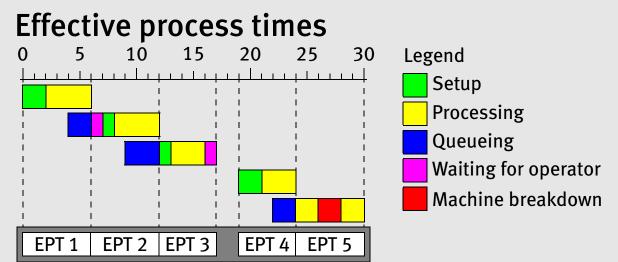
Control



# technische universiteit eindhoven

Introduction to  $\chi$ 

From real fab to DEM


Effective process times

Control Framework

Approximation model

Validation

Control







Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# **Control Framework**

Manufacturing System



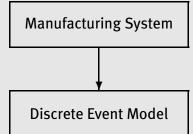


Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**Control Framework** 


Approximation model

Validation

Control

Conclusions

# **Control Framework**

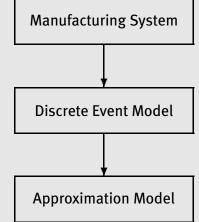


Introduction to  $\chi$ 

From real fab to DEM

Effective process times

TU/e


**Control Framework** 

Approximation model

Validation

Control





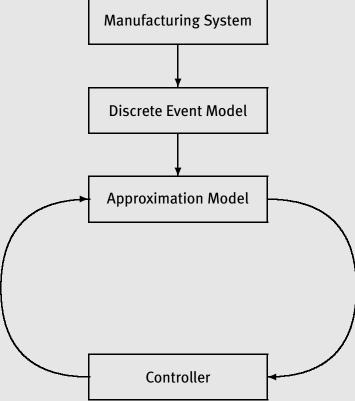




From real fab to DEM

Effective process times

TU/e


**Control Framework** 

Approximation model

Validation

Control





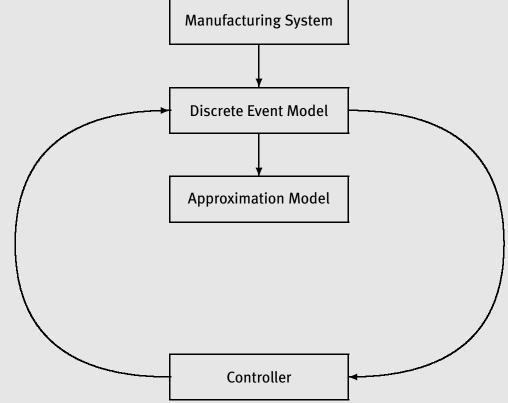




From real fab to DEM

Effective process times

TU/e


**Control Framework** 

Approximation model

Validation

Control





Introduction to  $\chi$ 

From real fab to DEM


Effective process times

**Control Framework** 

Approximation model

Validation

Control

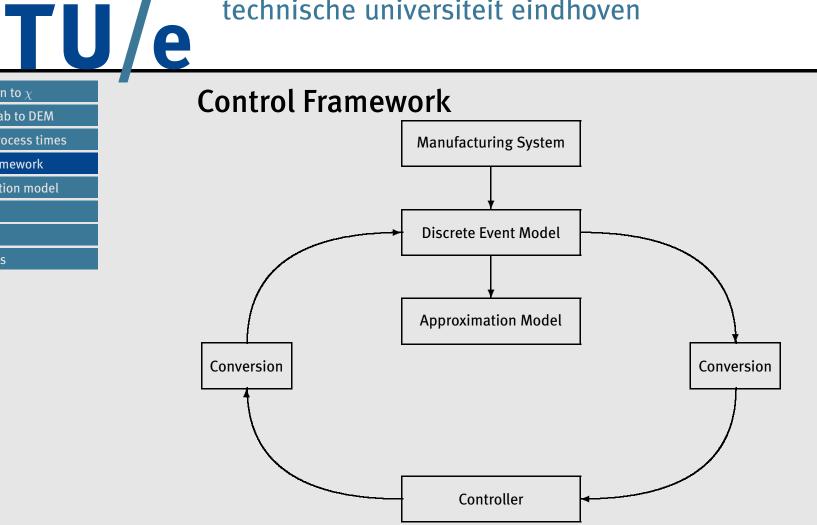


Controller



From real fab to DEM

Effective process times


**Control Framework** 

Approximation model

Validation

Control

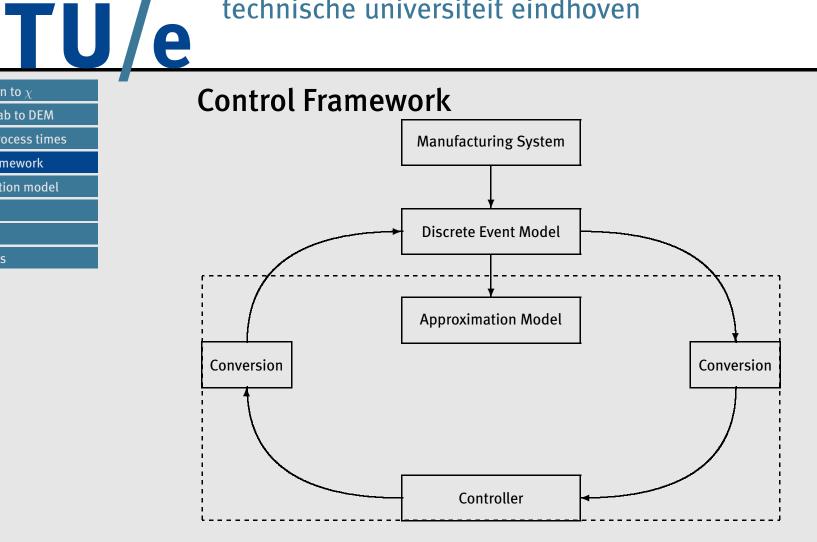
Conclusions

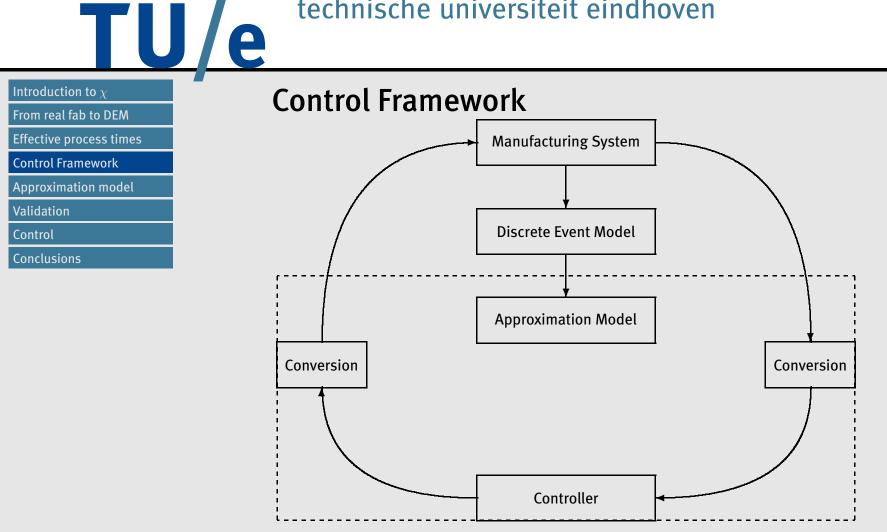


Introduction to  $\chi$ 

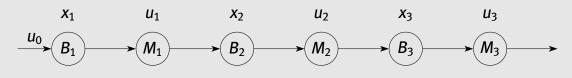
From real fab to DEM

Effective process times


**Control Framework** 


Approximation model

Validation


Control

Conclusions





# Approximation model



 $x_1(k + 1) = x_1(k) + u_0(k) - u_1(k)$  $x_2(k + 1) = x_2(k) + u_1(k) - u_2(k)$  $x_3(k + 1) = x_3(k) + u_2(k) - u_3(k)$ 

or

$$\dot{x}_1(t) = u_0(t) - u_1(t) \qquad \dot{x}_1(t) = u_0(t) - u_1(t)$$
  
$$\dot{x}_2(t) = u_1(t) - u_2(t) \qquad \text{or} \qquad \dot{x}_2(t) = u_1(t - \tau_1) - u_2(t)$$
  
$$\dot{x}_3(t) = u_2(t) - u_3(t) \qquad \dot{x}_3(t) = u_2(t - \tau_2) - u_3(t)$$

Introduction to  $\chi$ 

From real fab to DEM

**e** 

Effective process times

**Control Framework** 

Approximation model

Validation

Control

Conclusions

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

Control Framework

Approximation model

Validation

Control

Conclusions

# Modeling manufacturing flow

- density  $\rho(x, t)$ ,
- speed *v*(*x*, *t*),
- flow  $u(x, t) = \rho(x, t)v(x, t)$ ,
- Conservation of mass:  $\frac{\partial \rho}{\partial t}(x, t) + \frac{\partial \rho v}{\partial x}(x, t) = 0.$
- Boundary condition:  $u(0, t) = \lambda(t)$

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

l U

e

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# Modeling manufacturing flow

Armbruster, Marthaler, Ringhofer (2002):

- Single queue:  $\frac{1}{v(x,t)} = \frac{1}{\mu} (1 + \int_0^1 \rho(s, t) \, ds)$
- Single queue:  $\frac{\partial \rho v}{\partial t}(x, t) + \frac{\partial \rho v^2}{\partial x}(x, t) = 0$

$$\rho v^{2}(0, t) = \frac{\mu \cdot \rho v(0, t)}{1 + \int_{0}^{1} \rho(s, t) \, ds}$$
  
Re-entrant:  $v(x, t) = v_{0} \left(1 - \frac{\int_{0}^{1} \rho(s, t) \, ds}{W_{\text{max}}}\right)$ 

• Re-entrant: 
$$\frac{\partial \rho v}{\partial t}(x, t) + \frac{\partial \rho v^2}{\partial x}(x, t) = 0$$
  
 $\rho v^2(0, t) = \rho v(0, t) \cdot v_0 \left(1 - \frac{\int_0^1 \rho(s, t) ds}{W_{\text{max}}}\right)$ 

Lefeber (2003):

• Line of *m* identical queues:  $v(x, t) = \frac{\mu}{m + \rho(x, t)}$ 

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# Validation

A

- Line of 15 identical machines
- Infinite queues
- FIFO-policy
- Exponential Effective Processing Times
- Step-response (initially empty, start rate  $\lambda$ )
- Model 1, 2, 5 versus averaged discrete event

Rampup to 50% utilization (averaged discrete event) Rampup to 50% utilization (validation studies)

Rampup to 25% utilization (validation studies)

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# Concluding remarks

Rampup to 50% with non-exponential arrivals ( $c_a^2 = 9$ )

- Correct steady state behavior
- Better description transient needed
- Second moment and correlation needs to be included While keeping the following:
  - No backward-flow allowed (cf. Daganzo '95)
  - No negative density
  - Stable steady states
    - i.e., constant feed rate  $\rightarrow$  equilibrium
    - also, equilibrium meets relations queueing theory

Introduction to  $\chi$ 

From real fab to DEM

**ΓU/e** 

Effective process times

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# Control

- Number of machines *n* = 10
- Mean processing time: 0.5h
- Desired *u* = 0.75 (1.5 lot per h)
- Initial WIP  $x_i(0) = 0$

# Nonlinear model

 $x_{1}(k+1) = x_{1}(k) - \frac{\mu x_{1}(k)}{1 + x_{1}(k)} + u(k)$   $x_{2}(k+1) = x_{2}(k) - \frac{\mu x_{2}(k)}{1 + x_{2}(k)} + \frac{\mu x_{1}(k)}{1 + x_{1}(k)}$ :

$$x_n(k+1) = x_n(k) - \frac{\mu x_n(k)}{1 + x_n(k)} + \frac{\mu x_{n-1}(k)}{1 + x_{n-1}(k)}$$

$$y(k) = \frac{\mu x_n(k)}{1 + x_n(k)}$$

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

TU/e

**Control Framework** 

Approximation model

Validation

Control

Conclusions

Introduction to  $\chi$ 

From real fab to DEM

Effective process times

**U**/e

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# MPC controller design

- Prediction horizon p = 100h
- Control horizon p = 5h
- Control constant over periods of 1h
- Time sampling: 40 steps per 1h

#### Cost function:

$$\min_{u} \sum_{i=0}^{p} ||y(k+i|k) - y_{des}||_{Q}^{2}$$

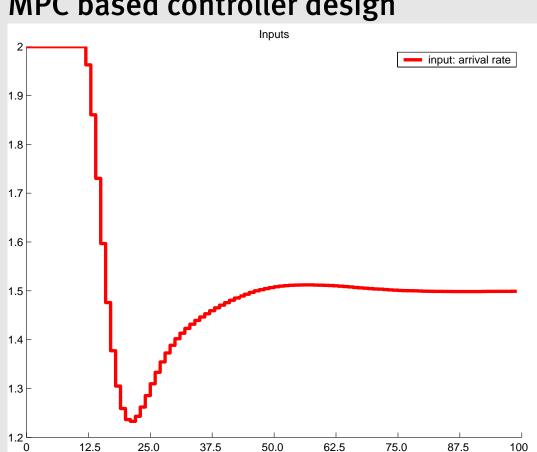
**Constraints:** 

$$0 \leq u(k) \leq 2$$
  $0 \leq \frac{\mu x_i(k)}{1 + x_i(k)} \leq 2$ 

Introduction to  $\chi$ 

From real fab to DEM

Effective process times


**FU/e** 

**Control Framework** 

Approximation model

Validation

Control

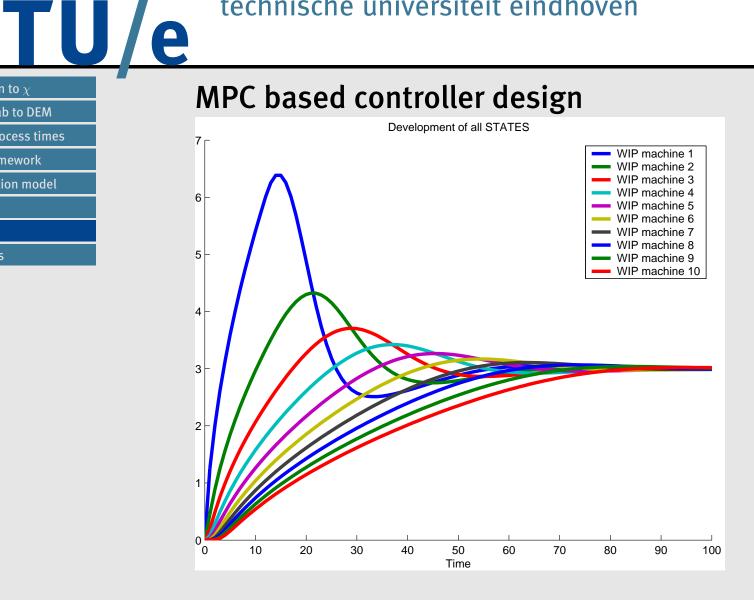


# MPC based controller design

Introduction to  $\chi$ 

From real fab to DEM

Effective process times


Control Framework

Approximation model

Validation

Control

Conclusions



Introduction to  $\chi$ 

From real fab to DEM

Effective process times

IJ

**e** 

**Control Framework** 

Approximation model

Validation

Control

Conclusions

# Conclusions

- Shown how to use  $\chi$  for building DE model.
- EPT can be used to get from real data to simple queue-

ing network model

- Control framework
- Validation of PDE models
  - Transient needs improvement
  - Steady-state for changing variance
- MPC control seems promising