Modeling Manufacturing Systems

From Practice to Theory

Erjen Lefeber

TU/e

29 January 2003

Outline

TU/e

- From measurements to DES model
 - Effective Processing Times (EPT's)
 - Results from Queuing Theory
 - How to measure EPT's
 - Simulation Study
- From DES model to PDE model: some observations
 - Ramping up a wafer fab: cycle time response
 - The effects of control
 - The effects of variability

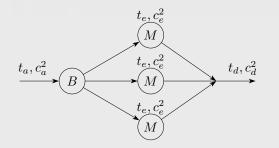
Effective Processing Times

• Why EPT's?

TU/e

- SEMI: Overall Equipment Efficiency (OEE) based on mean value analysis
- Lot of variability present:
 Equipment breakdowns, setups, operator availability, batching, rework, ...
- What is EPT?
 - Time seen by lot from a logistical point of view
 - Includes all time losses due to variability

Results from Queuing Theory



TU/e

• Cycle time (Pollaczek-Khintchine)

$$CT_q = \frac{c_a^2 + c_e^2}{2} \cdot \frac{u^{\sqrt{2(m+1)}-1}}{m(1-u)} \cdot t_e$$

• Linking equation

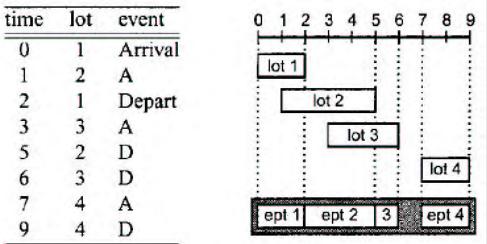
$$c_d^2 = (1 - u^2) \cdot c_a^2 + \frac{u^2}{\sqrt{m}} \cdot c_e^2 + (1 - \frac{1}{\sqrt{m}})u^2$$

How to measure EPT?

TU/e

EPT: Total amount of time a lot *could have been*, or actually was, processed on a machine.

Single machine: FIFO dispatching

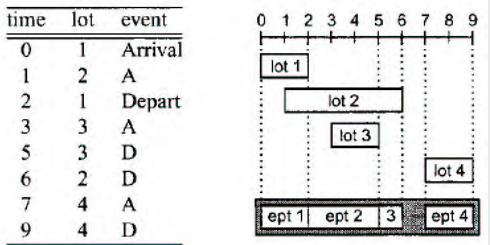


TU/e

How to measure EPT? (continued)

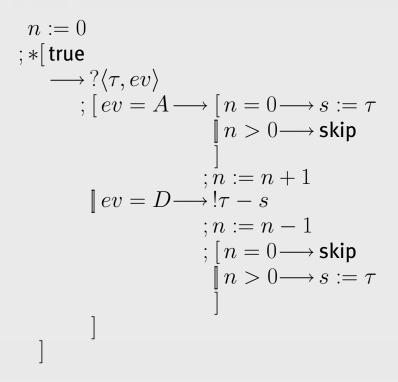
EPT: Total amount of time a lot *could have been*, or actually was, processed on a machine.

Single machine: general dispatching



TU/e

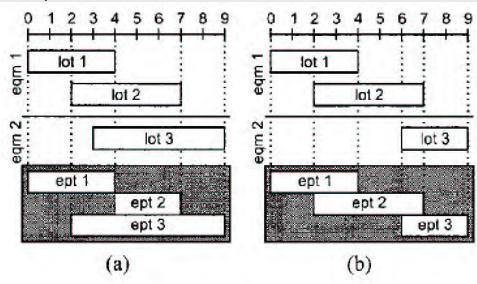
Algorithm (single machine)



Multiple machine case

Multiple machines

TU/e



Example: Unreliable Machines

• Poisson arrival

TU/e

- 2 identical Mach.: $t_0 = 0.8$, $c_0^2 = 0.25$
- Exponential failure/repair. Availability 80%

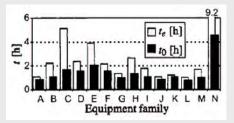
t_f/t_r	r_a	t_e	c_e^2	CT	CT^*
0.8/0.2	1.0	1.000	0.330	1.227	1.230
	1.4	1.000	0.331	1.642	1.653
	1.8	1.000	0.330	3.822	3.839
8.0/2.0	1.0	0.999	1.047	1.315	1.341
	1.4	1.000	1.049	1.968	1.984
	1.8	0.999	1.052	5.192	5.367
16.0/4.0	1.0	0.999	1.844	1.398	1.460
	1.4	1.000	1.844	2.266	2.254
	1.8	1.000	1.849	6.998	6.910

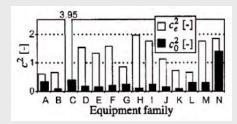
Case study

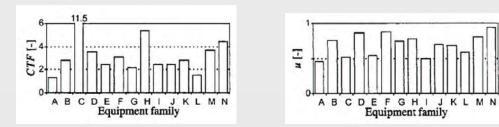
TU/e

Philips Semiconductors

- $ullet \geq$ 400 machines
- over 1.5 million track-in and track-out events







Paper (Best paper award)

J.H. Jacobs, L.F.P. Etman, J.E. Rooda, E.J.J. van Campen. Quantifying operational time variability: the missing parameter for cycle time reduction. *Proceedings of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference*, pages 1–10, 2001.

Ongoing research

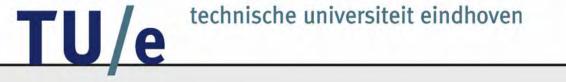
TU

- Cascade equipments
- Finite buffers (blocking/starvation)

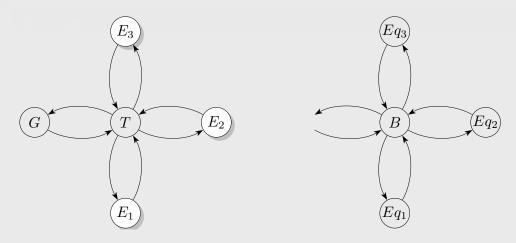
Outline (recalled)

TU/e

- From measurements to DES model
 - Effective Processing Times (EPT's)
 - Results from Queuing Theory
 - How to measure EPT's
 - Simulation Study
- From DES model to PDE model: some observations
 - Ramping up a wafer fab: cycle time response
 - The effects of control
 - The effects of variability



DES Model of wafer fab



- ${\boldsymbol{G}}$ Generator and exit for lots.
- ${\cal T}$ Transporter
- E Machine family
- B Buffer

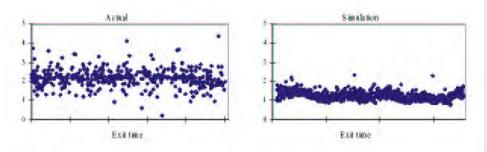
Eq Set of identical machines (either batch or cascade)

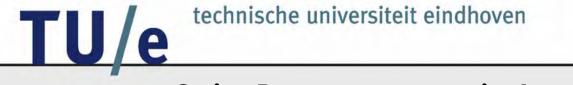
Assumptions and Validation

- Three different process flows (0.5, 0.4, 0.35 μ m)
- Deterministic processing times
- Stochastic machine failures (not during processing)
- Transport times neglected (less than 2 percent)
- No scrap

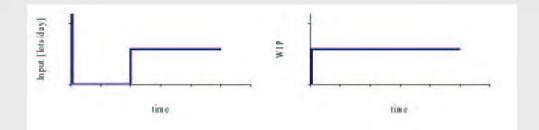
TU/e

- Inspection machines abundant capacity
- Operator behavior not taken into account

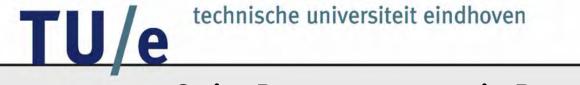




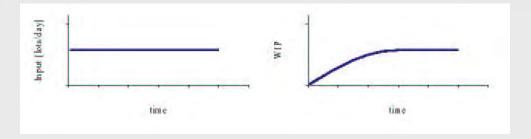
Quiz: Ramp up scenario A



- All WIP in fab at once at t = 0
- Constant WIP

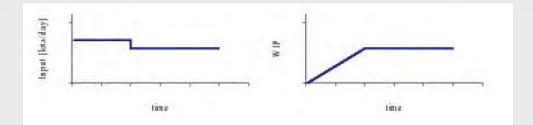


Quiz: Ramp up scenario B



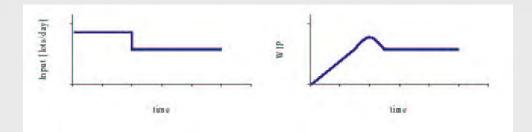
• Release lots at desired output rate

Quiz: Ramp up scenario C

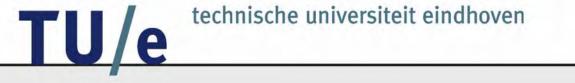


- Constant release rate such that:
- Time fab reaches desired WIP = Time first lots leaves FAB
- Then constant WIP

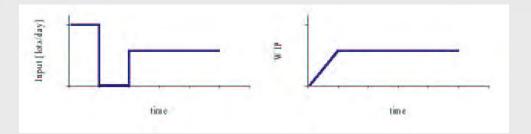
Quiz: Ramp up scenario D



- Higher initial constant rate than C
- Until first lot leaves
- Then release at desired output rate



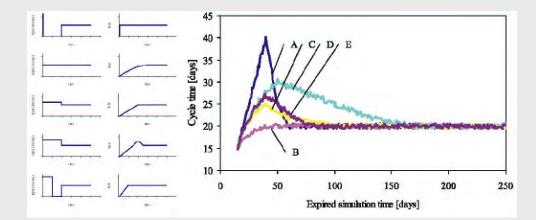
Quiz: Ramp up scenario E



- High release rate until desired WIP reached
- Then constant WIP

TU/e

Answers to the quiz: Response of DES model of fab



The effects of control

TU/e

Consider n identical machines (Exponential: rate μ)

$$\longrightarrow B_1 \longrightarrow M_1 \longrightarrow B_2 \longrightarrow M_2 - - - \rightarrow B_n \longrightarrow M_n \longrightarrow$$

Same system, different inflow-strategy

- Push: (Poisson arrival rate λ)
- CONWIP: (Constant WIP level w)

$$\begin{array}{ccccc} & \mathsf{WIP} & \mathsf{TH} & \mathsf{CT} \\ \mathsf{Push} & \frac{n\lambda}{\mu-\lambda} & \lambda & \frac{n}{\mu-\lambda} \\ \mathsf{Push} & w & \frac{w\mu}{w+n} & \frac{1}{\mu}(w+n) \\ \mathsf{CONWIP} & \frac{(n-1)\lambda}{\mu-\lambda} & \lambda & \frac{n-1}{\mu-\lambda} \\ \mathsf{CONWIP} & w & \frac{w\mu}{w+n-1} & \frac{1}{\mu}(w+n-1) \end{array}$$

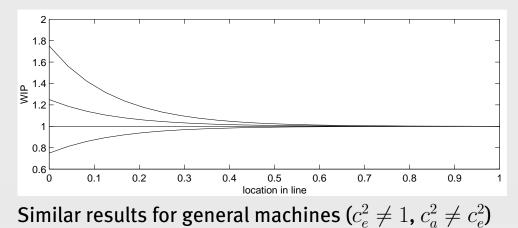
The effects of variability

Push: $\mu = 1$, $\lambda = 0.9$, n = 25

TU

e

- $c_a^2 = 0$ (deterministic arrivals)
- $c_a^2 = 1$ (Poisson arrivals)
- $c_a^2 = 2, 4$ (general arrivals: moderately/highly variable)



Conclusions

TU

- EPT's as tool for cycle time reduction
- EPT's simplify discrete event model
- More variability needs to be included in simulation model
- Issues for PDE models development
 - Ramping up a re-entrant flow line using a nondecreasing wip policy can lead to overshoot in cycle time (policy A,C,E).
 - Applying a release policy derived from PDEmodel should not lead to a new PDE-model to be made.
 - Unequal WIP-distributions should be possible in steady state of PDE model.