
Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008
Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.006

CONTROLLER DESIGN FOR FLOW NETWORKS OF SWITCHED

SERVERS WITH SETUP TIMES: THE KUMAR-SEIDMAN CASE AS AN

ILLUSTRATIVE EXAMPLE

Erjen Lefeber and J. E. Rooda

ABSTRACT

In this paper we consider the control of a reentrant manufacturing system
with setup times, as introduced by Kumar and Seidman. In most literature on
control of a network of servers with setup times, first a policy is introduced and
then the resulting network behavior is analyzed. In manufacturing systems the
network typically is fixed and given a priori. Furthermore, optimal steady state
behavior is desired. Therefore, this paper follows a different approach. First
optimal steady state network behavior is determined, then a feedback controller
is presented which makes the network converge towards this desired steady
state behavior. The resulting controller is a non-distributed controller: each
server needs global state information. For a manufacturing system this is not
a problem, since global information typically is available. Finally it is shown
that a distributed controller (each server needs only local state information)
can also be used to achieve the same result.

Key Words: Hybrid system, network control, distributed control, tracking
control.

I. INTRODUCTION

Reentrant manufacturing systems might show
some unexpected behavior. In [1] it was shown by simu-
lation that even when each server has enough capacity
to serve all jobs, these networks can be unstable, that is,
the total number of jobs in the network explodes as time
evolves. Whether this happens or not depends on the
policy used to control the flows through the network.
In [4] it was shown analytically that using a clearing
policy (serve the queue you are currently serving until
it is empty, then switch to another queue), certain

Manuscript received October 13, 2006; revised September
14, 2007; accepted October 4, 2007.

Both authors are with the Systems Engineering Group,
Department of Mechanical Engineering, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Nether-
lands (e-mail: {A.A.J.Lefeber,J.E.Rooda}@tue.nl).
The authors sincerely thank Joost van Eekelen for providing

the code for the simulations.

networks become unstable, even deterministic systems
with no setup times. In [8] several clearing policies have
been introduced, the so-called clear a fraction (CAF)
policies. It was shown that these policies are stable for a
single server in isolation in a deterministic environment.
Furthermore, it was shown that a CAF policy stabilizes
a multi-server system, provided the network is acyclic.
A network is called acyclic if the servers can be ordered
in such a way that jobs can only move from one server to
a server higher in the ordering. A network is called non-
acyclic if such an ordering is not possible. The example
in [4] shows that there are non-acyclic networks that
can not be stabilized by a CAF policy.

The main reason why CAF policies can fail for
a non-acyclic network is because they spend too long
on serving one type of job. This results in starvation of
other servers, which is a waste of their capacity. Due to
this waste, the effective capacity of these other servers
is not sufficient anymore, resulting in an unstable
system. This observation has led to the development

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

56 Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008

of so-called buffer regulators [3, 9] or gated policies.
The main idea is that each buffer contains a gate,
so the buffer is split into two parts (before and after
the gate). Instead of switching depending on the total
buffer contents, switching is now determined based
on the buffer contents after the gate. As a result, a
server might now leave a buffer earlier, avoiding long
periods of serving one type of job. It has been shown
in [9] that under certain conditions on these regulators
the (possibly non-acyclic) network is stabilized. Since
non-acyclic networks are only unstable under certain
conditions, applying buffer regulators is not always
necessary. Needlessly applying buffer regulators results
in a larger mean number of jobs in the network, which
from a performance point of view is undesired.

In [10, 11] a different approach has been devel-
oped. First, the minimal period is determined during
which the network is able to serve all jobs that arrive
during that period. Given this minimal period, or any
longer period, one can determine how long each server
should serve each step. Next, a distributed controller
is proposed where each server serves its buffers in a
cyclic order until either the buffer becomes empty or
the server has spend the time reserved for serving that
step. If necessary the next setup is prolonged to make
sure that the time reserved for serving a step is fully
used. In [10, 11] it was shown that this policy guar-
antees that all trajectories of the controlled system are
bounded and that for constant arrival rates the behavior
of the network eventually becomes periodic, i.e., regular
behavior is achieved. The policy introduced in [10, 11]
has two disadvantages. First, it is not really a state feed-
back: the current mode of each server has been fixed
a priori, independent of the current state. Second, if
a large number of jobs is in the system initially, the
resulting periodic steady state behavior also contains a
large number of jobs in the system, as no attempt is
made to reduce the number of jobs, which is undesired
from a performance point of view.

The above mentioned references are only a few
of the large amount of papers that have been published
in this area, or related subjects, such as (dynamic) lot
sizing problems and polling models, see also [12] and
references therein. However, most of these papers have
one thing in common: first a policy is proposed, and
then the resulting behavior of the network under this
policy is considered. When performance is considered,
mostly the system behavior is optimized over a family
of considered policies. One strength of existing results
is that they often can be applied to any network and
that stability is guaranteed. However, stability is only
a prerequisite for a good network control policy. It is
usually unclear if the presented policies yield suitable

network performance. In particular, it is not clear how
to obtain desired network behavior.

Instead of having one policy which guarantees
stability for an arbitrary network, we aim at a general
methodology for designing a tailor made policy for
a specific network under consideration, depending on
its desired performance. In particular, if a network is
known a priori (and not subject to change), which
typically is the case for manufacturing systems, this is
a reasonable approach from a control theoretical point
of view. Therefore, we propose an entirely different
way of looking at the problem of controlling a network
of switching servers with setup times. Instead of
starting from a policy and then analyzing the proposed
policy, we start from a priori specified desired network
behavior. This behavior might be optimal, but not
necessarily. Using this desired behavior for the network
under consideration as a starting point, we derive a
policy for this network which guarantees convergence
of the system towards this desired behavior.

This approach enables us to make a distinction
between, on the one hand, the trajectory generation
problem, and, on the other hand, the tracking control
problem. Though the trajectory generation problem
(determining feasible network behavior) is a chal-
lenging problem, the main focus of this paper is on the
tracking control problem. In tracking control typically
two problems are studied: first, full state information is
assumed (state feedback); second, only partial informa-
tion is assumed (output feedback). In [7] we presented
an approach to derive a state feedback controller for an
arbitrary given network and arbitrary feasible behavior
for this network. This approach guarantees regular
behavior for the closed-loop network according to the
desired behavior. As in [10, 11], additional jobs might
remain in the buffers, but the controller resulting from
the approach introduced in [7] outperforms the one
introduced in [10, 11].

The controllers resulting from the approach
introduced in [7] are central controllers (or state-
feedback controllers) which determine for each server
when to switch to what job type, based on global
state information, whereas in certain cases decen-
tralized or distributed controllers (or output-feedback
controllers) are needed. The controllers introduced
in [10, 11] are an example of such a distributed
controller.

In this paper we show, by means of an example,
that this new way of looking at the problem of control-
ling a network of switching servers with setup times,
as introduced in [7], can be used for deriving tailor-
made network controllers which achieve a priori spec-
ified network behavior and can be implemented in a

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

E. Lefeber and J. E. Rooda: Controller Design for Flow Networks of Switched Servers with Setup Times 57

distributed way. The resulting distributed controllers are
different from the distributed controllers so far proposed
in literature.

II. THE KUMAR-SEIDMAN CASE

In [4], Kumar and Seidman presented the manu-
facturing system shown in Fig. 1. A single job-type
is considered which first visits machine A, then
machine B, then machine B again, and finally machine
A again. The successive buffers visited will be denoted
by 1,2,3, and 4, respectively. The constant input
rate � into buffer 1 is 1 job/time-unit, while the
maximal process rates required at the buffers are
�1=1/0.3,�2=1/0.6,�3=1/0.3, and �4=1/0.6,
respectively. Lastly, the times for setting up buffers
1 and 4 at machine A are �41=50 and �14=50, the
times for setting up to buffers 2 and 3 at machine B are
�32=50 and �23=50.

Even though for this system each machine
has enough capacity, i.e., (�/�1)+(�/�4)<1 and
(�/�2)+(�/�3)<1, it has been shown in [4] that since
(�/�2)+(�/�4)>1 and setup times are all positive,
using a clearing policy for both machines results in an
unstable system.

The state of this system is not only given by
the buffer contents x1, x2, x3, and x4, but also by the
remaining setup time at machine A, x A

0 , the remaining
setup time at machine B, x B0 , and the current mode
m=(mA,mB)∈{(1,2), (1,3), (4,2), (4,3)}. We say
that the system is in mode (1,2) when machine A is
processing or setting up for step 1 and machine B is
processing or setting up for step 2. Similar for the other
modes.

The input of this system is given by rates u1≤�1,
u2≤�2, u3≤�3, and u4≤�4, at which respectively
buffers 1, 2, 3, and 4 are being served (a machine
not necessarily has to serve at full rate), as well as
the current activity for machine A, uA

0 ∈{❶,①,❹,④},
and for machine B, uB

0 ∈{❷,②,❸,③}. The activity
❶ denotes setting up for serving step 1, whereas ①
denotes serving step 1. Similarly, the activities for steps
2,3, and 4 can be distinguished.

The dynamics of this system is hybrid. On the one
hand, we have the discrete event dynamics:

x A
0 := �14; mA :=4 if uA

0 =❹ and mA=1

x A
0 := �41; mA :=1 if uA

0 =❶ and mA=4

x B0 := �23; mB :=3 if uB
0 =❸ and mB =2

x B0 := �32; mB :=2 if uB
0 =❷ and mB =3.

In words, if the system is currently in a mode, and
according to the input the current activity becomes “set
up to a different mode”, both the remaining setup time
and current mode change.

On the other hand, we have the continuous
dynamics

ẋ A0 (t)=
⎧⎨
⎩

−1 if uA0 ∈{❶,❹}
0 if uA0 ∈{①,④}

ẋ B0 (t)=
⎧⎨
⎩

−1 if uB0 ∈{❷,❸}
0 if uB0 ∈{②,③}

ẋ1(t)=�−u1(t) ẋ2(t)=u1(t)−u2(t)

ẋ4(t)=u3(t)−u4(t) ẋ3(t)=u2(t)−u3(t).

Furthermore, at each time instant the input is
subject to the constraints u1≥0, u2≥0, u3≥0, u4≥0,
and

uA
0 ∈{❶,❹} u1=0 u4=0

for x A
0 >0

uA
0 ∈{①,❹} u1≤�1 u4=0

for x A
0 =0, x1>0,mA=1

uA
0 ∈{①,❹} u1≤� u4=0

for x A
0 =0, x1=0,mA=1

uA
0 ∈{❶,④} u1=0 u4≤�4

for x A
0 =0, x4>0,mA=4

uA
0 ∈{❶,④} u1=0 u4≤min(u3,�4)

for x A
0 =0, x4=0,mA=4

uB
0 ∈{❷,❸} u2=0 u3=0

for x B0 >0

uB
0 ∈{②,❸} u2≤�2 u3=0

for x B0 =0, x2>0,mB =2

uB
0 ∈{②,❸} u2≤min u3=0

(u1,�2)

for x B0 =0, x2=0,mB =2

uB
0 ∈{❷,③} u2=0 u3≤�3

for x B0 =0, x3>0,mB =3

uB
0 ∈{❷,③} u2=0 u3≤u2

for x B0 =0, x3=0,mB =3.

In words, these constraints say that in case the server
is setting up, no jobs can be served. Furthermore, in
case a setup has been completed, only the job type

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

58 Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008

Fig. 1. The system introduced in [4].

can be processed for which the server has been set up.
This processing takes place at a rate which is at most
�i if jobs of step i are available in the buffer and at
the arrival rate if no jobs of type i are available in the
buffer (i ∈{1,2,3,4}). Also, it is possible to either stay
in the current mode, or to switch to the other mode. In
particular it is possible during a setup to leave that setup
and start a setup to the other type again. The latter setup
is assumed to take the entire setup time.

Having defined the state, input, dynamics and
constraints for the system, we can consider the problem
of controlling this system, i.e., designing an input u
which satisfies the constraints and achieves desired
behavior. But before we can do so we first need to
specify desired behavior.

III. DESIRED PERIODIC BEHAVIOR

As mentioned in the introduction, we do not
want to start from a policy which works for a general
network and analyze the resulting closed-loop behavior,
but given this specific manufacturing system we want
to start from desired system behavior and determine a
feedback controller which makes the system converge
towards this desired behavior. This implies that we
first need to define desired periodic behavior, i.e., we
have to first solve a trajectory generation problem. For
manufacturing systems this would typically be behavior
for which the mean amount of jobs in the system is
minimal, since from Little’s law we know that this
results in the smallest mean flow time (the time a job
spends in the system). More precisely, we would like
to minimize

J = 1

T

∫ T

0
x1(t)+x2(t)+x3(t)+x4(t)dt

over the set of feasible periodic orbits, where T denotes
the period of the periodic orbit under consideration.

A first observation is that the set of feasible peri-
odic orbits is not empty. Note that, even though in [4]

it has been shown that using a clearing policy for both
machines renders the system of Section II unstable, it
has been made clear in [10, 11] and other papers that
this is not a system property, but due to the policy used.
To make the latter more clear, consider machine A.
Each job needs 0.3+0.6=0.9 time-units of processing.
During a cycle of serving both step 1 and step 4, in total
50+50=100 time-units are lost due to setups. There-
fore, during a cycle of 1000 time-units, the 1000 jobs
that arrive can also be processed. The same holds for
machine B (since the parameters of machine B are iden-
tical). These 1000 time-units are also the minimal cycle
period as observed in [11], but a longer time period can
be used as well.

A second observation is that a periodic orbit with
the smallest mean amount of jobs does not necessarily
also have the smallest period, as presented in [2, 5].
Having a longer period in some cases reduces the mean
amount of jobs in the system. At first glance this is coun-
terintuitive. Having a longer period implies not serving
jobs at the highest possible rate. Can this be efficient? It
turns out that a trade-off needs to be made. Since a small
period implies that on average more time is wasted on
setups. So one either has to waste capacity by frequent
switching, or by occasionally not serving at the highest
possible rate.

Since the main focus of this paper is not on the
trajectory generation problem but on the problem of
controlling the network towards given desired periodic
behavior, we simply start from the desired network
behavior as depicted in Fig. 2. It turns out that this
behavior minimizes both the mean amount of jobs in
the system and the mean amount of work in the system,
but the interested reader is referred to [6] for a proof of
these statements.

The desired network behavior can be described as
follows.

• From t=0 till t=350 the system is in mode (1,2).
From t=0 till t=50 both machines are setting up,
from t=50 till t=350 both machines are serving at

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

E. Lefeber and J. E. Rooda: Controller Design for Flow Networks of Switched Servers with Setup Times 59

Fig. 2. Evolution over time of both buffer contents and amount of work for the desired periodic behavior.

full rate. At the end of this mode x1=0, x2=500,
x3=500, and x4=500.

• From t=350 till t=650 the system is in mode (4,2).
From t=350 till t=400 machine A is setting up,
from t=400 till t=650 machine A is serving at full
rate. Machine B is serving at full rate all the time. At
the end of this mode x1=300, x2=0, x3=1000, and
x4=831

3 =50/0.6.
• From t=650 till t=1000 the system is in mode (4,3).
Machine A is serving at full rate all the time. From
t=650 till t=700 machine B is setting up. From
t=700 till t=1000 machine B is serving at full rate.
At the end of this mode x1=650, x2=0, x3=0, and
x4=500.

For this periodic orbit the mean amount of jobs in
the system equals 1350 and the mean amount of work
equals 1515 time-units. Notice that for the desired
periodic orbit the system never is in mode (1,3).
Furthermore, the largest amount of work in the system
is reached at t=50, in mode (1,2). Finally, the above
mentioned description of the desired behavior is not a
policy yet.

IV. NON-DISTRIBUTED FEEDBACK

In the previous section we presented desired
periodic behavior for the manufacturing system intro-
duced in Section II. In [6] it has been shown that
for the periodic orbit as depicted in Fig. 2, both the
mean amount of jobs and the mean amount of work
in the system is minimal. In particular this implies
that the mean flow time, i.e. the time a job spends in
the system, is minimal. Given this desired periodic
behavior, we next want to have a feedback controller
which makes the manufacturing system introduced in
Section II converge towards this desired behavior from
any initial condition. Assuming we are in a manufac-

turing setting, global information is available, which in
particular implies we do not have to restrict ourselves
to distributed controllers. A non-distributed controller
can be implemented relatively easily.

In [7] we introduced an approach for deriving
a feedback controller from a given desired periodic
orbit for arbitrary networks of switching servers with
setup times. This approach guarantees convergence
similar to the desired periodic orbit. However, it might
be that some buffers always contain a fixed additional
number of jobs, compared to the desired periodic orbit.
Something similar holds for the controllers presented in
[10, 11], but the controller that follows from applying
the ideas in [7] results in smaller additional amount of
jobs in the system.

Before presenting the controller, we first consider
the desired behavior as depicted in Fig. 2. The system
cyclically visits the modes (1,2), (4,2), and (4,3). In
particular the system does not visit mode (1,3). Similar
to the controller presented in [7] we therefore let the
feedback be such that the system cyclically visits the
modes (1,2), (4,2), and (4,3). If the system happens
to be initially in mode (1,3), we switch to mode (1,2),
since the largest amount of work in the system is reached
in mode (1,2), cf. [7].

Next, we need to determine when to leave each
mode. Consider mode (1,2) of the desired peri-
odic orbit. In this mode, only contents of buffer 1
decreases and reaches the value 0. Buffers 2 and 3
both increase. Since machine B serves from buffer 2
to buffer 3, these buffers can be considered together.
Both buffers increase until x2+x3=1000. There-
fore, the feedback leaves mode (1,2) when x1=0
and x2+x3≥1000. Notice that it might happen that
machine A needs to continue serving buffer 1 at the
arrival rate whenever x1=0 and x2+x3<1000. Simi-
larly, when x1= x2=0 and x3<1000, machine B might
also need to continue serving buffer 2 at the arrival
rate.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

60 Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008

In mode (4,2) the contents of both buffer 2
and buffer 4 decreases, until x2=0 and x4=831

3 ,
respectively. The contents of both buffer 1 and buffer 3
increases, until x1=300 and x3=1000, respectively.
Notice that by staying in mode (4,2) it is not possible
for x3 to become arbitrarily large. Therefore, the feed-
back leaves mode (4,2) when x2=0, x4≤831

3 , and
x1≥300. All three conditions need to be met. Therefore,
it might be required for machine A or machine B to
idle.

Similarly, the feedback leaves mode (4,3) when
both x3=0 and x1≥650. Again, it might be required for
machine A or machine B to idle.

Notice that the condition on x1 for leaving mode
(4,2) and mode (4,3) are automatically fulfilled once
the system has been in mode (1,2). Therefore, we drop
these conditions in the feedback.

The above can be summarized as follows:

Proposition 1. Consider the system as depicted in Fig.
1 in closed-loop with the following feedback:
• If initially in mode (1,3), switch to mode (1,2).
• If in mode (1,2), stay in this mode until both x1=0

and x2+x3≥1000. Then switch to mode (4,2). Both
machines serve at the highest possible rate (which
might be the arrival rate).

• If in mode (4,2), stay in this mode until both x2=0
and x4≤831

3 . Then switch to mode (4,3). Both
machines serve at the highest possible rate (which
might be 0).

• If in mode (4,3), stay in this mode until x3=0. Then
switch to mode (1,2). Both machines serve at the
highest possible rate (which might be 0).

Then the resulting closed-loop system converges
towards the behavior as depicted in Fig. 2.

Proof. Let t (k)12 denote the time at which mode
(1,2) is entered for the kth time (k≥1), and let
(x (k)

1 , x (k)
2 , x (k)

3 , x (k)
4) denote the buffer contents at t (k)12

for buffers 1, 2, 3, and 4, respectively. Let t (k)42 and t (k)43
denote the moment at which mode (4,2) and mode
(4,3) is entered, respectively, and define the durations
of these modes as �(k)

12 = t (k)42 − t (k)12 , �
(k)
42 = t (k)43 − t (k)42 , and

�(k)
43 = t (k+1)

12 − t (k)43 .
It needs to be shown that

lim
k→∞(x (k)

1 , x (k)
2 , x (k)

3 , x (k)
4)=(650,0,0,500). (1)

A first observation is that at t= t (k)43 we have x2=0
and x3≥1000, since in mode (1,2) at least 1000 jobs
are processed by machine A and in mode (4,2) buffer 2

is emptied. As a result, at t= t (k+1)
12 we have x (k+1)

2 =0,

x (k+1)
3 =0, x (k+1)

4 ≥500.

A second observation is that �(k+1)
42 ≥300 (since

x (k+1)
4 ≥500), and �(k)

43 ≥350 (since machine B needs to
process at least 1000 jobs and requires a setup).

From these observations it follows that without
loss of generality we can assume x (k)

1 ≥650, x (k)
2 =0,

x (k)
3 =0, x (k)

4 ≥500 by considering k≥2. Under these

assumptions we would like to determine x (k+1)
1 and

x (k+1)
4 .

During mode (1,2), first both machines need to be
set up, which takes 50 time-units. At t (k)12 +50 buffer 1

contains x (k)
1 +50 jobs. If machine A serves at full rate,

x1 effectively reduces at a rate of (1/0.3)−1=7/3
jobs/solidus time-unit. Therefore, clearing buffer 1
takes 3

7 (x
(k)
1 +50), during which 10

7 (x (k)
1 +50) jobs

are being processed by machine A. Notice that since
x (k)
1 ≥650 also 1000 jobs have been processed, so

�(k)
12 =50+ 3

7 (x
(k)
1 +50). Also, at t (k)42 = t (k)12 +�(k)

12 we

have x2= x3= 5
7 (x

(k)
1 +50).

Next, from the condition on x2 we obtain
�(k)
42 ≥ 3

7 (x
(k)
1 +50), and from the condition on x4 we

obtain �(k)
42 ≥ 3

5 x
(k)
4 , so �(k)

42 = max(37 (x
(k)
1 +50), 35 x

(k)
4).

At t43= t (k)42 +�(k)
42 we have x3= 10

7 (x (k)
1 +50), so

�43=50+ 3
7 (x

(k)
1 +50).

Since x4=0 at t43+50 we get x (k+1)
4 = 5

7 (x
(k)
1 +

50). Furthermore, x (k+1)
1 =�(k)

42 +�(k)
43 = max(37 (x

(k)
1 +

50), 35 x
(k)
4)+50+ 3

7 (x
(k)
1 +50).

To summarize, we have for k≥2:

x (k+1)
1 =max

(
3

7
(x (k)

1 +50),
3

5
x (k)
4

)

+50+ 3

7
(x (k)

1 +50) (2a)

x (k+1)
2 = 0 (2b)

x (k+1)
3 = 0 (2c)

x (k+1)
4 = 5

7
(x (k)

1 +50). (2d)

Using this map we need to show that (1) holds.
To simplify analysis of (2), define y(k)

1 = 1
7 (x

(k)
1 +

50)−100 and y(k)
4 = 1

5 x
(k)
4 −100, or x (k)

1 =7y(k)
1 +650,

and x (k)
4 =5y(k)

4 +500. Then using (2) we obtain for

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

E. Lefeber and J. E. Rooda: Controller Design for Flow Networks of Switched Servers with Setup Times 61

k≥2:

y(k+1)
1 = 3

7
max(y(k)

1 , y(k)
4)+ 3

7
y(k)
1 yB1 ≥0 (3a)

y(k+1)
4 = y(k)

1 yB4 ≥0. (3b)

From (3a) we have

0≤y(k+1)
1 ≤6

7
max(y(k)

1 , y(k)
4).

Also

0≤ yk+2
1 ≤6

7
max

(
6

7
max(y(k)

1 , y(k)
4), y(k)

1

)

≤ 6

7
max(y(k)

1 , y(k)
4).

Therefore,

0≤max(yk+2
1 , yk+2

4)≤6

7
max(y(k)

1 , y(k)
4)

from which we can conclude that

lim
k→∞ y(k)

1 = lim
k→∞ y(k)

4 =0,

which shows that (1) holds. �

Remark 2. Proposition 1 only claims convergence
towards the steady state cycle depicted in Fig. 2. No
claims are made concerning optimal transient behavior.

V. DISTRIBUTED CONTROLLER
IMPLEMENTATION

The controller derived in the previous section is
a non-distributed controller. Machine A needs informa-
tion about the state at machine B to determine what
to do, and machine B requires information about the
state at machine A. Since we consider a manufacturing
problem, global information is available and a non-
distributed controller can be implemented in a rather
straightforward way.

Nevertheless, in this case the controller can be
implemented in a distributed way. That is, such that
machine A does not require information about the state
at machine B and machine B does not require informa-
tion about the state at machine A. This becomes clear
from the proof of Proposition 1.

Notice that we know from the proof of Propo-
sition 1 that for k≥2 when machine B switches
from serving step 2 to serving step 3, x2=0 and
x2+x3≥1000. That is, buffer 2 needs to be empty,
and machine B should have served at least 1000 jobs

(for k≥2). Furthermore, notice that before switching
from mode (4,2) to mode (4,3) it might happen that
machine B needs to idle (in case x4 is still too large).
However, instead of first idling and then serving step 3,
machine B can also first switch and serve step 3 and
then idle for the same duration. As long as machine A
stops serving step 4 at the same time as in the feedback
of Proposition 1, the mapping (2) still holds. So as
long as the behavior of machine A is still according to
that specified by the feedback of Proposition 1 we can
implement the following controller for machine B:
• Serve step 2 at the highest possible rate (which might
be at the arrival rate or even idling) until both x2=0
and at least 1000 jobs have been served. Then switch
to step 3.

• Serve step 3 at maximal rate until x3=0. Then switch
to step 2.

It remains to determine a controller for machine A.
As mentioned above, this controller needs to make sure
that, after a finite transient, the overall system behavior
still satisfies mapping (2). Notice that in this mapping
only x1 and x4 play a role. This enables us to come
up with a controller for machine A. From the proof
of Proposition 1 we know that, for k≥2, during mode
(1,2) machine A serves x̄ (k)

1 = 10
7 (x (k)

1 +50) jobs. From
(2d) we know that after machine A has served step 4,
machine B is empty and 1

2 x̄
(k)
1 jobs remain in buffer 4.

At the time machine A starts serving step 4, buffer 4
contains x (k)

4 jobs. From this it follows that machine A

has served x (k)
4 + x̄ (k)

1 − 1
2 x̄

(k)
1 = x (k)

4 + 1
2 x̄

(k)
1 jobs. There-

fore, we can implement the following controller for
machine A:
• Serve step 1 at the highest possible rate (which might
be at the arrival rate) until both x1=0 and at least
1000 jobs have been served. Then switch to step 4.
Let x̄1 denote the number of jobs served.

• Let x̄4 denote the number of jobs in buffer 4. Serve
x̄4+ 1

2 x̄1 jobs from buffer 4. Then switch to step 1.
The above can be summarized in the following.

Proposition 3. Consider the system as depicted in Fig.
1 in closed-loop with the following feedback:
• Controller for machine A:

◦ If serving step 1, continue until both x1=0 and at
least 1000 jobs have been served. Then switch to
step 4. Let x̄1 be the number of jobs served during
this mode.

◦ Let x̄4 denote the number of jobs in buffer 4
when the setup to serving step 4 has completed. If
serving step 4, continue until x̄4+ 1

2 x̄1 jobs have
been served. Then switch to step 1.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

62 Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008

• Controller for machine B:
◦ Serve step 2 at the highest possible rate (which
might be at the arrival rate or even idling) until
both x2=0 and at least 1000 jobs have been served.
Then switch to step 3.

◦ Serve step 3 at maximal rate until x3=0. Then
switch to step 2.

Then the resulting closed-loop system converges
towards the behavior as depicted in Fig. 2.

Proof. Notice that the cycle for machine B always takes
at least 1000 time-units, since at least 1000 jobs need to
be served by each step during the cycle. First, assume
that the cycle at machine B repeatedly takes exactly
1000 time-units. In that case machine A also takes a
period of 1000 time-units. Furthermore, serving step 1
takes 300 time-units and serving step 4 takes 600 time-
units, which implies that buffer 4 contains 500 jobs
when machine A starts serving step 4. This implies that
the system operates according to the desired periodic
orbit.

As soon as the cycle for machine B takes strictly
more than 1000 time-units, machine B will synchronize
with machine A, cf. Section III, that is, after a finite tran-
sient, x2= x3=0 and machine B is waiting for jobs to
arrive from machine A. After this transient, machine A
guarantees that (2a) holds again, which guarantees (1).

�

VI. SIMULATION EXPERIMENTS

To support our claims we performed several simu-
lations in which we compared the distributed controller
presented in the previous section with the controller
proposed in [11]. We chose the parameters of the latter
controller according to the desired periodic orbit, i.e.,
this controller is able to stay on the desired periodic
orbit once the system is on it.

In the first simulation we started with an empty
system, i.e. x1= x2= x3= x4=0, where we initiated the
controllers for machine A and B in “serving step 1” and
“serving step 2”, respectively. The resulting responses
of the controlled systems are given in Fig. 3 for both
controllers.

In Fig. 3 we see that the controller proposed in [11]
achieves regular behavior, as claimed in [11]. Further-
more, we see that buffer 1 is never emptied, resulting
in a larger mean number of jobs in the system. For
the controller of Proposition 3 we obtain convergence
towards the desired periodic orbit. Notice that the total
number of jobs oscillates between 1150 at the end of

mode (4,3) and 1550 at the time the system starts
serving step 4, as should be the case.

In the second simulation we do not start with
an empty system, but with initially 1000 jobs in
each buffer, i.e. x1= x2= x3= x4=1000, where the
controllers were initiated as in the first simulation. The
resulting responses of the controlled systems are given
in Fig. 4 for both controllers.

In Fig. 4 we clearly see the focus on regular
behavior for the controller introduced in [11]. None
of the buffers is cleared and the mean amount of
jobs in the system is not reduced. However, the
controller presented in Proposition 3 is able to
reduce the number of jobs in the system and makes
the system converge again to the desired optimal
behavior.

Our third simulation experiment is a discrete event
simulation. First of all, the hybrid fluid model as intro-
duced in Section II has been replaced by its discrete
event counterpart. Second, all process times and setup
times are made stochastic by drawing them from inde-
pendent exponential distributions. That is, process times
for step 1 are drawn from an exponential distribution
with mean 0.3, process times for step 2 are drawn from
an exponential distribution with mean 0.6, setup times
for switching from step 1 to step 4 are drawn from
an exponential distribution with mean 50, etc. Again
we initiated the system in x1= x2= x3= x4=1000, but
this time assuming that the setups to serving step 1
and step 2 have already been completed. Implementing
the controller of Proposition 3 in this stochastic setting
is rather straightforward. The controller introduced
in [11], however, requires predetermined maximum
durations. Therefore, we considered a preemptive
resume policy. That is, in case the machine has not yet
completed a job but it is time to switch, the machine
stops serving the job and completes this service as
soon as the machine has switched back. The resulting
responses of the controlled systems in this stochastic
discrete event environment are given in Fig. 5 for both
controllers.

By controlling the seeds of the random generator
we made sure to have a fair comparison between both
controllers. The successive inter arrival times are the
same for both experiments, as are the successive process
times at each machine and the successive setup times.
Looking at the results depicted in Fig. 5, we can make
similar remarks to those made for the second simu-
lation. Due to the stochasticity, we see some varying
behavior over time. The controller introduced in [11]
keeps the number of jobs in the system between 4000
and 6000, whereas the controller of Proposition 3 keeps

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

E. Lefeber and J. E. Rooda: Controller Design for Flow Networks of Switched Servers with Setup Times 63

Fig. 3. The buffer contents and total number of jobs for a deterministic system initiated in (x1, x2, x3, x4)=(0,0,0,0) for both the
distributed controller proposed in [11] and the distributed controller of Proposition 3.

Fig. 4. The buffer contents and total number of jobs for a deterministic system initiated in (x1, x2, x3, x4)=(1000,1000,1000,1000)
for both the distributed controller proposed in [11] and the distributed controller of Proposition 3.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

64 Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008

Fig. 5. The buffer contents and total number of jobs for a stochastic system initiated in (x1, x2, x3, x4)=(1000,1000,1000,1000)
for both the distributed controller proposed in [11] and the distributed controller of Proposition 3.

the number of jobs in the system between 1500 and
2500.

VII. CONCLUSIONS

We considered the controller design for networks
of switching servers with setup times, e.g., manufac-
turing systems or urban road networks (traffic light
control). Control of these networks is difficult, since
using controllers that are stable for a server in isolation
might render the network unstable. So far, in literature,
most people first propose a policy, and then study the
resulting behavior of the network under this policy.

In this paper we propose an entirely different way
of looking at the problem of controlling a network
of switching servers with setup times. Instead of
starting from a policy and then analyzing the proposed
policy, we start from a priori specified desired network
behavior. Using this desired behavior for the network
under consideration as a starting point, we derive a
policy which guarantees convergence of the system
towards this desired behavior. Though the policy is
tailor-made for both the network under considera-
tion and its desired behavior, we aim for a general

methodology that is applicable to arbitrary networks and
arbitrary feasible network behavior.

As an illustration we considered the reentrant
system introduced by Kumar and Seidman. Since we
are interested in optimal network behavior, instead of
proposing a control policy for this reentrant network
and analyzing the resulting network behavior, we first
determined the optimal behavior for this network and
then determined a policy which guarantees convergence
towards this optimal behavior.

The resulting controller was a non-distributed
controller, i.e., each machine needs to have global
information for determining when to switch. Since we
are in a manufacturing setting, this can easily be imple-
mented. However, it turned out that this non-distributed
controller can be implemented in a distributed way,
i.e., each machine only requires local information for
determining when to switch. We showed that these
distributed controllers also guarantee convergence of
the system towards the desired behavior. The proposed
distributed controllers have been implemented success-
fully in a discrete event simulation study containing
stochasticity.

Most of the literature on distributed control on
networks starts from a policy which works for an
arbitrary network and then analysis its performance.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

E. Lefeber and J. E. Rooda: Controller Design for Flow Networks of Switched Servers with Setup Times 65

This is a good approach for networks that are unknown
or frequently subject to change. However, for networks
that are fully known, and not subject to change, a
different approach should be used. In this paper, we
showed that it is possible to come up with distributed
controllers that have been designed for a particular
network in order to arrive at optimal network behavior.
The resulting distributed controllers are different for
each server and take into account knowledge of the
network topology. Furthermore, the controllers do not
fit in the class of standard controllers, such as clearing,
gated, or k-limited policies.

The results in this paper show that tailor-made
design of distributed controllers is possible, but still a
lot of work remains to be done. An important question
that we are currently addressing relates to the notion of
observability: under what conditions is it possible for
a workstation to reconstruct the global network state
based on local observations only. As it currently seems,
this observability is mainly possible for non-acyclic
networks. For acyclic networks the upstream servers
are not able to reconstruct the state at the downstream
servers. Fortunately, as mentioned in the introduc-
tion, distributed policies usually have no difficulty in
stabilizing the system for acyclic networks. However,
non-acyclic networks are precisely the ones for which
distributed controllers have difficulties in stabilizing the
system. Using this notion of observability one should
be able to come up with new distributed controllers
that both stabilize the network and achieve desired
network behavior, as shown in this paper by means of
an example.

REFERENCES

1. Banks, J. and J. G. Dai, “Simulation studies of
multiclass queueing networks,” IIE Trans., Vol. 29,
pp. 213–219 (1997).

2. Eekelen, J. A. W. M. v., E. Lefeber and J. E. Rooda,
“Feedback control of 2-product server with setups
and bounded buffers,” Proc. Amer. Contr. Conf.,
Minneapolis, MN, USA (2006).

3. Humes, C., Jr, “A regulator stabilization technique:
Kumar Seidman revisited,” IEEE Trans. Automat.
Contr., Vol. 39, No. 1, pp. 191–196 (1994).

4. Kumar, P. R. and T. I. Seidman, “Dynamic
instabilities and stabilization methods in distributed
real-time scheduling of manufacturing systems,”
IEEE Trans. Automat. Contr., Vol. 35, No. 3, pp.
289–298 (1990).

5. Lan, W. M. and T. L. Olsen, “Multiproduct systems
with both setup times and costs: Fluid bounds and

schedules,” Operations Research, Vol. 54, No. 3,
pp. 505–522 (2006).

6. Lefeber, E. and J. E. Rooda, “Control of a
reentrant manufacturing system with setup times:
The Kumar-Seidman case,” SE Report 2006-04,
Eindhoven University of Technology, Systems
Engineering Group, Department of Mechanical
Engineering, Eindhoven, The Netherlands (2006),
Available at http://se.wtb.tue.nl/sereports.

7. Lefeber, E. and J. E. Rooda, “Controller design of
switched linear systems with setups,” Physica A,
Vol. 363, No. 1 (2006).

8. Perkins, J. and P. R. Kumar, “Stable, distri-
buted, real-time scheduling of flexible manufac-
turing/assembly/disassembly systems,” IEEE
Trans. Automat. Contr., Vol. 34, No. 2, pp. 139–148
(1989).

9. Perkins, J. R., C. Humes, Jr and P. R. Kumar,
“Distributed scheduling of flexible manufacturing
systems: Stability and performance,” IEEE Trans.
Robot. Automat., Vol. 10, No. 2, pp. 133–141
(1994).

10. Savkin A. V., “Regularizability of complex switched
server queueing networks modelled as hybrid
dynamical systems,” Syst. Contr. Lett., Vol. 35, pp.
291–299 (1998).

11. Savkin, A. V., “Optimal distributed real-time
scheduling of flexible manufacturing networks
modeled as hybrid dynamical systems,” Proc. 42nd
Conf. Decis. Contr., Honolulu, Hawaii, USA, pp.
5468–5471 (2003).

12. Takagi, H., “Analysis and application of polling
models,” in: G. Haring, C. Lindemann and M.
Reiser, Eds, Performance Evaluation: Origins and
Directions, Springer: Berlin, Vol. 1769 of Lecture
Notes in Computer Science, pp. 423–442 (2000).

Erjen Lefeber received the M.Sc.
degree in applied mathematics
in 1996 and the Ph.D. degree
in tracking control of nonlinear
mechanical systems in 2000,
both from the University of
Twente, Enschede, The Nether-
lands. Since 2000, he has been
an assistant professor in the
Systems Engineering Group of the
Department of Mechanical Engi-
neering at Eindhoven University of

Technology, Eindhoven, The Netherlands. His current
research interests include modeling and control of
manufacturing systems.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

66 Asian Journal of Control, Vol. 10, No. 1, pp. 55 66, January 2008

J.E. Rooda received the M.Sc.
degree from the Wageningen
University of Agriculture Engi-
neering and the Ph.D. degree from
the Twente University of Tech-
nology, The Netherlands. Since
1985 he is professor of (Manu-
facturing) Systems Engineering
at the Department of Mechan-
ical Engineering of Eindhoven
University of Technology, The

Netherlands. His research fields of interest are modeling
and analysis of manufacturing systems. His interest
is especially in control of manufacturing lines and in
supervisory control of manufacturing machines.

q 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

