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Modeling and Control of a Manufacturing Flow Line
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Abstract—This brief deals with a control framework for
manufacturing flow lines. For this framework, a continuous
approximation model of the manufacturing system is required,
which is computationally feasible and able to accurately describe
the dynamics of the system (both throughput and flow time).
Often used models, such as discrete-event models and flow models,
fail to meet these specifications: the use of discrete-event models
may lead to intractably large control problems, while flow models
do not accurately describe the system dynamics. Therefore, we
consider here a relatively new class of models for the description
of manufacturing flow lines, namely partial differential equation
(PDE)-models, which seems to meet the required specifications.
However, for the few “manufacturing” PDE-models that have been
introduced in literature so far, the accuracy has not been validated
yet. In this brief, we, therefore, present a validation study on three
of these PDE-models available from literature, which shows that
there is a need for more accurate PDE-models. Furthermore, we
propose to use one of these PDE-models for the design of a model
predictive controller (MPC-controller), which is to be applied in
closed loop with a discrete-event manufacturing flow line. For two
considered tracking problems, the resulting MPC-controller is
shown to outperform a classical push strategy.

Index Terms—Control, discrete-event system, manufacturing
flow line, model predictive control (MPC), partial differential
equation (PDE), production control, production systems, tracking.

I. INTRODUCTION

THE CONTROL of discrete-event manufacturing systems
has been a field of interest for several decades. Starting

from simple push and pull strategies (such as material require-
ments planning (MRP), enterprise resources planning (ERP),
and just-in-time (JIT), see, e.g., [1]), more and more advanced
control techniques have been introduced. The supervisory con-
trol theory was introduced in 1987 by Ramadge and Wonham
[2], [3]. This theory, which is based on a discrete-event descrip-
tion of the manufacturing system, has been extended up to now
by several authors, see, e.g., [4]–[8]. However, when it comes to
the control of large manufacturing systems (or networks of such
systems), supervisory control is not very suitable due to the high
level of detail they deal with, which causes the corresponding
control problem to grow intractably large. Control strategies for
manufacturing systems using so-called flow models (see, e.g.,
[9]–[12]), on the other hand, do not suffer from this problem be-
cause they deal with a smaller level of detail, i.e., long-term time
scales and average product flows. Although these flow models
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Fig. 1. Control framework for a discrete-event manufacturing system.

can be controlled in various ways, they do not give an accurate
description of the dynamics of a manufacturing system. They
are only throughput oriented, whereas flow time (also referred to
as cycle time or throughput time) also plays an important role in
the manufacturing industry. The relation between flow time and
throughput is absent in the flow models, which causes unnat-
ural behavior. For example, if lots are fed into an initially empty
manufacturing system, according to flow models lots will imme-
diately leave the system, whereas in practice at least some delay
(production time) is present between the entering and leaving of
lots.

It is only recently that the class of partial differential equation
(PDE)-models has been introduced for the description of man-
ufacturing systems [13]–[15]. These models, which describe
the average flow of products through a manufacturing line as a
1-D continuous flow, can provide flow time data in addition to
throughput data, for both transient and steady state, which gives
them an advantage over the earlier mentioned flow models.
Up to now, however, the PDE-models have not been validated
with discrete-event systems and, therefore, the accuracy of
throughput and flow time data has not yet been proven.

The contribution of this brief is two-fold. In the first place, we
present three currently available “manufacturing” PDE-models
and validate them using a discrete-event model, in order to in-
vestigate the accuracy of this type of model for the description of
manufacturing systems. In the second place, we use one of these
PDE-models for the design of a controller that can be applied
in closed loop with the discrete-event manufacturing system.
Hereto, we make use of a control framework [16] (see Fig. 1),
which is similar to the hierarchical control framework presented
in [9]. In the framework, (see Fig. 1) the desired manufacturing
system is represented by a discrete-event model. For the design
of the controller for this discrete-event model, a continuous ap-
proximation model is used in the framework. In our case, this
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will be a PDE-model. Finally, the framework contains two con-
version blocks for the connection between the controller and the
discrete-event model. One conversion block translates the con-
trol signal into input events for the discrete-event system, the
other conversion block translates output data from the system
into suitable input for the controller. In order to validate the
PDE-models and investigate the performance of the presented
control framework, a simple manufacturing flow line has been
studied in this research. Although various other types of manu-
facturing systems occur in practice, this simple flow line is an
interesting starting point to gain insight into the applicability
of PDE-models in the modeling and control of manufacturing
systems.

The remainder of this brief is organized as follows. In
Section II, we start with the presentation and validation of
three currently available PDE-models used for the description
of a manufacturing flow line. Then, in Section III, we use one
of these PDE-models to design a controller. After testing this
controller on the PDE-model, we describe the design of the
signal conversions that are required to connect the controller
to the discrete-event system. In Section IV, we consider the
closed-loop controlled discrete-event system and evaluate its
performance by means of simulation. Section V concludes this
brief.

II. MODELING AND VALIDATION

In this section, first, three PDE-models available for de-
scribing a manufacturing flow line are presented. Then, the
experiments used for validation of these PDE-models are dis-
cussed. Finally, the results of the validation study are presented
and evaluated.

A. PDE-Models

The three considered PDE-models used for the description of
a manufacturing flow line are all based on mass conservation.
For a manufacturing line, this implies that every lot that enters
the line should eventually come out. In order to describe the
progress of lots through the line, the variable is defined as the
position (or degree of completion) of a lot, with denoting
the entrance of raw materials in the line and the exit of
finished goods. Now, density (number of lots per unit of ),
flux (number of lots that pass by per unit of time), and velocity

per unit of time) are defined as variables that vary with
time and position , so that the mass conservation law can be
written as

(1)

in which the flux is given by

(2)

The total work-in-process (WIP) in a manufacturing line is
related to the density according to .

In addition to the mass conservation law, the models include
an equation that describes the relation between the velocity of
a lot and the density of lots in the line, which is different for
each of the considered models. These relations, however, all

have in common that they are based on the steady-state relations
of an queuing system (see, e.g., [17]), which means
that, for an exponentially distributed manufacturing flow line
in steady state, the PDE-models give an exact description of
the throughput and flow time. Therefore, during the validation
study, we mainly focus on the transient phase. Before we come
to this point, however, first the three PDE-models are presented.

Model 1 (Armbruster et al. [14]): This model consists of (1)
and (2) and a relation defining the velocity as a function of the
total WIP, the workstation’s process rate and the number of
identical workstation in series

(3)

This relation is constructed as follows. In steady state, the WIP
is homogeneously distributed over the line, i.e., in front of each
workstation there are on average lots. A new lot that ar-
rives at a workstation thus is expected to leave this workstation
after units of time. For the line with worksta-
tions the expected flow time is, therefore, , and
the velocity . Note that for this model the velocity
does not depend on and thus is uniform over the whole man-
ufacturing line for all .

Model 2 (Armbruster et al. [14]): This model consists of (1)
and (2), but here the development of the velocity in position and
time is described by a second PDE, representing the momentum
conservation law without diffusion

(4)

Furthermore, the boundary condition for (4) is defined as

(5)

This boundary condition is chosen in such a way that it satisfies
the queuing relations if the system is in steady state.

Model 3 (Lefeber [15]): This model is composed of (1) and
(2) and a velocity relation that depends on the density

(6)

This velocity-density relation is similar to (3), only here the ve-
locity of a lot depends on the local density of lots instead of the
total WIP in the line.

B. Validation Experiments

For the presented PDE-models, we performed a validation
study using a discrete-event model as the validation model. The
goal of this validation study was to examine the accuracy of the
throughput and flow time data (in transient and steady state) gen-
erated by the three considered PDE-models. In this subsection,
we describe the various aspects of the validation process. The
results of the validation study are presented in Section II-C.

The manufacturing system we considered for the validation
study consists of ten identical workstations in series, each work-
station consisting of a buffer and a machine. The buffer has
infinite capacity and uses a first-in first-out (FIFO) policy. In
the machine, lots are processed one by one with a process time
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which is exponentially distributed with a mean of 0.5 h.
Furthermore, lots are fed into the system according to a Poisson
process with an arrival rate .

Using the described manufacturing line, we performed two
types of experiments in order to validate the PDE-models: ramp
up and ramp down experiments. During a ramp up experiment,
lots are fed into the initially empty line using a fixed arrival rate

. Once the line reaches steady state (i.e., when the mean flow
time and throughput deviate less than 1% from the steady-state
value) the experiment is ended. We performed four different
ramp up experiments, using, respectively, the arrival rates:

, , and 1.9 lots/h. For the ramp down
experiments, we assumed the system to initially be in steady
state. Starting from this initial state, the arrival rate is instanta-
neously decreased to . Once steady state is reached, the
experiment is ended. We performed four different ramp down
experiments, using different initial steady states, corresponding,
respectively, to the arrival rates: , and

1.9 lots/h.
During the validation study, we used a discrete-event model

of the manufacturing flow line as the validation model, since
this is an accurate and well-accepted modeling technique in the
analysis of manufacturing systems. The discrete-event model
was constructed using , a specification language developed at
the Eindhoven University of Technology [18].

The PDE-models have been solved numerically using the ze-
roth-order Godunov method (see, e.g., [19]). In order to assure
stability of the solutions, a Courant number of is used
at all times. Furthermore, the initial conditions for the PDE-
models are given by for the ramp up ex-
periments and for
the ramp down experiments. Finally, for all PDE-models the left
boundary condition and the right boundary
is assumed to be free, i.e., once a lot reaches the end of the line

, it immediately leaves the system.
Before the results of the PDE-models can be compared to

those of the validation model, the outputs of both models need
to be processed. Starting with the discrete-event model, this
model generates throughput and flow time data, but these data
are highly stochastic. In order to obtain a mean throughput and
a mean flow time as functions of time, we performed multiple
simulations with the discrete-event model for each instantiation
of the experiments, and then averaged the throughput and flow
time over these simulations. To guarantee a two-sided 95% con-
fidence interval with a maximum relative width of 0.005 for all

on the mean throughput and mean flow time, we performed
1 000 000 independent simulations for each instantiation of the
experiments. For the PDE-models, on the other hand, the avail-
able flux data should be transformed into throughput and flow
time data: the mean throughput equals the outflux
and the mean flow time is obtained by calculating the delay be-
tween the integrated influx and integrated out-
flux .

C. Validation Results

Since the results of the validation experiments described in
the previous subsection are too numerous to be presented com-
pletely, only one ramp up and one ramp down experiment are

Fig. 2. Validation results for ramp up (� = 1:0).

Fig. 3. Validation results for ramp down from � = 1:0 to � = 0:5.

evaluated here. For the other results, which are similar to the
ones presented here, the reader is referred to [20].

In Figs. 2 and 3, the ramp up and ramp down developments of
the flow time and throughput are plotted as a function of time for
PDE-model 1 (dashed line), PDE-model 2 (dashed-dotted line),
PDE-model 3 (dotted line), and the validation model (solid line).
Figs. 2 and 3 show that once the steady state has been reached,
the results of the PDE-models correspond to those of the valida-
tion model. This was to be expected since the PDE-models are
based on exact steady-state relations from the queuing theory.
In the transient phase, however, the PDE-models show signifi-
cant deviation from the validation model.

For the ramp up experiment, all the PDE-models overestimate
the flow time of the first lot (the first point of the curve), which
implies that lots are moving too slowly through the line in the
first part of the transient phase. Furthermore, the throughput pre-
dicted by the PDE-models increases too soon. Steady state (in
flow time and throughput) is reached too soon by PDE-models
1 and 3, and too late by PDE-model 2.

For the ramp down experiment, the flow time and throughput
of the system decrease too late for PDE-models 2 and 3, and
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Fig. 4. PDE-model 2: ramp up evolution of density for � = 1:0.

the flow time decreases too soon for PDE-model 1. Moreover,
steady state is reached too soon for all PDE-models.

Another observation in the ramp down results is that for PDE-
model 1 the throughput curve initially increases before it de-
creases to the steady-state value. This is caused by the model
property which dictates that the velocity only depends on the
total WIP in the system and, therefore, is uniform for all . Be-
cause of this property, lots near the exit of the system can be in-
fluenced by lots which have just been fed into the system. This
influence is unnatural and, therefore, undesired. The increase of
throughput can be explained as follows: due to a decreased ar-
rival rate, the total WIP in the system decreases, which causes
the velocity to increase, see (3). However, the local density at the
exit of the system still equals the steady-state density and, there-
fore, through (2), an increase in throughput results. For a ramp
up experiment with PDE-model 1, the throughput would have
decreased before increasing to the steady-state value, however,
since the throughput is already zero this phenomenon cannot
be seen in Fig. 2. For PDE-model 2, a similar incorrectness in
the definition of the velocity can be identified: since
only depends on the total WIP in the system, the velocity at
the entrance of the system is incorrect whenever is
not equal to the mean density in the system. If, for example, all
lots in the system are located at the final two workstations, then
the velocity of a new entering lot should be maximal since the
first workstation is empty. However, since the total WIP in the
system is larger than zero, is smaller than the max-
imum. PDE-model 3 does not incorporate such an incorrectness
in the velocity definition since in this model the velocity is re-
lated to the local density.

Finally, we observe that the throughput curves of PDE-
models 1 and especially 2 are not smooth. In order to explain
this observation, consider PDE-model 2, for which the velocity
at depends on the total WIP in the system. Initially, the
WIP increases linearly in time, since the influx is constant and
the outflux is zero. As a result decreases nonlinearly
in time, see (5). The lots move as a “wave” profile through
the line, as visualized in Fig. 4. Once the front of this “wave”
reaches , the outflux suddenly increases significantly,
which causes the total WIP to increase much slower, and thus

to decrease much slower. This results in a sudden
change in the derivative of the flux around which evolves
through the line as time elapses and causes a new “wave”
profile in the density distribution over . At the moment this
“wave” reaches , the outflux again increases significantly,
etcetera. For PDE-model 1 the nonsmoothness is caused by

the same effect. However, since for this model the velocity is
uniform in the whole line, the sudden change in the derivative
of the flux occurs in the whole line and not only around ,
which results in a smoother transition.

Obviously, more accurate PDE-models are required for the
simulation of manufacturing systems. For now, we use PDE-
model 3, aware of its shortcomings, in the remainder of this
brief for the design of a controller. PDE-models 1 and 2 are not
considered further here because of the properties as described
before.

III. CONTROLLER DESIGN

Now that we have selected PDE-model 3 for the continuous
approximation model, the next step in the control framework
is the design of a controller based on this model. In this sec-
tion, first the studied control problem is presented. Then, model
predictive control (MPC) is introduced to solve this problem.
The MPC-controller is designed and subsequently tested on the
PDE-model. Finally, we describe how the developed controller
is connected to the discrete-event model of the manufacturing
flow line.

A. Control Problem Description

The goal of the controller is to make the throughput of the
manufacturing system follow a certain reference demand as ac-
curately as possible. Thereby, the throughput should be cor-
rected for possibly arising production shortages/surpluses, using
the arrival rate as the only controllable input. In order to verify
whether the controller is capable of reaching this goal, a test
problem was sought. The simplest related control problem in
the production management of a manufacturing system is to de-
sign the input as a function of time such that the output (outflux)
of the system moves from one steady state throughput , to an-
other steady state throughput , without creating a permanent
backlog, i.e., once the new steady state throughput is reached,
the backlog should be zero.

For the design of the controller, we used this control problem
as a test problem. Here, we chose the reference demand to be

lots per hour for
lots per hour for

B. MPC

Due to the nonlinearity of the PDE-model and the time-delay
that is present between a control input and its effect on the
throughput, it is hard to find a suitable control method for the
defined control problem. MPC (see, e.g., [21] and [22]), how-
ever, is able to deal with such problems, and is, therefore, used
for the control of the PDE-model. Earlier applications of MPC
in manufacturing systems can be found in [9] and references
therein.

Before MPC can be applied to the PDE-model, first an in-
ternal prediction model and a goal function of MPC need to be
defined. The internal model should be a good approximation of
the PDE-model so that the predictions are accurate. The goal
function, which is to be minimized, should represent the control
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Fig. 5. Simulation results of MPC controller.

goal, i.e., tracking the defined reference demand as accurately
as possible.

As internal prediction model, we used the PDE-model (1),
(2), and (6), which was again solved using the zeroth-order
Godunov method and a Courant number .

The goal function of MPC is defined as the normalized de-
viation between realized and reference output, which should be
minimized. For the control problem defined in Section III-A, the
goal function at sample is

(7)

in which is the vector of current and future arrival rates. The
length of this input vector equals the number of samples in the
control horizon . Parameter represents the number of samples
in the prediction horizon, is the current sample, and
is the predicted backlog at sample . Note that since the
backlog is defined as

(8)

with the sample time used in the goal function, there is
no need to explicitly include the throughput and demand in the
goal function: once the backlog remains zero, the throughput
equals the reference demand. In order to reduce computation
time, we here choose the sample time as a multiple of the
internal sampling rate , i.e., the goal function (7) only takes
into account a fraction of all sample points computed by the
internal model.

Using the defined internal model and goal function, MPC
has been applied to the PDE-model to solve the test problem
described in Section III-A. For the implementation of MPC,
we used 0.25 h, 1.0 h, 100 samples, and

8 samples. Furthermore, we constrained the influx to the
interval . In Fig. 5, the simulation results of the
MPC-controlled PDE-model are visualized. As these results
show, stabilization at the new steady state throughput using the
input determined by MPC takes a little longer than it does for
a constant arrival rate (see Fig. 2, PDE-model 3). However,

whereas application of the constant arrival rate results in a
positive backlog, application of the input determined by MPC
eventually results in a backlog of zero. We, therefore, conclude
that the applied implementation of MPC is suitable for the
control of the PDE-model.

C. Connecting the Controller to the Discrete-Event Model

The proposed controller is connected to the discrete-event
model of the manufacturing flow line using two signal conver-
sion blocks (see Fig. 1). The discrete time control signal has to
be converted into events for the discrete-event model. Further-
more, the output of the discrete-event model has to be converted
into a suitable feedback signal for the controller.

The control signal conversion is kept simple so that it affects
the control signal as little as possible: using the computed ar-
rival rate of the current sample, the amount of lots that should
be started in this sample is determined. This amount (rounded to
an integer) is inserted all at once in the buffer of the first work-
station in the line. This procedure is repeated for the following
samples. A good property of this conversion is that the number
of started lots per sample is close to the intended amount. A
disadvantage, however, is that the arrival of lots in the manu-
facturing system no longer follows a Poisson process, whereas
this was assumed in the design of the internal prediction model
of the MPC controller. More research is required to find a more
suitable conversion.

For the conversion of the output of the discrete-event model
into a suitable feedback signal for the controller, we used a first-
order observer

in which is a disturbance parameter, is the measured
output, is the output according to the internal model, and

is the observer gain. The disturbance parameter is used as a
correction to the internal model. The predictions of the corrected
model

are used for the computation of the goal function value. Here,
the output represents the total amount of finished lots.

Note that the disturbance parameter corrects for deviations
between predictions and measurements independently of the
cause of this deviation. Therefore, this parameter can be used
for both the filtering of stochastic noise in the measurement and
the correction of errors in the internal model. This means that
the MPC controller should work equally well with an imperfect
internal model of the manufacturing line, such as PDE-model 3.
However, since the observer is first-order, it can only correct the
output of the internal model for constant (or slowly varying) de-
viations with the discrete-event model.

IV. PERFORMANCE EVALUATION

With the MPC controller and conversions blocks described
in Section III, the control framework (see Fig. 1) is complete.
For the resulting closed-loop controlled manufacturing flow line
the performance was evaluated by means of simulation: for two
tracking problems the performance of the MPC-controlled flow
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line was compared to the performance of the flow line controlled
by a classical push strategy. In this section, first, the two tracking
problems are presented. Then, the implementation of the MPC
controller and the push strategy is described. Finally, the simu-
lation results are presented and discussed.

A. Two Tracking Problems

The first tracking problem deals with a slowly varying de-
mand which requires a low utilization of the system, whereas
the second tracking problem deals with a fast varying demand
which requires high utilization of the system. The throughput
demand for the first problem follows a sine-function with a mean
of 1.0 lots/h, an amplitude of 0.5 lots/h, and a frequency of 1/400
cycles/h, so that the cumulated reference production as a func-
tion of time is given by

For the second problem, the throughput demand follows a sine-
function with a mean of 1.5 lots/h, an amplitude of 0.4 lots/h,
and a frequency of 1/80 cycles/h, which results in a cumulated
reference production of

Here, the cumulated production is used as the tracking param-
eter instead of the throughput and backlog which were used in
Section III-A. The cumulated production is preferred because
this quantity is easier to measure in the discrete-event model
and because it is less sensitive to variability.

B. Implementation

The defined tracking objectives are implemented in the MPC
controller (7) by choosing .
For the first tracking problem, we used 5 samples,
15 samples, and 10 h. The second problem requires a
more “aggressive” control since the demand fluctuates faster;
therefore, we chose 3 samples, 5 samples, and
10 h. For both the tracking problems, we used an observer gain

and a sample time of the observer of 0.1 h. The
other settings of the MPC controller equal those described in
Section III-B.

Using the push strategy, the number of lots that is re-
leased into the flow line at sample is determined by

This equation can be explained as follows: lots that are released
at sample will be finished (approximately) at time

, with the expected flow time at sample . In order to
reach the cumulated reference production ,
this amount minus what was already finished and what is
still in the system should be released into the system. Since a
negative number of lots cannot be fed into the system, must
be nonnegative. The computed amount of lots (rounded
to an integer) is inserted all at once in the buffer of the first
workstation.

For the two tracking problems, we used a sample time of
10 h. The expected flow time was determined by taking the

TABLE I
SIMULATION RESULTS: OVERALL ERROR E

Fig. 6. Simulation results of the first tracking problem.

Fig. 7. Simulation results of the second tracking problem.

average of the flow times of the ten most recently finished lots.
For , the average was determined over all the finished
lots. For , the expected flow time equaled the sum of
all process times, i.e., 5 h.

C. Simulation Results

For the two tracking problems simulations were performed
with a run length of 800 h. In order to quantify the performance
of the controllers, we defined the overall error

for (9)

in which is the momentary error at time
and is the cumulated production at time as realized by

the system. To guarantee a 95% two-sided confidence interval
on the mean with a relative width of less than 0.05, we per-
formed 300 independent simulation runs with the MPC-con-
trolled system and with the push system for both the tracking
problems. The mean and standard deviation on resulting
from these simulations are listed in Table I. Furthermore, in
Figs. 6 and 7 the mean absolute error is plotted for both
tracking problems. From these results, it can be concluded that
the MPC-controlled system not only follows the reference signal
closer than the push system for both tracking problems, but it
also provides a more reliable output since the standard devia-
tion on is smaller. Clearly, the MPC controller with internal
PDE-model has, despite the shortcomings of the PDE-model,
better insight in the dynamics of the discrete-event system and,
therefore, can more accurately follow the reference trajectory
and reduce the output variability caused by the stochastic na-
ture of the system.
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V. CONCLUSION

In this brief, we discussed a relatively new class of models,
namely PDE-models, used for simulation and control of a manu-
facturing flow line. In contrast to other simulation models, PDE-
models are both computationally tractable and capable of de-
scribing a manufacturing line’s behavior (throughput and flow
time) in both transient and steady state, which makes them par-
ticularly suitable for manufacturing control purposes. The val-
idation study we performed on three currently available PDE-
models, however, shows that more accurate PDE-models are
required.

Subsequently, we used one of the studied PDE-models for
the design of an MPC-controller for the discrete-event manufac-
turing system. The resulting MPC-controller was successfully
connected to the discrete-event system using a control signal
conversion and an output observer.

Finally, numerical experiments were performed to evaluate
the performance of the MPC-controlled manufacturing flow line
in comparison with the performance of the flow line controlled
by a classical push strategy. Results indicate that, for the defined
tracking problems, the MPC-controlled flow line not only fol-
lows the reference signal more accurately than the push system,
but it also has a more reliable output since the output variability
is smaller.

Although these first findings are promising, more research
is required to reveal the true value of PDE-models and the
presented control framework in the field of manufacturing.
For example, in this research, we only studied an
flow line, whereas other manufacturing systems, such as

systems, or systems with reentrant behavior also
require investigation.
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