

Control of Multi-class Queueing Networks with Infinite Virtual Queues

Statistics, Modelling and Operations Research Seminar

Erjen Lefeber (TU/e)

Where innovation starts

Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Co-author

Joint work with Gideon Weiss

Kumar-Seidman: Trans. Autom. Ctrl. 35(3) 1990

Observation

Sufficient capacity (consider period of at least 1000).

"standard" multi class queueing network

Status

- For given priority policy: network not always stable
- If for all servers ρ_i < 1: stabilizing policies exist e.g., maximum pressure
- ▶ Under technical conditions: stability of fluid limit model \rightarrow stability of stochastic model

Multi-class queueing network with IVQs

System

Example: Push pull queueing system

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010)

Static production planning problem

 $\max_{u,\alpha} w'o$

 α_1, α_2 nominal input rates u_i fraction of time spent on class

Example: Push pull queueing system

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010)

Static production planning problem

 $\max_{u,\alpha} w'\alpha$

 α_1, α_2 nominal input rates

 u_i fraction of time spent on class i

Example: Push pull queueing system

$$\max_{u,\alpha} w_1 \alpha_1 + w_2 \alpha_2$$

s.t.
$$\begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ \lambda_1 & -\mu_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 & -\mu_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ 0 \\ \alpha_2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Three possible solutions (excluding singular case)

1.
$$\alpha_1 = \min\{\lambda_1, \mu_1\}, \alpha_2 = 0$$
,

2.
$$\alpha_1 = 0$$
, $\alpha_2 = \min\{\lambda_2, \mu_2\}$,

3.
$$\alpha_1 = \frac{\lambda_1 \mu_1(\lambda_2 - \mu_2)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}$$
, $\alpha_2 = \frac{\lambda_2 \mu_2(\lambda_1 - \mu_1)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}$.

Interesting solution: solution 3

•
$$\rho_1 = \rho_2 = 1$$
 (full utilization of servers)

$$\tilde{\rho}_1 = \frac{\lambda_2(\lambda_1 - \mu_1)}{\lambda_1 \lambda_2 - \mu_1 \mu_2} < 1, \, \tilde{\rho}_2 = \frac{\lambda_1(\lambda_2 - \mu_2)}{\lambda_1 \lambda_2 - \mu_1 \mu_2} < 1.$$

Three possible solutions (excluding singular case)

- 1. $\alpha_1 = \min\{\lambda_1, \mu_1\}, \alpha_2 = 0$,
- 2. $\alpha_1 = 0$, $\alpha_2 = \min\{\lambda_2, \mu_2\}$,
- 3. $\alpha_1 = \frac{\lambda_1 \mu_1(\lambda_2 \mu_2)}{\lambda_1 \lambda_2 \mu_1 \mu_2}$, $\alpha_2 = \frac{\lambda_2 \mu_2(\lambda_1 \mu_1)}{\lambda_1 \lambda_2 \mu_1 \mu_2}$.

Interesting solution: solution 3

- $\rho_1 = \rho_2 = 1$ (full utilization of servers)
- $\tilde{\rho}_1 = \frac{\lambda_2(\lambda_1 \mu_1)}{\lambda_1\lambda_2 \mu_1\mu_2} < 1, \tilde{\rho}_2 = \frac{\lambda_1(\lambda_2 \mu_2)}{\lambda_1\lambda_2 \mu_1\mu_2} < 1.$

Question

Can we stabilize system with $\rho_i = 1$ and $\tilde{\rho}_i < 1$?

Two cases

inherently stable case: $\lambda_1 < \mu_1$ and $\lambda_2 < \mu_2$ inherently unstable case: $\lambda_1 > \mu_1$ and $\lambda_2 > \mu$

Question

Can we stabilize system with $\rho_i = 1$ and $\tilde{\rho}_i < 1$?

Two cases

inherently stable case: $\lambda_1 < \mu_1$ and $\lambda_2 < \mu_2$ inherently unstable case: $\lambda_1 > \mu_1$ and $\lambda_2 > \mu_2$

Positive result

Pull priority stabilizes network

Observation

For inherently unstable case: pull priority is not stabilizing

Positive result

Pull priority stabilizes network

Observation

For inherently unstable case: pull priority is not stabilizing.

Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010):

Positive result

Threshold policy stabilizes network

Observation

Global network state needs to be taken into account.

Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010):

Positive result

Threshold policy stabilizes network

Observation

Global network state needs to be taken into account.

Guo, Lefeber, Nazarathy, Weiss, Zhang (2011,2013):

Key research question

Can we stabilize a MCQN-IVQ with $\tilde{\rho}_i < 1$ for all servers?

Some positive results

- ► IVQ re-entrant line (LBFS stable; FBFS not necessarily)
- Two re-entrant lines on two servers (pull priority)
- Ring of machines (pull priority)

Fluid model framework for verifying stability

Guo, Lefeber, Nazarathy, Weiss, Zhang (2011,2013):

Key research question

Can we stabilize a MCQN-IVQ with $\tilde{\rho}_i < 1$ for all servers?

Some positive results

- IVQ re-entrant line (LBFS stable; FBFS not necessarily)
- Two re-entrant lines on two servers (pull priority)
- Ring of machines (pull priority)

Fluid model framework for verifying stability

s Servers

- ▶ 1 IVQ, $n_i \ge 0$ std queues
- ho = 1, $\tilde{
 ho} < 1$

Assumptions

▶ P has spectral radius < 1, i.e. (I – P') invertible

Data

- constituency matrix C
- ▶ n × n Routing matrix P
- $s \times n$ matrix P_{IVQ}
- ▶ IVQ: $\Lambda = diag(\lambda_1, \dots, \lambda_s) > 0$
- ▶ Std: $M = diag(\mu_1, \ldots, \mu_n) > 0$

Dynamics fluid model $(u_j(t))$ fraction of time spent on std. queue j)

$$\dot{Q}(t) = P'_{\text{IVQ}} \Lambda[1 - Cu(t)] - (I - P')Mu(t)$$

$$Q(0) = Q_0$$

subject to

$$0 \leq Q(t)$$

$$0 \leq u(t)$$

$$Cu(t) \leq$$

s Servers

- ▶ 1 IVQ, $n_i \ge 0$ std queues
- ho = 1, $\tilde{
 ho} < 1$

Assumptions

▶ P has spectral radius < 1, i.e. (I – P') invertible

Data

- constituency matrix C
- ▶ n × n Routing matrix P
- $s \times n$ matrix P_{IVQ}
- ▶ IVQ: $\Lambda = diag(\lambda_1, ..., \lambda_s) > 0$
- ▶ Std: $M = diag(\mu_1, ..., \mu_n) > 0$

Dynamics fluid model $(u_j(t))$ fraction of time spent on std. queue j)

$$\dot{Q}(t) = P'_{\mathsf{IVQ}} \Lambda[1 - \mathsf{C}u(t)] - (\mathsf{I} - \mathsf{P}') \mathsf{M}u(t) \qquad \qquad Q(0) = Q_0$$

subject to

$$0 \leq Q(t)$$

$$0 \leq u(t)$$

$$Cu(t) \leq 1$$

Dynamics fluid model

$$\dot{Q}(t) = P'_{\text{IVQ}} \Lambda [1 - Cu(t)] - (I - P') M u(t)
= \underbrace{P'_{\text{IVQ}} \Lambda 1}_{\alpha} - \underbrace{[P'_{\text{IVQ}} \Lambda C + (I - P') M]}_{R} u(t)$$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Additional assumptions

- ► Controllable system, i.e. *R* is invertable
- ▶ All standard queues are served: $u^* = R^{-1}\alpha > 0$
- ho $\tilde{
 ho}$ < 1, i.e. $CR^{-1}\alpha$ < 1

Dynamics fluid model

$$\dot{Q}(t) = P'_{\text{IVQ}} \Lambda [1 - Cu(t)] - (I - P') Mu(t)
= \underbrace{P'_{\text{IVQ}} \Lambda 1}_{\alpha} - \underbrace{[P'_{\text{IVQ}} \Lambda C + (I - P') M]}_{R} u(t)$$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Additional assumptions

- Controllable system, i.e. R is invertable
- ▶ All standard queues are served: $u^* = R^{-1}\alpha > 0$
- $\tilde{\rho} <$ 1, i.e. $CR^{-1}\alpha <$ 1

Dynamics

$$\dot{Q}(t)=lpha-Ru(t)$$
 $Q(0)=Q_0$ subject to $0\leq Q(t)$ $0\leq u(t)$ $Cu(t)\leq 1$

Assumptions

- ▶ I P' and R are invertible (also $(I P')^{-1} \ge 0$)
- $ightharpoonup 0 < R^{-1}\alpha = u^*$
- ho $CR^{-1}\alpha < 1$

Problem

Determine stabilizing u (preferably not u(t) but u[Q(t)])

Dynamics:

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \mu_1 & \lambda_1 \\ \lambda_2 & \mu_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Constraints

$$0 \le Q(t)$$
 $0 \le u(t)$ $u(t) \le 1$

Assumptions

R invertible:
$$\mu_1\mu_2 \neq \lambda_1\lambda_2$$
 or $\frac{\lambda_1}{\mu_1}\frac{\lambda_2}{\mu_2} = \varrho_1\varrho_2 \neq 1$ $0 < R^{-1}\alpha$, $CR^{-1}\alpha < 1$: $\frac{1-\varrho_1}{1-\varrho_1\varrho_2} > 0$, $\frac{1-\varrho_2}{1-\varrho_1\varrho_2} > 0$

Dynamics:

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \mu_1 & \lambda_1 \\ \lambda_2 & \mu_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Constraints

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $u(t) \leq 1$

Assumptions:

$$\begin{array}{l} \textit{R invertible:} \;\; \mu_1\mu_2 \neq \lambda_1\lambda_2 \; \text{or} \; \frac{\lambda_1}{\mu_1}\frac{\lambda_2}{\mu_2} = \varrho_1\varrho_2 \neq 1 \\ 0 < \textit{R}^{-1}\alpha, \; \textit{CR}^{-1}\alpha < 1 \text{:} \;\; \frac{1-\varrho_1}{1-\varrho_1\varrho_2} > 0, \, \frac{1-\varrho_2}{1-\varrho_1\varrho_2} > 0 \end{array}$$

Conditions: $\varrho_1\varrho_2 \neq 1$, $\frac{1-\varrho_1}{1-\varrho_1\varrho_2} > 0$, $\frac{1-\varrho_2}{1-\varrho_1\varrho_2} > 0$

Some words about case $\lambda_1=\mu_1$, $\lambda_2=\mu_2$, i.e., R not invertible

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Some words about case $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$, i.e., R not invertible Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Some words about case $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$, i.e., R not invertible Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates:

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Some words about case $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$, i.e., R not invertible Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates:

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Leonardo Rojas-Nandayapa, Tom Salisbury, Yoni Nazarathy

The push-pull network with $\lambda_1=\mu_1$, $\lambda_2=\mu_2$ is non-stabilizable. Proof uses the fact that $Z(Q(t))=\lambda_2Q_1(t)-\lambda_1Q_2(t)$ is a martingale

System

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$\dot{z}(t) = R^{-1}\alpha - u(t) = u^* - u(t)$$
 $z(0) = z_0 = R^{-1}Q_0$
 $0 \le Rz(t)$ $0 \le u(t) \le 1$

System

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$\dot{z}(t) = R^{-1}\alpha - u(t) = u^* - u(t)$$
 $z(0) = z_0 = R^{-1}Q_0$
 $0 \le Rz(t)$ $0 \le u(t) \le 1$

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$\dot{z}(t) = R^{-1}\alpha - u(t) = u^* - u(t)$$
 $z(0) = z_0 = R^{-1}Q_0$
 $0 \le Rz(t)$ $0 \le u(t) \le 1$

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$\dot{z}(t) = R^{-1}\alpha - u(t) = u^* - u(t)$$
 $z(0) = z_0 = R^{-1}Q_0$
 $0 \le Rz(t)$ $0 \le u(t) \le 1$

Change of coordinates

$$z_{1}(t) = \frac{\mu_{2}}{\mu_{1}\mu_{2} - \lambda_{1}\lambda_{2}} Q_{1}(t) - \frac{\lambda_{1}}{\mu_{1}\mu_{2} - \lambda_{1}\lambda_{2}} Q_{2}(t)$$

$$z_{2}(t) = \frac{-\lambda_{2}}{\mu_{1}\mu_{2} - \lambda_{1}\lambda_{2}} Q_{1}(t) + \frac{\mu_{1}}{\mu_{1}\mu_{2} - \lambda_{1}\lambda_{2}} Q_{2}(t)$$

Resulting control problem

$$\dot{z}_1(t) = u_1^* - u_1(t)$$
 $0 \le u_1(t) \le 1$
 $\dot{z}_2(t) = u_2^* - u_2(t)$ $0 \le u_2(t) \le 1$

while making sure that

$$0 \leq egin{bmatrix} \mu_1 & \lambda_1 \ \lambda_2 & \mu_2 \end{bmatrix} egin{bmatrix} z_1(t) \ z_2(t) \end{bmatrix}$$

Neglecting the latter constraint, the problem of controlling

$$\dot{z}_1(t) = u_1^* - u_1(t) \qquad 0 \le u_1(t) \le 1
\dot{z}_2(t) = u_2^* - u_2(t) \qquad 0 \le u_2(t) \le 1$$

becomes easy:

$$u_1(t) = \begin{cases} 1 & \text{if } z_1(t) > 0 \\ u_1^* & \text{if } z_1(t) = 0 \\ 0 & \text{if } z_1(t) < 0 \end{cases} \qquad u_2(t) = \begin{cases} 1 & \text{if } z_2(t) > 0 \\ u_2^* & \text{if } z_2(t) = 0 \\ 0 & \text{if } z_2(t) < 0 \end{cases}$$

Observations

- Above controller also solves problem with constraint
- ▶ Optimal controller for minimizing $\int_0^\infty ||z(t)||_1 dt$.
- Minimal time controller

Neglecting the latter constraint, the problem of controlling

$$\dot{z}_1(t) = u_1^* - u_1(t)$$
 $0 \le u_1(t) \le 1$
 $\dot{z}_2(t) = u_2^* - u_2(t)$ $0 \le u_2(t) \le 1$

becomes easy:

$$u_1(t) = \begin{cases} 1 & \text{if } z_1(t) > 0 \\ u_1^* & \text{if } z_1(t) = 0 \\ 0 & \text{if } z_1(t) < 0 \end{cases} \qquad u_2(t) = \begin{cases} 1 & \text{if } z_2(t) > 0 \\ u_2^* & \text{if } z_2(t) = 0 \\ 0 & \text{if } z_2(t) < 0 \end{cases}$$

Observations

- Above controller also solves problem with constraint
- ▶ Optimal controller for minimizing $\int_0^\infty ||z(t)||_1 dt$.
- Minimal time controller

Example: Controller

Controller for stochastic queueing network

$$\begin{split} u_1(t) &= \begin{cases} 1 & \text{if } \frac{\mu_2}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_1(t) > \frac{\lambda_1}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_2(t) \text{ and } Q_1(t) > 0 \\ 0 & \text{if } \frac{\mu_2}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_1(t) < \frac{\lambda_1}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_2(t) \text{ or } Q_1(t) = 0 \end{cases} \\ u_2(t) &= \begin{cases} 1 & \text{if } \frac{\lambda_2}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_1(t) < \frac{\mu_1}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_2(t) \text{ and } Q_2(t) > 0 \\ 0 & \text{if } \frac{\lambda_2}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_1(t) > \frac{\mu_1}{\mu_1\mu_2 - \lambda_1\lambda_2} \, Q_2(t) \text{ or } Q_2(t) = 0 \end{cases} \end{split}$$

Lyapunov function: cost-to-go from optimal control problem

$$V(z) = \begin{cases} z_1^2/(1 - u_1^*) + z_2^2/(1 - u_2^*) & \text{if } z_1 \ge 0 \text{ and } z_2 \ge 0 \\ z_1^2/u_1^* + z_2^2/(1 - u_2^*) & \text{if } z_1 \le 0 \text{ and } z_2 \ge 0 \\ z_1^2/(1 - u_1^*) + z_2^2/u_2^* & \text{if } z_1 \ge 0 \text{ and } z_2 \le 0 \\ z_1^2/u_1^* + z_2^2/u_2^* & \text{if } z_1 \le 0 \text{ and } z_2 \le 0 \end{cases}$$

Example: Controller

Controller for stochastic queueing network

$$\begin{split} u_1(t) &= \begin{cases} 1 & \text{if } \frac{\mu_2}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_1(t) > \frac{\lambda_1}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_2(t) \text{ and } Q_1(t) > 0 \\ 0 & \text{if } \frac{\mu_2}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_1(t) < \frac{\lambda_1}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_2(t) \text{ or } Q_1(t) = 0 \end{cases} \\ u_2(t) &= \begin{cases} 1 & \text{if } \frac{\lambda_2}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_1(t) < \frac{\mu_1}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_2(t) \text{ and } Q_2(t) > 0 \\ 0 & \text{if } \frac{\lambda_2}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_1(t) > \frac{\mu_1}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_2(t) \text{ or } Q_2(t) = 0 \end{cases} \end{split}$$

Lyapunov function: cost-to-go from optimal control problem

$$V(z) = \begin{cases} z_1^2/(1-u_1^*) + z_2^2/(1-u_2^*) & \text{if } z_1 \geq 0 \text{ and } z_2 \geq 0 \\ z_1^2/u_1^* + z_2^2/(1-u_2^*) & \text{if } z_1 \leq 0 \text{ and } z_2 \geq 0 \\ z_1^2/(1-u_1^*) + z_2^2/u_2^* & \text{if } z_1 \geq 0 \text{ and } z_2 \leq 0 \\ z_1^2/u_1^* + z_2^2/u_2^* & \text{if } z_1 \leq 0 \text{ and } z_2 \leq 0 \end{cases}$$

$$\dot{Q}(t) = \alpha - Ru(t)$$

(t)
$$Cu(t) \leq 1$$

 $Q(0) = Q_0$

$$0 \leq Q(t)$$
 $0 \leq u(t)$

 $=R^{-1}Q(t)$

Transformed system

$$Z(t) = u - u(t)$$

$$\leq R_{2}(t)$$

$$\leq u(t)$$
 $Cu(t) \leq 1$

Objective

 $\min_{u(t)} \int_{0}^{\infty} ||z(t)||_{1} dt$

$$\dot{Q}(t) = \alpha - Ru(t)$$

$$0 \leq Q(t)$$
 $0 \leq u(t)$

$$Cu(t) \leq 1$$

 $Q(0) = Q_0$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$0 \leq Rz(t)$$

$$Z(0) = Z_0$$
 $Cu(t) \leq$

Objective

$$\min_{u(t)} \int_0^\infty ||z(t)||_1 dt$$

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$\dot{z}(t) = u^* - u(t)$$
 $z(0) = z_0$ $0 \le Rz(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Objective

$$\min_{u(t)} \int_0^\infty \|z(t)\|_1 dt$$

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$\dot{z}(t) = u^* - u(t)$$
 $z(0) = z_0$ $0 \le Rz(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Objective

 $\min_{u(t)} \int_0^\infty ||z(t)||_1 dt$

Let $z(t) = x^+(t) - x^-(t)$, and let T be large enough.

Problem

$$\max \int_{0}^{t} \mathbf{1}^{\top} ((T-t)u(t) - 2x^{-}(t)) dt$$
s.t.
$$\int_{0}^{t} u(s) ds - x^{-}(t) + x^{+}(t) = x_{0} + u^{*}t$$

$$\int_{0}^{t} Ru(s) ds + Q(t) = Q_{0} + Ru^{*}t$$

$$Cu(t) + u^{\text{IVQ}}(t) = 1$$

$$Q(t), x^{+}(t), x^{-}(t), u(t), u^{\text{IVQ}}(t) \ge 0$$

Weiss, 2008

Simplex-like algorithm for solving SCLP.

Rates LP

max
$$\mathbf{1}^{\top}(u-2\dot{x}^{-})$$

s.t. $u-\dot{x}^{-}+\dot{x}^{+}=u^{*}$
 $Ru+\dot{Q}=Ru^{*}$
 $Cu+u^{\mathsf{IVQ}}=\mathbf{1}$

Additional constraints

If
$$z_i = 0$$
: $u_i = u_i^*$
If $Q_i = 0$: $\dot{Q}_i = 0$

Properties of solution

- it empties in minimum time
- ▶ it has minimum $||z(t)||_1$ for all t (pathwise optimality)
- if $z_i(t) < 0$ it will increase for all t until it hits 0.
- if $z_i(t) > 0$ it is monotonically non-increasing
- once $z_i(t) = 0$ it stays 0
- once $Q_i(t)$ hits zero it stays 0
- $ightharpoonup Q_i(t)$ may not be monotonically non-increasing

Resulting policy (for stochastic MCQN-IVQ)

Modified priority discipline

- For each server: make priority list of standard queues
- For each server: at time t:
 - Remove Q_i from list if $Q_i(t) = 0$
 - Remove Q_i from list if $z_i(t) < 0$
 - If list nonempty: serve Q_i on top of list
 - If list empty: serve IVQ

Remark

In specific cases: small modifications are required to ensure $Q_i = 0$ once $Q_i = 0$.

Resulting policy (for stochastic MCQN-IVQ)

Modified priority discipline

- For each server: make priority list of standard queues
- For each server: at time t:
 - Remove Q_i from list if $Q_i(t) = 0$
 - Remove Q_i from list if $z_i(t) < 0$
 - If list nonempty: serve Q_i on top of list
 - If list empty: serve IVQ

Remark

In specific cases: small modifications are required to ensure $\dot{Q}_i = 0$ once $Q_i = 0$.

