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‘ A simple kinematic model I




‘ Problem formulation (I)

Reference robot:

Ty = UpcOsl,
UYr = Upsinb,
b, = w,
Find control laws
v = v(x,y,0, T, Yr, O, U, wy)
W e w($7y797x7",y7"797’7v7"7w7’)

that yield

Lm |z(t) —zr(t) + |y(t) —yr(t) +10(¢) 6.()] =0
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Define new coordinates (cf. Kanayama et al. (1990))
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Problem formulation (II)

Resulting error dynamics

x.e wye — U —I_ Utr COS 96
y.e _wxe —l_ ?JT Sin 98

6. Wy — W
Find control laws

’U(:Ce, Ye, 96: Lry Yr, 97“7 Up, wr)

CU(.’L'e, y67 96) .flfr,-, y?‘) 0?"7 U‘T’) w'r')

that yield

tlggo e (t)| + ye(t)| + [0e(t)| =0




‘ Cascaded systems I




I Conditions I

E. Panteley en A. Loria (S&CL 33(2), 1998):
Cascade Globally Uniformly Asymptotically Stable (GUAS) when

e >; GUAS, polynomial Lyapunov function
e g(t,z,y) at most linear in z

o X9 GUAS, y(t) integrable




Derivation of controller

Error dynamics

Te = WYe— U+ vUprcosb,
ye - _"w:l:e + ’U'r Sin 96
96 - Wy W
Now use
w = Wy + 16, cp >0

Substituting 6. = 0 yields (w = w,.)-

Te = WrYe —V+ vy

Ye = —WrTe



Which can be rewritten as

-

x-e :L'e

Ye — Wy (t) Ye ]

Globally Exponentially Stable, provided w,(t) persistently exciting,
i.e. there exist 6,k > 0 such that

46
/ wr(t)sz >k Vt> 1t
-




’ To summarize I

Consider the error dynamics

Te = WYe — U+ v,cosb,

ye — _wxe —|_ Utr SiIl 06

96 — wfr_w

in closed loop with the controller

w = w,+c10, c1 >0

vV = U+ Coxe co >0

Then the closed loop is globally exponentially stable provided w;. (%)
1s persistently exciting.




‘ Simulations I

Te = WYe—V+v,co86,

The system

= —WIe + v,-sinb,
= Wy — W
in closed loop with controller
v o= v+ 22,
w = w;+0,
Reference trajectory (circle):
1

Initial condition [z, (0),y.(0),6.(0)]* = [-0.5,0.5,1]7.
Initial condition [z.(0),y.(0),0.(0)]F = [-10,0, —7]T.
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l Simulations (IT) I

Brockett (1983): No continuous state feedback for stabilization.

Therefore:

o v.(t) /0 orw.(t) /0 (cf. Jiang and Nijmeijer)

e w, persistently exciting.

o0
However / wr(7)?dT = oo suffices for asymptotic stability.
to

ve(t) =0

orl®) = 7

with initial condition [z.(0), ye(0),8.(0)]T = [-0.5,0.5,1]T
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Dynamic extension

Consider

WYe — UV + U, cOS O,
—WZe + vy sin 6,
Wy — W

Ui

U2




Then we obtain

_|_

—wr(t) 0 0

U'r - ,Urr COS 96 —|_ ye(o{.)e

0

v Sinf, — z,




The controller
Uy = 737' + C3Te — C40¢

'UQ — (.;.)r —|_ C59€ - CGWe

yields global asymptotic stability, provided w,(t) is persistently

excliting.




‘ Conclusions I

e Simple (linear) controllers for (nonlinear) mobile robot.

Both kinematic model and dynamic extension.
Globally (not based on linearization), exponential.
Similar in case of saturated control inputs.

Similar result for general chained form systems.




