Exponential tracking control of a mobile car using a cascaded approach

IFAC Workshop on Motion Control 21–23 September 1998, Grenoble

E. Panteley*, E. Lefeber**, A. Loría*** and H. Nijmeijer**,****
* Academy of Sciences of Russia, St. Petersburg, Russia
** University of Twente, Enschede, The Netherlands
*** University of California, Santa Barbera, USA
,** Eindhoven University of Technology, Eindhoven,
The Netherlands

Outline

- Model and Problem formulation
- Cascaded systems
- Derivation of linear tracking controller
- Simulations
- (Dynamic extension)
- Conclusions

$$\dot{x} = v \cos \theta$$

$$\dot{y} = v \sin \theta$$

$$\dot{\theta} = \omega$$

Problem formulation (I)

Reference robot:

$$\dot{x}_r = v_r \cos \theta_r$$

$$\dot{y}_r = v_r \sin \theta_r$$

$$\dot{\theta}_r = \omega_r$$

Find control laws

$$v \equiv v(x, y, \theta, x_r, y_r, \theta_r, v_r, \omega_r)$$

$$\omega \equiv \omega(x, y, \theta, x_r, y_r, \theta_r, v_r, \omega_r)$$

that yield

$$\lim_{t \to \infty} |x(t) - x_r(t)| + |y(t) - y_r(t)| + |\theta(t) - \theta_r(t)| = 0$$

Define new coordinates (cf. Kanayama et al. (1990))

$$\left[egin{array}{c} x_e \ y_e \ heta_e \end{array}
ight] = \left[egin{array}{cccc} \cos heta & \sin heta & 0 \ -\sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{c} x_r - x \ y_r - y \ heta_r - heta \end{array}
ight]$$

Problem formulation (II)

Resulting error dynamics

$$\dot{x}_e = \omega y_e - v + v_r \cos \theta_e$$

 $\dot{y}_e = -\omega x_e + v_r \sin \theta_e$

 $\dot{\theta}_e = \omega_r - \omega$

Find control laws

$$v \equiv v(x_e, y_e, \theta_e, x_r, y_r, \theta_r, v_r, \omega_r)$$

 $\omega \equiv \omega(x_e, y_e, \theta_e, x_r, y_r, \theta_r, v_r, \omega_r)$

that yield

$$\lim_{t \to \infty} |x_e(t)| + |y_e(t)| + |\theta_e(t)| = 0$$

Cascaded systems

$$\sum_{2}$$

$$\dot{y} = f_2(t,y)$$

$$\sum_{1}$$

$$\dot{x} = f_1(t,x)$$

$$\dot{x} = f_1(t,x) + g(t,x,y)y$$

y

$$\dot{y} = f_2(t, y)$$

Conditions

E. Panteley en A. Loría (S&CL 33(2), 1998):

Cascade Globally Uniformly Asymptotically Stable (GUAS) when

- Σ_1 GUAS, polynomial Lyapunov function
- g(t, x, y) at most linear in x
- Σ_2 GUAS, y(t) integrable

Derivation of controller

Error dynamics

$$\dot{x}_e = \omega y_e - v + v_r \cos \theta_e$$

$$\dot{y}_e = -\omega x_e + v_r \sin \theta_e$$

$$\dot{\theta}_e = \omega_r - \omega$$

Now use

$$\omega = \omega_r + c_1 \theta_e \qquad c_1 > 0$$

Substituting $\theta_e \equiv 0$ yields $(\omega = \omega_r)$:

$$\dot{x}_e = \omega_r y_e - v + v_r$$

$$\dot{y}_e = -\omega_r x_e$$

Which can be rewritten as

$$\left[egin{array}{c} \dot{x}_e \ \dot{y}_e \end{array}
ight] = \left[egin{array}{ccc} 0 & \omega_r(t) \ -\omega_r(t) & 0 \end{array}
ight] \left[egin{array}{c} x_e \ y_e \end{array}
ight] + \left[egin{array}{c} -1 \ 0 \end{array}
ight] (v-v_r)$$

When we use $v = v_r + c_2 x_e$ with $c_2 > 0$ we get

$$\left[egin{array}{c} \dot{x}_e \ \dot{y}_e \end{array}
ight] = \left[egin{array}{ccc} -c_2 & \omega_r(t) \ -\omega_r(t) & 0 \end{array}
ight] \left[egin{array}{c} x_e \ y_e \end{array}
ight]$$

Globally Exponentially Stable, provided $\omega_r(t)$ persistently exciting, i.e. there exist $\delta, k > 0$ such that

$$\int_{t}^{t+\delta} \omega_{r}(t)^{2} d\tau \geq k \quad \forall t \geq t_{0}$$

To summarize

Consider the error dynamics

$$\dot{x}_e = \omega y_e - v + v_r \cos \theta_e$$
 $\dot{y}_e = -\omega x_e + v_r \sin \theta_e$
 $\dot{\theta}_e = \omega_r - \omega$

in closed loop with the controller

$$\omega = \omega_r + c_1 \theta_e$$
 $c_1 > 0$
 $v = v_r + c_2 x_e$ $c_2 > 0$

Then the closed loop is globally exponentially stable provided $\omega_r(t)$ is persistently exciting.

Simulations

The system

$$\dot{x}_e = \omega y_e - v + v_r \cos \theta_e$$

$$\dot{y}_e = -\omega x_e + v_r \sin \theta_e$$

$$\dot{ heta}_e = \omega_r - \omega$$

in closed loop with controller

$$v = v_r + 2x_e$$

$$\omega = \omega_r + \theta_e$$

Reference trajectory (circle):

$$v_r = 1$$

$$\omega_r = 1$$

Initial condition $[x_e(0), y_e(0), \theta_e(0)]^T = [-0.5, 0.5, 1]^T$.

Initial condition $[x_e(0), y_e(0), \theta_e(0)]^T = [-10, 0, -\pi]^T$.

Simulations (II)

Brockett (1983): No continuous state feedback for stabilization.

Therefore:

- $v_r(t) \not\to 0$ or $\omega_r(t) \not\to 0$ (cf. Jiang and Nijmeijer)
- ω_r persistently exciting.

However $\int_{t_0}^{\infty} \omega_r(\tau)^2 d\tau = \infty$ suffices for asymptotic stability.

$$v_r(t) = 0$$

$$\omega_r(t)=rac{1}{\sqrt{t+1}}$$

with initial condition $[x_e(0), y_e(0), \theta_e(0)]^T = [-0.5, 0.5, 1]^T$

Dynamic extension

Consider

$$\dot{x}_e = \omega y_e - v + v_r \cos \theta_e$$
 $\dot{y}_e = -\omega x_e + v_r \sin \theta_e$
 $\dot{\theta}_e = \omega_r - \omega$
 $\dot{v} = u_1$
 $\dot{\omega} = u_2$

Define

$$v_e = v - v_r$$
 $w = w - w$

Then we obtain

$$\begin{bmatrix} \dot{x}_e \\ \dot{v}_e \\ \dot{y}_e \end{bmatrix} = \begin{bmatrix} 0 & -1 & \omega_r(t) \\ 0 & 0 & 0 \\ -\omega_r(t) & 0 & 0 \end{bmatrix} \begin{bmatrix} x_e \\ v_e \\ y_e \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} (u_1 - \dot{v}_r) + \begin{bmatrix} v_r - v_r \cos \theta_e + y_e \omega_e \\ 0 \\ v_r \sin \theta_e - x_e \end{bmatrix}$$

$$\left[egin{array}{c} \dot{ heta}_e \ \dot{\omega}_e \end{array}
ight] = \left[egin{array}{c} 0 & -1 \ 0 & 0 \end{array}
ight] \left[egin{array}{c} heta_e \ \omega_e \end{array}
ight] + \left[egin{array}{c} 0 \ 1 \end{array}
ight] (u_2 - \dot{\omega}_r)$$

The controller

$$u_1 = \dot{v}_r + c_3 x_e - c_4 v_e$$

$$u_1 = \dot{v}_r + c_3 x_e - c_4 v_e$$
$$u_2 = \dot{\omega}_r + c_5 \theta_e - c_6 \omega_e$$

yields global asymptotic stability, provided $\omega_r(t)$ is persistently exciting.

Conclusions

- Simple (linear) controllers for (nonlinear) mobile robot. Both kinematic model and dynamic extension.
- Globally (not based on linearization), exponential.
- Similar in case of saturated control inputs.
- Similar result for general chained form systems.