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Modeling problem

Starts Fab/Testl Ass./Test2 Finish/Pack Demand

Modeling for control (supply chain/mass production).
e Like to understand dynamics of factories
e Throughput, cycle time, variance of cycle time

e Answer questions like: How to perform ramp up?
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Available models (I)

Discrete Event

e Advantages

— Include dynamics
— Throughput and cycle time related

e Disadvantage

— Clearly infeasible for entire supply chain
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Available models (ll)

Queueing Theory

e Advantages

— Throughput and cycle time related
— Computationally feasible (approximations)

e Disadvantage

— Only steady state, no dynamics
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Available models (lI1)

Fluid models

I i) T3
—

Ty = Uy — Uy (k4 1) = ug(k) — us (k)
jfg = Uy — Uy Or CCQ(k + 1) = ul(/{) — Ug(k)
jfg = U9 xg(k + 1) = UJQ(]C)

e Advantages

— Dynamical model
— Computationally feasible

e Disadvantage

— Only throughput incorporated, no cycle time
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Available models (conclusion)

e Discrete Event: Not computationally feasible
Queueing Theory: No dynamics
Fluid models: No cycle time

e Need something else!

e Discrete event models (and queueing theory) have
proved themselves. Can be used for verification!
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Traffic flow: LWR model

Lighthill, Whitham (’55), and Richards (’56)

Traffic behavior on one-way road:
e density p(x, 1),
e speed v(z, 1),
o flow u(x,t) = p(x, t)v(x, ).

Conservation of mass:

dp ou
a(:{;, t)+ a(x, t)=0.

Static relation between flow and density:

u(z,t) = S(p(x,t)).
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Modeling manufacturing flow (I)

e density p(z, t),

e speed v(x, 1),

o flow u(x,t) = p(x,t)v(x, ),

e Conservation of mass: 2(x,t) + 92(x, t) = 0.
e Boundary condition: u(0,%) = A()
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Modeling manufacturing flow (I1)

Armbruster, Marthaler, Ringhofer (2002):

e Single queue: (1 5= z 1+f01 (s,t)ds)

o Single queue: 2(z,t) + %% (z,t) =

v (O t) _ upv(O t)

e Re-entrant: v(x,t) = vy <1 _ fo (s,t) s>
Lefeber (2003):

e Line of many identical queues: v(z,t) = Hp‘ém )
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Validation studies

w=2.0 w=2.0 w=2.0 w=2.0
— ...' >

e |dentical workstations, infinite buffers (FIFO)
e Number of workstations: m = 10, m = 50

e Processing times: exponential (mean 0.5)

e Inter arrival times: exponential (mean 1/)\)
e From one steady state to the other

— ramp up: from initially empty to 25%, 50%,
75%, 95% utilization

— ramp down: from 50%, 75%, 90%, 95% utiliza-
tion to 25% utilization
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Performance measures

e mean WIP (in steady state): w,,

e mean throughput (in steady state): o,

e mean cycle time (in steady state): ¢,

e time for reaching 99% of steady state WIP

e time for reaching 99% of steady state throughput
e time for reaching 99% of steady state cycle time

e cycle time for first lot inserted att = 0

e Batches of 100 experiments

e Repeat until in each buffer 95% two sided confi-
dence interval smaller than 2% of mean
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Results (ramp up)

m=10 m=50 | m=10 m=50 | m=10 m=50
Pss | T+ ++ ++ + +-+ +4
time to ¢, 0 0 + —— — 0
o1 lot| — 0 + 0 — 0
0ss | ++ ++ ++ ++ ++ +
time to 0, 0 0 0 — 0 0
Wes | ++  ++ | ++  ++ |+ ++
time to w,, 0 0 0 —— — 0
++ <5%

+ 5% —10%
0 10% -50%
—  50% -100%

>100%
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Results (ramp down)

m=10 m=50 | m=10 m=50 | m=10 m=50

Pss | T+ + + + + +

time to ¢, 0 0 0 — 0 0
o1 lot| O 0 + ++ + ++
Oss | ++ ++ ++ ++ ++ +
time to 0, 0 0 + — 0 0
Wes | ++  ++ | ++  ++ |+ ++

time to w,, 0 0 0 0 0 0

++ <5%

+ 5% - 10%
0 10% - 50%
— 50% -100%
>100%
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General observations

e Steady state performance well described
e Time to reach steady state ill described

e Amount of lots produced before reaching steady
state (most cases) relatively small

e Homogeneous velocity results in ill described be-
havior of throughput

e Simulation run Discrete Event: 4 minutes
Batch run Discrete Event: 7 hours
Simulation run PDE: 1 minute
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Extensions: Properties needed

e No backward-flow allowed (cf. Daganzo ’95)
e No negative density
e Stable steady states

— constant feed rate — equilibrium
— equilibrium meets relations queueing theory
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Extensions: considerations (I)

100 machines, ;1 = 1, exponential. Utilization: 50%.

e Regular arrivals: ¢ = 0
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Extensions: considerations (Il)

Variability needs to be included. However, ...

1 machine, 1 = 1, exponential

_>@_>

e Push control: exponential arrivals. Utilization 50%

— Throughput: 0.5 lots per unit time
— Cycle time: 2 hours
— Mean WIP: 1 lot

e CONWIP control: WIP=1

— Throughput: 1 lots per unit time
— Cycle time: 1 hours
— Mean WIP: 1 lot
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Conclusions

Need for computationally feasible dynamical models
incorporating both throughput and cycle time.

e NOT: Discrete event, Queueing theory, Fluid models
e Possible: PDE-models

— Correct steady state behavior
— Better description transient needed

— Second moment and correlation needs to be in-
cluded

— Queueing theory, discrete event models can be
used for validation of PDE models

e Next step: PDE-based controller design
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