Almost Global Tracking Control of a Quadrotor UAV on SE(3)

Erjen Lefeber, Sebastiaan van den Eijnden, and Henk Nijmeijer

56th IEEE Conference on Decision and Control
Introduction

Tracking control of drones

Three approaches for modeling dynamics and deriving controllers:

- Euler angles
- (Unit) quaternions
- SE(3)
Introduction

Tracking control of drones

Three approaches for modeling dynamics and deriving controllers:

- Euler angles
- (Unit) quaternions
- SE(3)

Euler angles

Singlarities in representation (gimbal lock)
Introduction

Tracking control of drones

Three approaches for modeling dynamics and deriving controllers:
- Euler angles
- (Unit) quaternions
- SE(3)

Euler angles

Singualarities in representation (gimbal lock)

(Unit) quaternions

Let both q and \bar{q} represent same attitude.
Need same control actions: $u(q) = u(\bar{q})$, otherwise: ambiguity.
Introduction

Remaining option: SE(3)

Both problems are overcome by considering dynamics on SE(3)
Introduction

Remaining option: SE(3)
Both problems are overcome by considering dynamics on SE(3)

Shortcoming of most papers on SE(3)
Almost global result under assumption of non-zero thrust follower.
Introduction

Remaining option: SE(3)

Both problems are overcome by considering dynamics on SE(3)

Shortcoming of most papers on SE(3)

Almost global result under assumption of non-zero thrust follower. Consequence: only local result.
Introduction

Remaining option: SE(3)
Both problems are overcome by considering dynamics on SE(3)

Shortcoming of most papers on SE(3)
Almost global result under assumption of non-zero thrust follower. Consequence: only local result.

Contribution
Almost global result under assumption of non-zero thrust reference.
Introduction

Comparable result

Major differences

▶ torques as input (vs. velocities)
▶ uniform almost global asymptotic stability
Introduction

Comparable result

Major differences

In this paper

- torques as input (vs. velocities)
- uniform almost global asymptotic stability
Problem

Drone dynamics

\[
\begin{align*}
\dot{\rho} &= R \nu \\
\dot{\nu} &= -S(\omega)\nu + gR^T e_3 - \frac{f}{m} e_3 \\
\dot{R} &= RS(\omega) \\
J\dot{\omega} &= S(J\omega)\omega + \tau,
\end{align*}
\]
<table>
<thead>
<tr>
<th>Drone dynamics</th>
<th>Reference dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{\rho} = R \nu)</td>
<td>(\dot{\rho}_r = R_r \nu_r)</td>
</tr>
<tr>
<td>(\dot{\nu} = -S(\omega)\nu + gR^T e_3 - \frac{f}{m} e_3)</td>
<td>(\dot{\nu}_r = -S(\omega_r)\nu_r + gR_r^T e_3 - \frac{f_r}{m} e_3)</td>
</tr>
<tr>
<td>(\dot{R} = RS(\omega))</td>
<td>(\dot{R}_r = R_r S(\omega_r))</td>
</tr>
<tr>
<td>(J\dot{\omega} = S(J\omega)\omega + \tau)</td>
<td>(J\dot{\omega}_r = S(J\omega_r)\omega_r + \tau_r)</td>
</tr>
</tbody>
</table>
Problem

Drone dynamics

\[
\begin{align*}
\dot{\rho} &= R\nu \\
\dot{\nu} &= -S(\omega)\nu + gR^T e_3 - \frac{f}{m} e_3 \\
\dot{R} &= RS(\omega) \\
J\dot{\omega} &= S(J\omega)\omega + \tau,
\end{align*}
\]

Reference dynamics

\[
\begin{align*}
\dot{\rho}_r &= R_r\nu_r \\
\dot{\nu}_r &= -S(\omega_r)\nu_r + gR_r^T e_3 - \frac{f_r}{m} e_3 \\
\dot{R}_r &= R_r S(\omega_r) \\
J\dot{\omega}_r &= S(J\omega_r)\omega_r + \tau_r
\end{align*}
\]

Feasible reference trajectory

Trajectory \((\rho_r, R_r, \nu_r, \omega_r, f_r, \tau_r)\) satisfying reference dynamics, with \(0 < f_r^{\min} \leq f_r(t)\) and \(\omega_r(t)\) bounded.
Problem

Error coordinates

\[
\begin{align*}
\tilde{\rho} &= R_r^T (\rho - \rho_r) \\
\tilde{\nu} &= -\tilde{R}^T S(\omega_r) \tilde{\rho} + \nu - \tilde{R}^T \nu_r \\
\tilde{\omega} &= \omega - \tilde{R}^T \omega_r
\end{align*}
\]
Problem

Error coordinates

\[\tilde{\rho} = R_r^T (\rho - \rho_r) \]
\[\tilde{\nu} = -\tilde{R}^T S(\omega_r) \tilde{\rho} + \nu - \tilde{R}^T \nu_r \]
\[\tilde{\omega} = \omega - \tilde{R}^T \omega_r \]

Error measure

\[\varepsilon(\tilde{\rho}, \tilde{R}, \tilde{\nu}, \tilde{\omega}) = \|\tilde{\rho}\| + \|\log \tilde{R}\| + \|\tilde{\nu}\| + \|\tilde{\omega}\| \]
Problem

Error coordinates

\[
\begin{align*}
\tilde{\rho} &= R_r^T (\rho - \rho_r) \\
\tilde{\nu} &= -\tilde{R}^T S(\omega_r)\tilde{\rho} + \nu - \tilde{R}^T \nu_r \\
\tilde{\omega} &= \omega - \tilde{R}^T \omega_r
\end{align*}
\]

Error measure

\[
\varepsilon(\tilde{\rho}, \tilde{R}, \tilde{\nu}, \tilde{\omega}) = \|\tilde{\rho}\| + \|\log \tilde{R}\| + \|\tilde{\nu}\| + \|\tilde{\omega}\|
\]

Problem

For \((\rho_r, R_r, \nu_r, \omega_r, f_r, \tau_r)\) being a given feasible reference trajectory, find appropriate control laws

\[
f = f(\rho, R, \nu, \omega, \rho_r, R_r, \nu_r, \omega_r) > 0, \quad \tau = \tau(\rho, R, \nu, \omega, \rho_r, R_r, \nu_r, \omega_r)
\]

such that for the resulting closed-loop system

\[
\lim_{t \to \infty} \varepsilon(\tilde{\rho}(t), \tilde{R}(t), \tilde{\nu}(t), \tilde{\omega}(t)) = 0.
\]
Controller design

Two steps:

- **Position tracking** (body-fixed accelerations as *virtual input*)
- **Attitude control** (using actual inputs)

Show stability result using *cascade analysis*
Position tracking

Error definition

Express tracking error in body fixed frame of the reference:

\[
\begin{bmatrix}
\rho_e \\
\nu_e
\end{bmatrix} = \begin{bmatrix}
R_r^T (\rho_r - \rho) \\
\nu_r - R_r^T \nu
\end{bmatrix}
\]
Position tracking

Error definition

Express tracking error in body fixed frame of the reference:

\[
\begin{bmatrix}
\rho_e \\
\nu_e
\end{bmatrix} =
\begin{bmatrix}
R_r^T (\rho_r - \rho) \\
\nu_r - R_r^T R \nu
\end{bmatrix}
\]

Tracking error dynamics

\[
\dot{\rho}_e = -S(\omega_r) \rho_e + \nu_e \\
\dot{\nu}_e = -S(\omega_r) \nu_e + f_m R_r^T R e_3 - \frac{f_r}{m} e_3
\]
Position tracking

Error definition

Express tracking error in **body fixed frame of the reference**:

\[
\begin{bmatrix}
\rho_e \\
\nu_e
\end{bmatrix} = \begin{bmatrix}
R_r^T (\rho_r - \rho) \\
\nu - R_r^T R \nu
\end{bmatrix}
\]

Tracking error dynamics

\[
\dot{\rho}_e = -\mathbf{S}(\omega_r) \rho_e + \nu_e
\]

\[
\dot{\nu}_e = -\mathbf{S}(\omega_r) \nu_e + \frac{f}{m} R_r^T R e_3 - \frac{f_r}{m} e_3
\]

Failing alternative

Express tracking error in **body fixed frame of the drone**:

\[
\begin{bmatrix}
\rho_e \\
\nu_e
\end{bmatrix} = \begin{bmatrix}
R^T (\rho - \rho_r) \\
\nu - R^T R_r \nu_r
\end{bmatrix}
\]

Tracking error dynamics

\[
\dot{\rho}_e = -\mathbf{S}(\omega) \rho_e + \nu_e
\]

\[
\dot{\nu}_e = -\mathbf{S}(\omega) \nu_e + \frac{f}{m} R^T R_r e_3 - \frac{f}{m} e_3
\]

no full control
Position tracking

Result

Consider the dynamics

\[
\begin{align*}
\dot{\rho}_e &= -S(\omega_r)\rho_e + \nu_e \\
\dot{\nu}_e &= -S(\omega_r)\nu_e + u
\end{align*}
\]

in closed loop with the dynamic state feedback

\[
u = R_r^T(K_P P_e + K_p \rho_e) - R_r^T K_P R_r \sigma_1(\rho_e + R_r^T P_e) \\
- k_\rho \sigma_2(\rho_e + R_r^T P_e) - K_\nu \sigma_3(\nu_e + R_r^T p_e)
\]

\[
\dot{P}_e = p_e
\]

\[
\dot{p}_e = -K_P p_e - K_p \rho_e + K_P R_r \sigma_1(\rho_e + R_r^T P_e)
\]

where \(K_P = K_P^T > 0, \ K_p = K_p^T > 0, \ K_\nu = K_\nu^T > 0, \) and \(k_\rho > 0. \)

The origin of the closed-loop system is **UGAS**.
Position tracking

Proof

Define $\bar{\rho}_e = \rho_e + R_r^T P_e$, $\bar{\nu}_e = \nu_e + R_r^T p_e$. Then

\[
\begin{align*}
\dot{P}_e &= p_e \\
\dot{\bar{\rho}}_e &= -K_P P_e - K_p p_e + K_P R_r \sigma_1(\bar{\rho}_e) \\
\dot{\bar{\rho}}_e &= -S(\omega_r) \bar{\rho}_e + \bar{\nu}_e \\
\dot{\bar{\nu}}_e &= -S(\omega_r) \bar{\nu}_e - k_\rho \sigma_2(\bar{\rho}_e) - K_\nu \sigma_3(\bar{\nu}_e)
\end{align*}
\]
Position tracking

Proof

Define \(\bar{\rho}_e = \rho_e + R_r^T P_e, \bar{\nu}_e = \nu_e + R_r^T p_e \). Then

\[
\dot{P}_e = p_e \\
\dot{\rho}_e = -K_P P_e - K_p p_e + K_P R \sigma_1(\bar{\rho}_e) \\
\dot{\nu}_e = -S(\omega_r) \bar{\rho}_e + \bar{\nu}_e \\
\dot{\bar{\nu}}_e = -S(\omega_r) \bar{\nu}_e - k_\rho \sigma_2(\bar{\rho}_e) - K_\nu \sigma_3(\bar{\nu}_e)
\]

Differentiating \(V_1(\bar{\rho}_e, \bar{\nu}_e) = k_\rho V_\sigma_2(\bar{\rho}_e) + \frac{1}{2} \bar{\nu}_e^T \bar{\nu}_e \) yields

\[
\dot{V}_1(\bar{\rho}_e, \bar{\nu}_e) = -\bar{\nu}_e^T K_\nu \sigma_3(\bar{\nu}_e) = Y_1(\bar{\nu}_e) \leq 0
\]
Proof

Define $\bar{\rho}_e = \rho_e + R_r^T P_e$, $\bar{\nu}_e = \nu_e + R_r^T p_e$. Then

\[
\begin{align*}
\dot{P}_e &= p_e \\
\dot{\rho}_e &= -K_P P_e - K_P p_e + K_P R_r \sigma_1(\bar{\rho}_e) \\
\dot{\bar{\rho}}_e &= -S(\omega_r)\bar{\rho}_e + \bar{\nu}_e \\
\dot{\nu}_e &= -S(\omega_r)\bar{\nu}_e - k_\rho \sigma_2(\bar{\rho}_e) - K_\nu \sigma_3(\bar{\nu}_e)
\end{align*}
\]

Differentiating $V_1(\bar{\rho}_e, \bar{\nu}_e) = k_\rho V_{\sigma_2}(\bar{\rho}_e) + \frac{1}{2} \bar{\nu}_T e \bar{\nu}_e$ yields

\[
\dot{V}_1(\bar{\rho}_e, \bar{\nu}_e) = -\bar{\nu}_e^T K_\nu \sigma_3(\bar{\nu}_e) = Y_1(\bar{\nu}_e) \leq 0
\]

Differentiating $V_2(\bar{\rho}_e, \bar{\nu}_e) = \bar{\nu}_e^T \bar{\rho}_e$ yields

\[
\dot{V}_2(\bar{\rho}_e, \bar{\nu}_e) = \bar{\nu}_e^T \bar{\nu}_e - \bar{\rho}_e^T k_\nu \sigma_3(\bar{\nu}_e) - \bar{\rho}_e^T k_\rho \sigma_2(\bar{\rho}_e) = Y_2(\bar{\rho}_e, \bar{\nu}_e).
\]
Position tracking

Proof

Define $\bar{\rho}_e = \rho_e + R_r^T P_e$, $\bar{\nu}_e = \nu_e + R_r^T p_e$. Then

$$\dot{P}_e = p_e$$
$$\dot{\rho}_e = -K_P P_e - K_p p_e + K_P R_r \sigma_1(\bar{\rho}_e)$$
$$\dot{\nu}_e = -S(\omega_r) \bar{\rho}_e + \bar{\nu}_e$$
$$\dot{\bar{\rho}}_e = -S(\omega_r) \bar{\nu}_e - k_{\rho} \sigma_2(\bar{\rho}_e) - K_{\nu} \sigma_3(\bar{\nu}_e)$$

Differentiating $V_1(\bar{\rho}_e, \bar{\nu}_e) = k_{\rho} V_{\sigma_2}(\bar{\rho}_e) + \frac{1}{2} \bar{\nu}_e^T \bar{\nu}_e$ yields

$$\dot{V}_1(\bar{\rho}_e, \bar{\nu}_e) = -\bar{\nu}_e^T K_{\nu} \sigma_3(\bar{\nu}_e) = Y_1(\bar{\nu}_e) \leq 0$$

Differentiating $V_2(\bar{\rho}_e, \bar{\nu}_e) = \bar{\nu}_e^T \bar{\rho}_e$ yields

$$\dot{V}_2(\bar{\rho}_e, \bar{\nu}_e) = \bar{\nu}_e^T \bar{\nu}_e - \bar{\rho}_e^T K_{\nu} \sigma_3(\bar{\nu}_e) - \bar{\rho}_e^T k_{\rho} \sigma_2(\bar{\rho}_e) = Y_2(\bar{\rho}_e, \bar{\nu}_e).$$

Use a nested Matrosov result and a cascaded result to show UGAS
Attitude control

Desired thrust and orientation

From position tracking we have desired virtual input \(u = \frac{f}{m} R_r^T R e_3 - \frac{f_r}{m} e_3 \). Then \(f = \| m u + f_r e_3 \| \) and \(R_r^T R e_3 = \frac{m u + f_r e_3}{\| m u + f_r e_3 \|} = f_d = [f_{d1} \quad f_{d2} \quad f_{d3}]^T \).
Desired thrust and orientation

From position tracking we have desired virtual input $u = \frac{f}{m} R_T^T R e_3 - \frac{f_r}{m} e_3$. Then $f = \| m u + f_r e_3 \|$ and $R_T^T R e_3 = \frac{m u + f_r e_3}{\| m u + f_r e_3 \|} = f_d = [f_{d1} \ f_{d2} \ f_{d3}]^T$. Since $0 < f_r^{\text{min}} \leq f_r(t)$, we can make $\| u \| \leq \frac{f_r^{\text{min}} - \epsilon}{m}$, so $f_{d3} > 0$.
Desired thrust and orientation

From position tracking we have desired virtual input \(u = \frac{f_r}{m} R_r^T R e_3 - \frac{f_r}{m} e_3 \). Then \(f = \| m u + f_r e_3 \| \) and \(R_r^T R e_3 = \frac{m u + f_r e_3}{\| m u + f_r e_3 \|} = f_d = [f_{d1}, f_{d2}, f_{d3}]^T \).

Since \(0 < f_r^{\text{min}} \leq f_r(t) \), we can make \(\| u \| \leq \frac{f_r^{\text{min}} - \epsilon}{m} \), so \(f_{d3} > 0 \). Define

\[
R_d = \begin{bmatrix}
1 - \frac{f_{d1}^2}{1 + f_{d3}^2} & -\frac{f_{d1} f_{d2}}{1 + f_{d3}^2} & f_{d1} \\
-\frac{f_{d1} f_{d2}}{1 + f_{d3}^2} & 1 - \frac{f_{d2}^2}{1 + f_{d3}^2} & f_{d2} \\
-f_{d1} & -f_{d2} & f_{d3}
\end{bmatrix} \in \text{SO}(3)
\]

\[
\omega_d = \begin{bmatrix}
-\dot{f}_{d2} + \frac{f_{d2} \dot{f}_{d3}}{1 + f_{d3}^2} \\
\dot{f}_{d1} - \frac{f_{d1} \dot{f}_{d3}}{1 + f_{d3}^2} \\
\frac{f_{d2} \dot{f}_{d1} - f_{d1} \dot{f}_{d2}}{1 + f_{d3}^2}
\end{bmatrix}
\]

Then \(R_d e_3 = f_d \). Note: \(R_d \) rotates from \(e_3 \) to \(f_d \) in spanned plane.
Desired thrust and orientation

From position tracking we have desired virtual input \(u = \frac{f}{m} R^T_r R e_3 - \frac{f_r}{m} e_3 \).

Then \(f = \|mu + f_r e_3\| \) and \(R^T_r R e_3 = \frac{mu + f_r e_3}{\|mu + f_r e_3\|} = f_d = [f_{d1} \ f_{d2} \ f_{d3}]^T \).

Since \(0 < f_{r\min} \leq f_r(t) \), we can make \(\|u\| \leq \frac{f_{r\min} - \epsilon}{m} \), so \(f_{d3} > 0 \). Define

\[
R_d = \begin{bmatrix}
1 - \frac{f_{d1}^2}{1+f_{d3}} & -\frac{f_{d1} f_{d2}}{1+f_{d3}} & f_{d1} \\
-\frac{f_{d1} f_{d2}}{1+f_{d3}} & 1 - \frac{f_{d2}^2}{1+f_{d3}} & f_{d2} \\
-f_{d1} & -f_{d2} & f_{d3}
\end{bmatrix} \in SO(3)
\]

\[
\omega_d = \begin{bmatrix}
\dot{f}_{d2} + \frac{f_{d2} \dot{f}_{d3}}{1+f_{d3}} \\
-f_{d1} - \frac{f_{d1} f_{d3}}{1+f_{d3}} \\
\frac{f_{d2} \dot{f}_{d1} - f_{d1} f_{d2}}{1+f_{d3}}
\end{bmatrix}
\]

Then \(R_d e_3 = f_d \). Note: \(R_d \) rotates from \(e_3 \) to \(f_d \) in spanned plane.

Define **attitude errors**:

\[
R_e = R_d^T (R^T_r R) \quad \omega_e = \omega - R^T_r R \omega_r - R_e^T \omega_d
\]
Attitude control

Attitude error dynamics

\[\dot{R}_e = R_e S(\omega_e) \]
\[J\dot{\omega}_e = \tau - JR^TR_rJ^{-1}[S(J\omega_r)\omega_r + \tau_r] + S(J\omega)\omega \]
\[+ JS(\omega_e)[\omega - \omega_e] + JR^T_e[S(\omega_d)R^T_d\omega_r - \dot{\omega}_d]. \]
Attitude control

Attitude error dynamics

\[
\dot{R}_e = R_e S(\omega_e)
\]

\[
J \dot{\omega}_e = \tau - JR^T R_r J^{-1} [S(J\omega_r) \omega_r + \tau_r] + S(J\omega) \omega
+ JS(\omega_e) [\omega - \omega_e] + JR_e^T [S(\omega_d) R_d^T \omega_r - \dot{\omega}_d].
\]

Controller (standard)

\[
\tau = -K_\omega \omega_e + K_R \sum_{i=1}^{3} k_i (e_i \times R_e^T e_i) + JR^T R_r J^{-1} [S(J\omega_r) \omega_r + \tau_r]
- S(J\omega) \omega - JS(\omega_e) [\omega - \omega_e] - JR_e^T [S(\omega_d) R_d^T \omega_r - \dot{\omega}_d]
\]

with distinct \(k_i > 0\) and \(K_\omega = K_\omega^T > 0, K_R = K_R^T > 0\).

Result: \((R_e, \omega_e) = (I, 0)\) ULES and UaGAS
Combined result

Cascaded system

\[\dot{P}_e = p_e \]
\[\dot{p}_e = -K_P P_e - K_p p_e + K_P R_r \sigma_1(\tilde{\rho}_e) \]
\[\dot{\tilde{\rho}}_e = -S(\omega_r)\tilde{\rho}_e + \tilde{\nu}_e \]
\[\dot{\tilde{\nu}}_e = -S(\omega_r)\tilde{\nu}_e - k_\rho \sigma_2(\tilde{\rho}_e) - K_\nu \sigma_3(\tilde{\nu}_e) + \frac{f}{m} R_r^T R(I - R_e^T)e_3 \]
\[\dot{R}_e = R_e S(\omega_e) \]
\[J \dot{\omega}_e = -K_\omega \omega_e + K_R \sum_{i=1}^{3} k_i(e_i \times R_e^T e_i) \]

If the functions \(\sigma_1, \sigma_2, \sigma_3 \), and \(P_e(t_0) \) and \(p_e(t_0) \) are properly chosen guaranteeing that \(\|u\| \leq f_{\text{min}} - \epsilon \) for some \(0 < \epsilon < f_{\text{min}} \), then the origin \((P_e, p_e, \tilde{\rho}, \tilde{\nu}, R_e, \omega_e) = (0, 0, 0, 0, I, 0) \) is ULES and UaGAS.
Cascaded system

\[
\begin{align*}
\dot{P}_e &= p_e \\
\dot{p}_e &= -K_P P_e - K_p p_e + K_P R_r \sigma_1(\bar{\rho}_e) \\
\dot{\bar{\rho}}_e &= -S(\omega_r)\bar{\rho}_e + \bar{\nu}_e \\
\dot{\bar{\nu}}_e &= -S(\omega_r)\bar{\nu}_e - k_\rho \sigma_2(\bar{\rho}_e) - K_\nu \sigma_3(\bar{\nu}_e) + \frac{f_m}{m} R_r^T R(1 - R_e^T)e_3 \\
\dot{R}_e &= R_e S(\omega_e) \\
J \dot{\omega}_e &= -K_\omega \omega_e + K_R \sum_{i=1}^{3} k_i (e_i \times R_e^T e_i)
\end{align*}
\]

Result

If the functions \(\sigma_1, \sigma_2, \sigma_3 \), and \(P_e(t_0) \) and \(p_e(t_0) \) are properly chosen guaranteeing that \(\|u\| \leq \frac{f_{r_{\text{min}}} - \epsilon}{m} \) for some \(0 < \epsilon < f_{r_{\text{min}}} \), then the origin \((P_e, p_e, \bar{\rho}, \bar{\nu}, R_e, \omega_e) = (0, 0, 0, 0, I, 0) \) is ULES and UaGAS.
Final result

Problem: we have solved a different problem

We have shown convergence of \((P_e, p_e, \bar{\rho}, \bar{\nu}, R_e, \omega_e)\) to \((0, 0, 0, 0, l, 0)\). However, we need to show that \(\varepsilon(\tilde{\rho}, \tilde{R}, \tilde{\nu}, \tilde{\omega})\) converges to 0.

Corollary (final result)
The derived controller also makes \(\varepsilon(\tilde{\rho}, \tilde{R}, \tilde{\nu}, \tilde{\omega})\) converge to 0, i.e., \((\tilde{\rho}, \tilde{R}, \tilde{\nu}, \tilde{\omega})\) converges to \((0, I, 0, 0)\).
Final result

Problem: we have solved a different problem

We have shown convergence of \((P_e, p_e, \bar{\rho}, \bar{\nu}, R_e, \omega_e)\) to \((0, 0, 0, 0, l, 0)\). However, we need to show that \(\varepsilon(\bar{\rho}, \bar{R}, \bar{\nu}, \bar{\omega})\) converges to 0.

Corollary (final result)

The derived controller also makes \(\varepsilon(\bar{\rho}, \bar{R}, \bar{\nu}, \bar{\omega})\) converge to 0, i.e., \((\bar{\rho}, \bar{R}, \bar{\nu}, \bar{\omega})\) converges to \((0, l, 0, 0)\).
Simulations

Data

AR-Drone: \(m = 0.456 \text{ [kg]} \)
\(J = \text{diag}(0.0022, 0.0025, 0.0045) \text{ [kgm}^2\text{]} \)
\(g = 9.81 \text{ [m/s}^2\text{]} \)
Simulations

Data

AR-Drone:
\[m = 0.456 \text{ [kg]} \]
\[J = \text{diag}(0.0022, 0.0025, 0.0045) \text{ [kgm}^2\text{]} \]
\[g = 9.81 \text{ [m/s}^2\text{]} \]

Reference trajectory:
\[\rho_r(t) = \begin{bmatrix} \cos t & \sin t & 1.5 + \sin t \end{bmatrix}^T \]

\(R_r \) defined (from \(\dot{\rho}_r \) as presented earlier).
Simulations

Data

AR-Drone: \(m = 0.456 \text{ [kg]} \)
\(J = \text{diag}(0.0022, 0.0025, 0.0045) \text{ [kgm}^2] \)
\(g = 9.81 \text{ [m/s}^2] \)

Reference trajectory: \(\rho_r(t) = \begin{bmatrix} \cos t & \sin t & 1.5 + \sin t \end{bmatrix}^T \)
\(R_r \) defined (from \(\dot{\rho}_r \) as presented earlier).

Initial conditions:

\[
\begin{align*}
\rho(t_0) &= \begin{bmatrix} -1 \\ 0.7 \\ 4 \end{bmatrix} & R(t_0) &= \begin{bmatrix} -0.25 & -0.433 & 0.866 \\ 0.533 & -0.808 & -0.25 \\ 0.808 & 0.34 & 0.433 \end{bmatrix} \\
\nu(t_0) &= \begin{bmatrix} 0.1 \\ -0.8 \\ 0.7 \end{bmatrix} & \omega(t_0) &= \begin{bmatrix} -1 \\ 0.3 \\ -2 \end{bmatrix}
\end{align*}
\]
Disturbances (more realistic)

- **Mass discrepancy:** \(m = 0.456 \text{[kg]}, \quad m_r = 0.48 \text{[kg]} \).
- **Add model of sensors and actuators**
 - sampling
 - delays
 - noisy measurements
- **Use filtered measurements**
Simulations

Results: Filtered errors $e = \rho_r(t) - \rho(t)$ in the inertial frame

- without integral control (dashed)
- with integral control (solid)
Simulations

Results: Attitude errors (metric: angle of rotation)

- with respect to the desired attitude, R_e, (solid),
- with respect to the reference attitude, $R_r^T R$, (dashed)

Graph showing the logarithm of the attitude errors over time.
Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design.
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design
- **uniform almost global** asymptotic stability on SE(3).
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design.
- Uniform almost global asymptotic stability on SE(3).
- Validated by simulations with added disturbances.
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design
- **uniform almost global** asymptotic stability on SE(3).
- Validated by simulations with added disturbances
 - difference in actual and expected mass
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design.
- Uniform almost global asymptotic stability on SE(3).
- Validated by simulations with added disturbances:
 - difference in actual and expected mass
 - used sampled, delayed, and noisy measurements.
- Implemented on AR.Drone 2.0:
 - works well at low velocities
 - noticeable mismatch at high velocities
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design.
- **uniform almost global** asymptotic stability on SE(3).
- Validated by simulations with added disturbances:
 - difference in actual and expected mass
 - used sampled, delayed, and noisy measurements.
- Implemented on AR.Drone 2.0.
Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.

Explicitly took into account the constraint of non-zero total thrust in our controller design

uniform almost global asymptotic stability on SE(3).

Validated by simulations with added disturbances
- difference in actual and expected mass
- used sampled, delayed, and noisy measurements.

Implemented on AR.Drone 2.0.
- works well at low velocities
Conclusions

- Avoid singularities of Euler angles, ambiguity of quaternions, allows for large angular maneuvers.
- Explicitly took into account the constraint of non-zero total thrust in our controller design
- uniform almost global asymptotic stability on SE(3).
- Validated by simulations with added disturbances
 - difference in actual and expected mass
 - used sampled, delayed, and noisy measurements.
- Implemented on AR.Drone 2.0.
 - works well at low velocities
 - noticeable mismatch at high velocities
Future work

- Extend to model including velocity-dependent disturbance
Future work

- Extend to model including velocity-dependent disturbance
- Extend the state feedback controller to an output feedback controller (body-fixed velocity ν not available for measurement).