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Abstract— In this paper we present a controller which
achieves uniform almost global asymptotic stability of the track-
ing error dynamics for a quadrotor on SE(3). By considering
the tracking control of a quadrotor UAV on SE(3) we avoid
singularities of Euler angles and ambiguity of quaternions and
by explicitly taking into account the constraint of non-zero
total thrust in our controller design, we do not achieve a local
result but almost global asymptotic stability of the tracking
controller. Second, we consider the position tracking error in
the body-frame of the reference UAV. As a result, contrary to
most existing tracking controllers, our control action becomes
independent of the definition of the inertial frame. We illustrate
by simulations that even in the presence of small disturbances
and sampled, delayed, and noisy measurements the controller
achieves stable tracking error dynamics for which errors
converge to some region near the origin.

I. INTRODUCTION

During the last decade, the interest in control of Unmanned

Aerial Vehicles (UAVs) has increased considerably. Many

papers deal with hovering based on linearisation, but there is

also a vast amount of literature considering trajectory track-

ing using nonlinear control techniques. Many approaches

have been considered, such as, amongst others, feedback

linearisation [1], [2], backstepping [3]–[6], MPC [7], LMIs

[8], and sliding mode control [9], [10]. See also [11] and

references therein.

All of these controllers are based on Euler angles, exhibit-

ing singularities when describing rotational motions, signifi-

cantly reducing their applicability for achieving large angular

maneuvers. To overcome this issue, in [12] attitude stabi-

lization of a UAV has been considered using quaternions.

However, as quaternions have ambiguities in representing an

attitude (two quaternions can be associated with an attitude),

these should be carefully resolved since otherwise the system

becomes sensitive to small measurement noises [13] and may

exhibit unwinding behavior [14].

To overcome the singularities of Euler angles and the

ambiguity of quaternions, the tracking control of UAVs has

also been considered directly on the special Euclidian group

SE(3), [15]–[20]. A crucial assumption in these papers is that

the total thrust is non-zero. This assumption is required for

having a well-defined controller. However, as this total thrust

results from the controller, an ambiguity in the stability proof

arises. This ambiguity can be overcome by assuming that the

reference total thrust is bounded away from zero and initial

errors are sufficiently small. The price to pay for this repair

is that only a local result remains, with a relatively small
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region of attraction. In this paper we only need to assume

that the total thrust for the reference stays away from zero.

Our controller design then guarantees that the total thrust

for the UAV itself stays away from zero. The only paper

that we are aware of with a similar result is [21]. In that

paper, angular velocities are considered as input, and almost

global asymptotic stability has been proven. In this paper

we consider torques as input and we show uniform almost

global asymptotic stability.

A common property of all the above mentioned papers

on tracking control of UAVs is the definition of the tracking

error in the inertial frame, leading to an undesired property

of the resulting controllers. Consider a reference trajectory

to be tracked by the UAV, as well as an initial condition.

Apply the proposed controller and determine the resulting

system behavior. Next, consider the same reference trajectory

and initial condition, but take a different inertial frame, e.g.,

rotated by an angle of 90◦ about the z-axis. Since in this

new inertial frame the error is defined differently, the input

and therefore the resulting system behavior is different.

The main contributions of this paper are twofold. First, we

present a controller which achieves uniform almost global

asymptotic stability of the tracking error dynamics for a

quadrotor UAV on SE(3). By considering the tracking control

of a quadrotor UAV on SE(3) we avoid singularities of Euler

angles and ambiguity of quaternions and by explicitly taking

into account the constraint of non-zero total thrust in our

controller design, we do not achieve a local result but almost

global asymptotic stability of the tracking controller (note

that a global result can not be achieved on SE(3), cf. [14]).

Second, we consider the position tracking error in the body-

frame of the reference UAV. As a result, contrary to most

existing tracking controllers, our control action becomes

independent of the definition of the inertial frame.

The outline of this paper is as follows. In Section II we

introduce definitions and theorems used in the remainder of

the paper. In Section III we introduce the quadrotor dynamics

and the problem formulation. In Section IV we derive a

position tracking controller under the assumption that we can

use the body-fixed linear accelerations as (virtual) input. In

Section V we aim to realize this virtual input by controlling

the rotor thrusts. In Section VI we analyze the stability of the

cascaded system that we obtained. Section VII contains sim-

ulation results with our proposed controller and Section VIII

concludes the paper.

II. PRELIMINARIES

In this section we introduce notation, definitions and

theorems used in the remainder of this paper.
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Let ei for i ∈ {1, 2, 3} denote the standard unit vector.

Let σ : R
n → R

n denote a vector-function σ(e) =
s(eT e)
eT e

e, where s : R → R is a twice continuously

differentiable monotone function satisfying s(0) = 0 and

limx→0 s(x)/x = s′(0) > 0. Furthermore, let Vσ(e) =∫ eT e

0
s(x)/xdx, which is positive definite and radially un-

bounded. Possible candidates are σ(e) = e and σ(e) =
e√

1+eT e
, where the latter function is bounded. In the re-

mainder we use the functions σ1, σ2, and σ3.

Definition 1: A function σi for which ‖σi(e)‖ ≤ M for

all e is called a saturation function.

Theorem 2 (cf. [23, Theorem 1]): Consider the dynami-

cal system

ẋ = f(t, x) x(t0) = x0 (1)

with f(t, 0) = 0, f : R
+ × R

n → R
n locally bounded,

continuous and locally uniformly continuous in t.
If there exist j differentiable functions Vi : R

+×R
n → R,

bounded in t, and continuous functions Yi : Rn → R for

i ∈ {1, 2, . . . j} such that

• V1 is positive definite,

• V̇i(t, x) ≤ Yi(x), for all i ∈ {1, 2, . . . , j},

• Yi(x) = 0 for i ∈ {1, 2, . . . , k − 1} implies Yk(x) ≤ 0,

for all k ∈ {1, 2, . . . , j},

• Yi(x) = 0 for all i ∈ {1, 2, . . . , j} implies x = 0,

then the origin x = 0 of (1) is uniformly globally asymptot-

ically stable (UGAS).

Proof: Since V1 is positive definite and V̇1 ≤ Y1(x) ≤ 0
the origin of (1) is uniformly globally stable. Since Vi(t, x)
are continuous and bounded in t, Vi(t, x) are bounded for

i ∈ {2, 3, . . . , j}. Next, apply [23, Theorem 1].

For definitions of uniform global (or local) asymptotic (or

exponential) stability (UGAS, UGES, ULES), see [22].

Definition 3: The origin of (1) is uniformly almost glob-
ally asymptotically stable (UaGAS) if it is UGAS, except for

initial conditions in a set of measure zero.

Theorem 4 (cf. [15], [17]): Consider the system

Ṙ = RS(ω) (2a)

Jω̇ = −Kωω +KR

3∑
i=1

ki(ei ×RT ei), (2b)

where R ∈ SO(3) = {R ∈ R
3×3 | RTR = I, detR = 1},

ω ∈ R
3, J = JT > 0 and

S(a) = −S(a)T =

⎡
⎣ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎤
⎦ . (3)

If Kω = KT
ω > 0, KR = KT

R > 0, and ki > 0 are distinct

(e.g., 0 < k1 < k2 < k3), then the equilibrium point (I, 0) of

(2) is uniformly locally exponentially stable (ULES) and uni-

formly almost global asymptotic stable (UaGAS). That is, let

Ec = {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)}.

Then R converges to Ec and ω converges to zero. The

equilibria (R, 0) of (2), where R ∈ Ec\{I} are unstable and

the set of all initial conditions converging to the equilibrium

(R, 0), where R ∈ Ec \ {I} form a lower dimensional

manifold.

Theorem 5 (cf. [24]): Consider a system ẋ = f(t, x) with

f(t, 0) = 0 that can be written as

ẋ1 = f1(t, x1) + g(t, x1, x2)x2 (4a)

ẋ2 = f2(t, x2) (4b)

where x1 ∈ R
n, x2 ∈ R

m, f1(t, x1) is continuously differ-

entiable in (t, x1) and f2(t, x2), g(t, x1, x2) are continuous

in their arguments, and locally Lipschitz in x2 and (x1, x2)
respectively. This system is a cascade of the systems

ẋ1 = f1(t, x1) (5)

and (4b). If the origins of the systems (5) and (4b) are UGAS

and solutions of (4) remain bounded, then the origin of the

system (4) is UGAS. In addition, if the systems (5) and (4b)

are ULES, then the system (4) is ULES.

Theorem 6 (cf. [25, Corollary 2.4.6]): If the origin of (5)

is uniformly globally exponentially stable (UGES), the origin

of the system (4b) is ULES and UGAS, and

‖g(t, x1, x2)‖ ≤ k1(‖x2‖) + k2(‖x2‖)‖x1‖
then the origin of the system (4) is ULES and UGAS.

III. DYNAMICS AND PROBLEM FORMULATION

A. Quadrotor dynamics

Let ρ ∈ R
3 denote the position of the centre of mass

relative to a North-East-Down (NED) inertial frame. Let R ∈
SO(3) denote the rotation matrix from the body-fixed frame

to the inertial frame. Furthermore, let ν ∈ R
3 and ω ∈ R

3

denote the body-fixed linear and angular velocities. Then the

dynamics of a UAV can be described as:

ρ̇ = Rν (6a)

ν̇ = −S(ω)ν + gRT e3 − f

m
e3 (6b)

Ṙ = RS(ω) (6c)

Jω̇ = S(Jω)ω + τ, (6d)

where m denotes the total mass, J = JT > 0 the inertia

matrix with respect to the body-fixed frame, the matrix S
is given by (3), and f ∈ R and τ ∈ R

3 denote respectively

the total thrust magnitude and the total moment vector in the

body-fixed frame, which are assumed to be the inputs.

B. Problem

Assume that a feasible reference trajectory is given, i.e.,

a trajectory (ρr, Rr, νr, ωr, fr, τr) satisfying

ρ̇r = Rrνr (7a)

ν̇r = −S(ωr)νr + gRT
r e3 −

fr
m

e3 (7b)

Ṙr = RrS(ωr) (7c)

Jω̇r = S(Jωr)ωr + τr, (7d)

where 0 < fmin
r ≤ fr(t).
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Define the following error coordinates on SE(3):

ρ̃ = RT
r (ρ− ρr) R̃ = RT

r R

ν̃ = −R̃TS(ωr)ρ̃+ ν − R̃T νr ω̃ = ω − R̃Tωr

with corresponding error measure:

ε(ρ̃, R̃, ν̃, ω̃) = ‖ρ̃‖+ ‖ log R̃‖+ ‖ν̃‖+ ‖ω̃‖. (8)

Then we can define the tracking control problem as follows.

Problem 7: For (ρr, Rr, νr, ωr, fr, τr) being a given fea-

sible reference trajectory, find appropriate control laws

f = f(ρ,R, ν, ω, ρr, Rr, νr, ωr)

τ = τ(ρ,R, ν, ω, ρr, Rr, νr, ωr)
(9)

such that for the resulting closed-loop system (6), (7), (9)

lim
t→∞ ε

(
ρ̃(t), R̃(t), ν̃(t), ω̃(t)

)
= 0.

IV. POSITION TRACKING CONTROL

We separate the design of the tracking controller into two

parts. In this section we consider the derivation of a position

tracking controller under the assumption that we can use the

body-fixed linear accelerations as (virtual) input. In the next

section we consider the problem of realizing this virtual input

by means of the actual inputs.

As mentioned in the introduction, the commonly used

position tracking error is given by ρ − ρr. A drawback

of this definition of the tracking error is its dependence

on the choice of the inertial frame. Though translating the

inertial frame leaves this error definition invariant, rotating

the inertial frame does not. By alternatively defining the error

in a body fixed frame (of either the drone of the reference),

rotation of the inertial frame leaves the alternative error

definition invariant. We propose to express the tracking error

in the body-fixed frame of the reference:[
ρe
νe

]
=

[
RT

r (ρr − ρ)
νr −RT

r Rν

]
. (10)

Using this definition the tracking error dynamics become

ρ̇e = −S(ωr)ρe + νe

ν̇e = −S(ωr)νe +
f

m
RT

r Re3 − fr
m

e3.

For stabilizing these time-varying tracking error dynamics

we assume f
mRT

r Re3 − fr
m e3 to be a virtual input which we

want to achieve by controlling the thrust magnitude and the

attitude.

Remark 8: Note that by selecting f and R we have full

control over f
mRT

r Re3 − fr
m e3 and therefore can consider it

to be a virtual input. However, if we would have expressed

the tracking error in the body-fixed frame of the UAV by

taking ρe = RT (ρ − ρr) and νe = ν − RTRrνr, then by

selecting f and R we would have had to have full control

over fr
mRTRre3− f

me3, which we do not have. This explains

our choice for defining the error in the body-fixed frame of

the reference as in (10).

Proposition 9: Consider the dynamics

ρ̇e = −S(ωr)ρe + νe (12a)

ν̇e = −S(ωr)νe + u (12b)

in closed loop with the dynamic state feedback

u = RT
r (KPPe +Kppe)−RT

r KPRrσ1(ρe +RT
r Pe)

− kρσ2(ρe +RT
r Pe)−Kνσ3(νe +RT

r pe) (13a)

Ṗe = pe (13b)

ṗe = −KPPe −Kppe +KPRrσ1(ρe +RT
r Pe), (13c)

where KP = KT
P > 0, Kp = KT

p > 0, Kν = KT
ν > 0, and

kρ > 0. If ωr(t) is bounded and continuous, then the origin

of the closed-loop system (12),(13) is UGAS.

Proof: Define the change of coordinates

ρ̄e = ρe +RT
r Pe ν̄e = νe +RT

r pe. (14)

Then the closed-loop system (12),(13) can be described as

Ṗe = pe (15a)

ṗe = −KPPe −Kppe +KPRrσ1(ρ̄e) (15b)

˙̄ρe = −S(ωr)ρ̄e + ν̄e (15c)

˙̄νe = −S(ωr)ν̄e − kρσ2(ρ̄e)−Kνσ3(ν̄e). (15d)

Consider the positive definite function

V1(ρ̄e, ν̄e) = kρVσ2
(ρ̄e) +

1

2
ν̄Te ν̄e.

Along solutions of (15c),(15d) we have

V̇1(ρ̄e, ν̄e) = −ν̄Te Kνσ3(ν̄e) = Y1(ν̄e) ≤ 0.

Define V2(ρ̄e, ν̄e) = ν̄Te ρ̄e. Then

V̇2(ρ̄e, ν̄e) = ν̄Te ν̄e−ρ̄Te kνσ3(ν̄e)−ρ̄Te kρσ2(ρ̄e) = Y2(ρ̄e, ν̄e).

Using Theorem 2 implies that (15c),(15d) is UGAS.

Furthermore, since the system[
Ṗe

ṗe

]
=

[
0 I

−KP −Kp

] [
Pe

pe

]

is UGES for Kp = KT
p > 0, KP = KT

P > 0, we can use

Theorem 6 to conclude that (15) is ULES and UGAS.

Remark 10: For σ1(ρ̄e) = ρ̄e we have

ṗe = −Kppe +KPRrρe.

So pe is a filtered version of Rrρe = ρr − ρ, and from

(15a) Pe is the integral of that signal. So RT
r Pe is a natural

integrated version of our (filtered) tracking error coordinate.

If we furthermore take kρσ2(ρ̄e) = KI ρ̄e, σ3(ν̄e) = ν̄e,

KP = Rr(Kρ −KI)R
T
r , and Kp = RrKνR

T
r we have

u = −KIR
T
r Pe −Kρρe −Kννe,

which is a PID controller.

Remark 11: Let KP and Kp be given. For σ1 we can take

a saturation function to guarantee that ‖KPRrσ1(ρ̄e)‖ ≤ κ
for some κ > 0. Let

x =

[
Pe

pe

]
, A =

[
0 I

−KP −Kp

]
.
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Then there exist k and λ such that ‖e(t−t0)A‖ ≤ ke−λ(t−t0)

and we have for (15a),(15b)

‖x(t)‖ ≤ k‖x(t0)‖+ k

λ
κ.

By taking κ and x(t0) sufficiently small, we can guarantee

‖RT
r (KPPe +Kppe)‖ ≤ ε

for an arbitrary given ε > 0. Therefore, by also taking a

saturation function for σ2 and σ3 we can guarantee to meet

an arbitrary given upperbound on ‖u‖ in (13a).

V. ATTITUDE CONTROL

In the previous section we showed that if we would

have f
mRT

r Re3 − fr
m e3 equal to u given by (13), we can

stabilize the position tracking error dynamics. Therefore, in

this section we aim to use our inputs f and τ to let fRT
r Re3

converge to the vector fre3+mu, where u is given by (13).

Since for a feasible reference trajectory 0 < fmin
r ≤ fr(t)

we know from Remark 11 that by properly selecting σ1, σ2,

σ3, Pe(t0) and pe(t0) we can guarantee that ‖u‖ ≤ fmin
r −ε
m

for any 0 < ε < fmin
r . As a result, we have for

f = ‖fre3 +mu‖, (16)

where u is given by (13), that 0 < ε ≤ f(t).
By taking f as in (16) we have determined one of our four

inputs, and we can use τ for achieving the desired attitude.

Since 0 < ε ≤ f , we can define

fd =

⎡
⎣fd1fd2
fd3

⎤
⎦ =

fre3 +mu

‖fre3 +mu‖ (17a)

as the desired thrust direction, satisfying fd3 > 0. We let

Rd =

⎡
⎢⎢⎣
1− f2

d1

1+fd3
− fd1fd2

1+fd3
fd1

− fd1fd2
1+fd3

1− f2
d2

1+fd3
fd2

−fd1 −fd2 fd3

⎤
⎥⎥⎦ ∈ SO(3) (17b)

denote the rotation matrix which rotates the desired thrust

vector to the thrust vector of the reference (i.e., e3) in the

plane containing both vectors. This also gives

ωd =

⎡
⎢⎢⎢⎢⎢⎣

−ḟd2 +
fd2ḟd3
1+fd3

ḟd1 − fd1ḟd3
1+fd3

fd2ḟd1−fd1ḟd2
1+fd3

⎤
⎥⎥⎥⎥⎥⎦
.

Using (16) and (17), we can write fre3 +mu = fRde3, so

our goal to determine τ which makes fRT
r Re3 converge to

fre3+mu can be replaced by the goal to determine τ which

makes RT
r R converge to Rd.

We define the following attitude error in the body-fixed

frame of the drone:

Re = RT
d (R

T
r R). (18)

The associated angular velocity tracking error is given by

ωe = ω −RTRrωr −RT
e ωd, (19)

that is, we have Ṙe = ReS(ωe). Furthermore,

Jω̇e = S(Jω)ω + τ − JRTRrJ
−1[S(Jωr)ωr + τr]

+ JS(ωe)[ω − ωe] + JRT
e [S(ωd)R

T
d ωr − ω̇d].

The input

τ = −Kωωe +KR

3∑
i=1

ki(ei ×RT
e ei)− S(Jω)ω

− JRT
e [S(ωd)R

T
d ωr − ω̇d]− JS(ωe)[ω − ωe]

+ JRTRrJ
−1[S(Jωr)ωr + τr]

(20)

results in the closed-loop system

Ṙe = ReS(ωe)

Jω̇e = −Kωωe +KR

3∑
i=1

ki(ei ×RT
e ei),

for which (I, 0) is ULES and UaGAS for distinct ki > 0 and

Kω = KT
ω > 0 and KR = KT

R > 0 according to Theorem 4.

VI. CASCADE ANALYSIS

In the previous two sections we determined respectively

a desired control action for the position tracking error dy-

namics, and a controller for f and τ which asymptotically

achieves this desired control action for the position tracking

error dynamics. As a final step in our analysis we need to

analyse stability of the cascaded system of attitude controller

and desired position controller.

Consider the system dynamics (6) and the reference dy-

namics (7) in closed loop with the inputs (13),(16) and (20).

The resulting closed-loop system can be written as

Ṗe = pe (21a)

ṗe = −KPPe −Kppe +KPRrσ1(ρ̄e) (21b)

˙̄ρe = −S(ωr)ρ̄e + ν̄e (21c)

˙̄νe = −S(ωr)ν̄e − kρσ2(ρ̄e)−Kνσ3(ν̄e)+

+
f

m
RT

r R(I −RT
e )e3 (21d)

Ṙe = ReS(ωe) (21e)

Jω̇e = −Kωωe +KR

3∑
i=1

ki(ei ×RT
e ei). (21f)

Proposition 12: If the functions σ1, σ2, σ3, and Pe(t0)
and pe(t0) are properly chosen guaranteeing that ‖u‖ ≤
fmin
r −ε
m for some 0 < ε < fmin

r , cf. Remark 11, then the origin

(Pe, pe, ρ̄, ν̄, Re, ωe) = (0, 0, 0, 0, I, 0) of (21) is ULES and

UaGAS.

Proof: Notice that (21) can be seen as a cascade of the

systems ((21a), (21b), (21c), (21d)) and ((21e),(21f)).

Since we have UaGAS of ((21e),(21f)), we consider our

stability analysis on R
12×G where G ⊂ SO(3)×R

3 denotes

the almost global region of attraction of ((21e),(21f)).
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A first observation is that due to the saturation function

σ1, we have that Pe and pe remain bounded, cf. Remark 11.

It remains to show that ρ̄e and ν̄e remain bounded. Consider

V = kρVσ2(ρ̄e) +
1

2
ν̄Te ν̄e. (22)

Differentiating (22) along solutions of (21) results in

V̇ ≤ ν̄Te
f

m
RT

r R(I −RT
e )e3 ≤ c1

√
V ‖I −Re‖.

Since ((21e),(21f)) is ULES we have√
V (t)−

√
V (t0) ≤ c2(t0).

So V is bounded, and therefore solutions of (21) are

bounded. The result follows from Theorem 5.

Corollary 13: The controller (13), (16), (20) solves the

reference trajectory tracking problem, Problem 7.

Proof: From Pe → 0, pe → 0, ρ̄e → 0, ν̄e → 0 we

have using (14) that ρe → 0 and νe → 0, so using (10) we

have ρ̃ → 0 and ν̃ → 0. Furthermore, we have u → 0, so

from (17) we obtain fd → e3 and Rd → I . Using Re → I
and (18) we have R̃ → 0. Finally, since u̇ → 0 also ωd → 0,

and therefore from ωe → 0 and (19), we have ω̃ → 0.

VII. SIMULATION RESULTS

In this section a simple case study is presented to validate

our theoretical results. We consider the dynamics (6) with

m = 0.456[kg], J = diag(0.0022, 0.0025, 0.0045)[kgm2],

and g = 9.81[m/s2]. For the reference (7) we assume a

discrepancy of 5% between the actual mass of the quadrotor

m and the expected mass mr = 0.48[kg]. For the reference

trajectory we take

ρr(t) =

⎡
⎣ cos t

sin t
1.5 + sin t

⎤
⎦ .

Using (7) this also determines fr, Rr, (along the lines of

(17)), ωr, τr, and νr. The initial conditions are set to

ρ(t0) =

⎡
⎣−1
0.7
4

⎤
⎦ R(t0) =

⎡
⎣−0.25 −0.433 0.866
0.533 −0.808 −0.25
0.808 0.34 0.433

⎤
⎦

ν(t0) =

⎡
⎣ 0.1
−0.8
0.7

⎤
⎦ ω(t0) =

⎡
⎣−1
0.3
−2

⎤
⎦ .

For the controller we use the functions σi(x) =
x√

1+xT x
for

i ∈ {1, 2, 3} and the gains KP = 0.4I , Kp = I , kρ = 2.6,

Kν = 2I , Kω = 30J , KR = 70J , k1 = 0.9, k2 = 1, k3 =
1.1, which guarantee that ‖u‖ < mint fr(t) as explained in

Remark 11.

To more closely resemble an AR.Drone 2.0, we include

noise and sensor models, include a time-delay of 0.1 seconds

for obtaining position measurements, and include physical

limitations on the admissible thrust f and torques τ . For

more details about these models and the noise levels, see

[26] and [27, Chapter 6].
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Fig. 1. Filtered errors e = ρr(t) − ρ(t) in the inertial frame without
integral control (dashed) and with integral control (solid).
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Fig. 2. Attitude-error of the quadrotor with respect to the desired attitude,
Re, (solid), and with respect to the reference attitude, RT

r R, (dashed),
characterized by the metric which describes the angle of rotation.

To illustrate the effect of the integral action we also

performed simulations without integral action, that is, KP =
0, Kp = 0, and without (13b) and (13c).

The results are presented in Fig. 1 which shows the filtered

version of the position error in the inertial frame (in x, y and

z direction). The effect of the integrating action can clearly

be seen in the altitude. In case no integral action is added to

the controller, the quadrotor consistently remains at a larger

altitude than desired. This results from the fact that since it

is assumed that the quadrotor is heavier than in reality, an

excessive reference thrust is generated by the system.

As explained in Section V, we try to align the normalized

vectors RT
r Re3 and Rde3 by making RT

r R approach Rd,

which is represented by the matrix Re that should converge

to I . However, the ultimate goal is to have the attitude R
converge to Rr, which is represented by the matrix RT

r R
that should converge to I . In Fig. 3 the distance of both Re

and RT
r Rr to I are depicted, where we use the metric which

makes the distance between two elements of SO(3) the length

of the geodesic between them using the natural Riemannian

metric, i.e., d(R1, R2) = ‖ log(R1R
T
2 )‖. From this figure
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we observe that in the presence of noisy measurements, the

quadrotor is still able to track the attitude accurately.
These simulations illustrate that in case the system is

subject to small constant disturbances (e.g., difference in

actual and expected mass) and sampled, delayed, and noisy

measurements, closed-loop stability is maintained and the

corresponding tracking errors converge to some region near

the origin.

VIII. CONCLUSIONS

In this paper we presented a controller which achieves

uniform almost global asymptotic stability of the tracking

error dynamics for a quadrotor on SE(3). By considering

the tracking control of a quadrotor UAV on SE(3), we

avoid singularities of Euler angles and ambiguity of quater-

nions, allowing for large angular maneuvers. Furthermore,

by explicitly taking into account the constraint of non-zero

total thrust in our controller design, our presented controller

achieves an almost global result instead of only a local result.
We validated our controller by simulations in which we

added small constant disturbances (e.g., difference in ac-

tual and expected mass) and used sampled, delayed, and

noisy measurements. The simulations show that despite these

disturbances the controller achieves stable tracking error

dynamics for which errors converge to some region near the

origin.
Our next steps are to implement the controller on an exper-

imental setup with an AR.Drone 2.0. Some first experimental

results are available in [26], [27]. Furthermore, we want to

extend the state feedback controller to an output feedback

controller, since the body-fixed velocity ν is not available

for measurement.
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