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Abstract: We introduce a new way to look at the combined lateral and longitudinal control
problem for platooning vehicles by studying these problems separately. The lateral control
problem is approached as a path following problem in the spatial domain: based on the path
of the preceding vehicle we determine a path for the following vehicle which converges to
the given path of its predecessor. In particular if the following vehicle happens to be on the
path of its predecessor, the generated path of the follower equals the path of its predecessor.
This approach not only overcomes the problem of corner cutting, but also achieves appropriate
following behavior in case of large initial errors. As a by-product of solving the lateral control
problem, we obtain a mapping from the path of the follower to the path of its predecessor. Using
this mapping we can consider the longitudinal control problem as controlling two points on the
same path towards a required inter-vehicle distance, which is comparable to CACC, i.e., the
problem of controlling two points on a straight line towards a required inter-vehicle distance.
We illustrate our approach by means of simulation.
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1. INTRODUCTION

The increasing need for transportation leads to traffic con-
gestion on highways. Platooning for communicating road
vehicles can safely increase highway capacity by reducing
inter vehicle distances as concluded in Vahidi and Eskan-
darian (2003). This so-called Cooperative Adaptive Cruise
Control (CACC), which is an extension of traditional
ACC, relies on vehicle-to-vehicle (V2V) communication
which provides a following vehicle with information about
its preceding vehicle. The additional V2V communication
not only allows for safely reducing inter vehicle distances,
but also attenuates disturbances in upstream direction
(string stability), see Naus et al. (2010a); Ploeg et al.
(2011). The reduced inter vehicle distance also results in
a reduction of aerodynamic drag force, in particular for
heavy duty vehicles, resulting in a reduction of emissions
and fuel consumption, see Shladover (2006); Alam et al.
(2010).

Several strategies for fully automated platooning have
been presented in literature. As in this paper, a separation
of longitudinal and lateral control of automated vehicles
has been introduced in Rajamani et al. (2000). On the one
hand, the longitudinal control has been developed based
on CACC, whereas the lateral control has been developed
based on a lane-keeping method. A disadvantage of this
approach is the need to embed each lane with magnets,
rendering its usage impractical. Tunçer et al. (2010) pro-

pose a vision-based lane-keeping system for the lateral
control which is commonly adopted. A problem with that
approach in case of platooning is that the preceding vehicle
blocks the lane markings, making it impossible for the
vision system to track them, cf. Solyom et al. (2013).

Using the position and orientation of the preceding vehi-
cle as a reference, direct vehicle following controllers for
the lateral control problem have, amongst others, been
introduced by Lu and Tomizuka (2003); Solyom et al.
(2013). Since the following vehicle is controlled towards
the preceding vehicle, in case of following a curved path,
corner cutting appears, as observed by Gehrig and Stein
(1998); Goi et al. (2010). This corner cutting depends
on the curvature of the path and the inter-vehicle dis-
tance. Though Lu and Tomizuka (2003) claim that corner
cutting is limited for typical highway driving (an inter-
vehicle distance of 10[m] and curvature of 0.00125[m−1]
leads to a deviation with the path of the predecessor of
only 5cm), this does become a serious problem in case
of larger platoon lengths, causing vehicles to depart from
their lane. To avoid corner cutting, instead of controlling
the following vehicle towards its predecessor, it has been
controlled towards the path of its predecessor. To that
end, Gehrig and Stein (1998) keep a buffer of predecessor
data such as position, velocity, and yaw rate until the
following vehicle reaches a certain point, after which that
data can be removed from the history buffer since it is no
more of interest. Keeping a similar buffer of predecessor
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data is also required for the method we propose in this
paper. Several path following papers introduce a look-
ahead point, where the vehicle is going to be based on
the vehicles current heading, cf. Hsu and Tomizuka (1998);
Hingwe and Tomizuka (1998); Rossetter (2003); Abdullah
et al. (2006); Yazbeck et al. (2011). This look-ahead point
is controlled towards the path of the predecessor and
needs to be large enough, in particular for high velocities,
otherwise the system might become unstable. If the look-
ahead point equals the desired inter-vehicle distance, this
approach is very similar to direct vehicle following, and
therefore corner cutting also results for these methods. In
Taylor et al. (1999); Tseng et al. (2005); Kritayakirana
(2012) a combination of lateral offset and heading angle
error has been used, but also that approach results in
corner cutting, steering either too early or too late when
switching from a straight line to a circular path. Using an
extended look-ahead point, Bayuwindra et al. (2016) were
able to significantly reduce corner cutting by introducing
a virtual preceding vehicle as the new tracking objective.

In this paper, we introduce a new way to look at the
combined lateral and longitudinal problem. We use differ-
ent approaches for solving the lateral and the longitudinal
control problem. The lateral control problem is approached
as a path following problem. That is, based on the path
of the preceding vehicle we determine a path for the
following vehicle which converges to the given path of its
predecessor. In particular if the following vehicle happens
to be on the path of its predecessor, the generated path
of the follower is equal to the path of its predecessor.
This overcomes the problem of corner cutting. As a by-
product of solving the lateral control problem, we obtain
a mapping from points on the path of the follower to points
on the path of its predecessor. Using this mapping we can
consider the longitudinal control problem as controlling
two points on the same path towards a required inter-
vehicle distance, which is comparable to CACC, i.e., the
problem of controlling two points on a straight line towards
a required inter-vehicle distance as studied in Ploeg et al.
(2011, 2014).

The remainder of this paper is organised as follows. Sec-
tion 2 contains some preliminaries. In Section 3 we for-
mulate the lateral and longitudinal control problems, for
which we present solutions in sections 4 and 5 respectively.
Section 6 contains results from a simulation study, and
Section 7 concludes the paper.

2. PRELIMINARIES

Lemma 1. (Barbălat’s Lemma, see Barbălat (1959)). Let
φ : R+ → R be a uniformly continuous function. Suppose

that limt→∞
∫ t

0
φ(τ)dτ exists and is finite. Then

lim
t→∞φ(t) = 0.

Lemma 2. ((Micaelli and Samson, 1993, Lemma 1)). Let
f : R+ → R be any differentiable function. If f(t)
converges to zero as t → ∞ and its derivative satisfies

ḟ(t) = f0(t) + η(t) t ≥ 0,

where f0 is a uniformly continuous function and η(t) tends

to zero as t → ∞, then ḟ(t) and f0(t) tend to zero as
t → ∞.

In the remainder, let σ(τ) denote a continuous monotone
function, differentiable at τ = 0, satisfying σ(τ)τ > 0 for
τ �= 0, |σ(τ)| ≤ 1, and σ′(0) > 0.

3. PROBLEM FORMULATION

Consider a simple kinematic model of a mobile car with
length L > 0, rear wheel driving and front wheel steering:

ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t),

θ̇(t) =
v(t)

L
tanφ(t).

(1)

The forward velocity of the rear wheel v and the angle
of the front wheel φ are considered as inputs, (x, y) is
the center of the rear axle of the vehicle, and θ is the
orientation of the body of the car.

We want to recast the lateral control problem into a
path following problem. We therefore let s(t) denote the
travelled distance along the path. Since

v(t) =
ds(t)

dt
,

we can characterise our path by
d

ds
x(s(t)) = cos θ(s(t)),

d

ds
y(s(t)) = sin θ(s(t)),

d

ds
θ(s(t)) =

1

L
tanφ(s(t)) = κ(s(t)),

(2)

where κ(s(t)) denotes the curvature at s(t). Notice that
the curve with a constant curvature κ is a circle with
radius 1/κ, and κ = 0 corresponds with a straight line.
In the remainder we drop dependency of s on t for ease of
exposition.

Let the path of a preceding vehicle be given by
d

dsl
xl(sl) = cos θl(sl),

d

dsl
yl(sl) = sin θl(sl),

d

dsl
θl(sl) = κl(sl),

(3)

with bounded κl(sl). Then we formulate the lateral control
problem as follows.

Problem 3. (Lateral control). Given a feasible path of a
preceding vehicle [xl(sl), yl(sl), θl(sl), κl(sl)], i.e., a path
satisfying (3) with bounded κl(sl), determine a diffeomor-
phism α : R+ → R

+, sl = α(s), and an appropriate control
law κ(s) such that for the resulting closed-loop system (2,
3):

lim
sl→∞xl(sl)− x(α−1(sl)) = 0,

lim
sl→∞ yl(sl)− y(α−1(sl)) = 0,

lim
sl→∞ θl(sl)− θ(α−1(sl)) = 0,

or equivalently:

lim
s→∞xl(α(s))− x(s) = 0,

lim
s→∞ yl(α(s))− y(s) = 0,

lim
s→∞ θl(α(s))− θ(s) = 0.
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Remark 4. Observe that in case of an initial error, the
path of the following vehicle is different from the path of
the preceding vehicle. In particular the travelled distance
to a certain point is different. That is why we require
a diffeomorphism from s to sl to formulate asymptotic
convergence of one path to the other.

In platooning, the objective is to follow the preceding
vehicle at a desired distance d, which is known as the
spacing policy. The constant time gap spacing policy, cf.
Ploeg et al. (2011, 2014), can be formulated as

d = r + hv, (4)

where d is the desired distance between the preceding
vehicle and its follower, r is the standstill distance and v
is the velocity of the following vehicle. The constant time
gap spacing policy improves string stability compared with
the constant spacing policy (i.e., (4) with h = 0), see e.g.,
Naus et al. (2010b,a), and is the reason why we use it in
this paper.

If the preceding vehicle and following vehicle are on exactly
the same path, the distance d is given by sl − s. However,
since in general the paths are different, we have to measure
distance differently. From solving the longitudinal control
problem we have a mapping sl = α(s) which maps a driven
distance s on the path of the follower to an associated
driven distance sl along the path of the predecessor.
Using this mapping we can transform the location of the
following vehicle to the location of a virtual following
vehicle on the path of the preceding vehicle and vice
versa. We can therefore consider the distance between the
preceding vehicle and the virtual follower on the path of
the preceding vehicle: sl−α(s), or the distance between the
virtual preceding vehicle and the follower on the (planned)
path of the follower: α−1(sl) − s. From the point of view
of the follower, the latter seems the most natural choice.
Now we can define the longitudinal control problem as

Problem 5. (Longitudinal control). Given the trajectory of
a preceding vehicle, i.e., both a velocity profile vl(t) and
a path [xl(sl), yl(sl), θl(sl), κl(sl)], as well as a solution to
the lateral control problem, Problem 3, determine a velocity
profile v(t) such that

lim
t→∞α−1(sl(t))− s(t)− hv(t)− r = 0. (5)

4. LATERAL CONTROLLER DESIGN

For solving the lateral control problem, we consider a
virtual vehicle driving along the trajectory generated by
the predecessor, which has travelled a distance sl = α(s)
along the path of the preceding vehicle when the following
vehicle has travelled a distance s along its path. Let

v̄(s) = dα(s)
ds and define x̄l(s) = xl(α(s)), ȳl(s) = yl(α(s)),

θ̄l(s) = θl(α(s)), and κ̄l(s) = κl(α(s)). Then we have for
the virtual vehicle:

dx̄l(s)

ds
= v̄(s) cos θ̄l(s),

dȳl(s)

ds
= v̄(s) sin θ̄l(s),

dθ̄l(s)

ds
= v̄(s)κ̄l(s).

Inspired by Kanayama et al. (1990), we express the error
coordinates in the frame of the following vehicle, i.e

[
xe(s)
ye(s)
θe(s)

]
=

[
cos θ(s) sin θ(s) 0
− sin θ(s) cos θ(s) 0

0 0 1

]⎡
⎣x̄l(s)− x(s)
ȳl(s)− y(s)
θ̄l(s)− θ(s)

⎤
⎦ . (6)

Dropping the dependency of all signals on s and using ′
for d

ds we obtain for the error dynamics:

x′
e = κye + v̄ cos θe − 1,

y′e = −κxe + v̄ sin θe,

θ′e = −κ+ v̄κ̄l.

(7)

Consider initial conditions satisfying |θe(0)| < π/2. Dif-
ferentiating the function V = 1

2x
2
e +

1
2y

2
e − 1

c3
log(cos θe),

which is positive definite for c3 > 0, along solutions of (7)
results in

V ′ = xe(v̄ cos θe − 1) + ye(v̄ sin θe) +
1

c3
tan θe(−κ+ v̄κ̄l).

Using the controller

v̄ =
1− c1σ1(xe)

cos θe
(8a)

κ = c3ye(1− c1σ1(xe)) + v̄κ̄l + c2σ2(θe) (8b)

with 0 < c1 < 1 and 0 < c2 results in

V ′ = −c1xeσ1(xe)− c2
c3

σ2(θe) tan θe ≤ 0. (9)

This implies that xe, ye, and − log(cos θe) are bounded,
which implies that |θe| ≤ M < π/2 and v̄ is bounded. Since
κl is bounded by assumption, we have that κ̄l is bounded,
and also κ is bounded (from (8)) and as a result x′

e, y
′
e, and

θ′e are bounded, implying that xe, ye, and θe are uniformly
continuous functions of s. From Lemma 1 applied to (9),
we then have that lims→∞ xe(s) = lims→∞ θe(s) = 0, and
from Lemma 2 applied to θe in (7, 8): lims→∞ ye(s) = 0.

From (6) we then also obtain

lim
s→∞xl(α(s))− x(s) = 0,

lim
s→∞ yl(α(s))− y(s) = 0,

lim
s→∞ θl(α(s))− θ(s) = 0.

Furthermore, since 1 − c1σ(xe) ≥ 1 − c1 > 0 and |θe| ≤
M < π/2 we have that v̄(s) ≥ 1 − c1 > 0, and therefore
sl = α(s) is a diffeomorphism, where α(s) is obtained from

dα(s)

ds
= v̄(s), α(0) = 0. (10)

We can summarise the above in the following:

Proposition 6. Let c3 > 0, then the controller (8) solves
the lateral control problem, Problem 3, for all initial states
satisfying |θe(0)| < π/2, where the function α is given
in (10). Furthermore, the resulting closed-loop system is
locally exponentially stable (in the distance driven).

Proof. That the proposed controller solves the lateral
control problem has been shown above. Local exponential
stability in the driven distance follows from asymptotic
stability of the linearisation of the dynamics (7, 8) around
xe = ye = θe = 0. �

Remark 7. Using the Lyapunov function candidate

V =
1

2
log(1 + x2

e + y2e)−
1

c3
log(cos θe), (11)

which is positive definite for c3 > 0, one can show along
the same lines that replacing (8b) by
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κ = c3
(1− c1σ1(xe))ye

1 + x2
e + y2e

+ v̄κ̄l + c2σ2(θe) (12)

with 0 < c2, solves the lateral control problem for |θe(0)| <
π/2. The controller (12) can be useful for forcing the
required curvature κ to be a priori bounded. This assures
safe and comfortable lateral accelerations.

Corollary 8. Let maxs |κl(s)| = κmax
l , and assume the

additional requirement |κ(s)| ≤ κmax where κmax
l <

κmax. Assume an initial condition for which |θe(0)| <
arccos(κmax

l /κmax). Then gains c2 > 0, c3 > 0 exist, such
that the controller (12) not only solves the lateral control
problem, but also guarantees that |κ(s)| ≤ κmax.

Proof. Since the function V given by (11) is non-
increasing, we have

v̄(s) ≤ 1

cos(θe(s))
≤ e

c3
2 log(1+xe(0)

2+ye(0)
2) 1

cos(θe(0))

< e
c3
2 log(1+xe(0)

2+ye(0)
2)κmax/κmax

l .

Note that for c3 = 0 this gives us v̄κl < κmax. Therefore,
by choosing c3 > 0 sufficiently small, we can still guarantee

that v̄κl < κmax. Since |σ2(θe)| ≤ 1 and |ye|
1+x2

e+y2
e
≤ 1

2 , we

can pick c2 > 0 and c3 > 0 in (12) sufficiently small to
guarantee |κ| ≤ κmax. �

5. LONGITUDINAL CONTROLLER DESIGN

Since the constant time gap spacing policy (4) contains
the forward velocity v, we extend the model (1) by adding
the equation

v̇(t) = a(t), (13)

which boils down to taking the acceleration a(t) as an
input instead of the velocity v(t). Extending the dynamics
as in Ploeg et al. (2011) can straightforwardly be done.

As mentioned in Section 3, we can use the diffeomorphism
α obtained from solving the lateral control problem to
transform the position of the preceding vehicle to a po-
sition on the (planned) path of the follower. From (5)
it seems straightforward to define a longitudinal tracking
error as

e(t) = α−1(sl(t))− s(t)− hv(t)− r

and try to control this error towards zero. However, at
t = 0 we have both sl(0) = s(0) = α(0) = 0, implying
e(0) = −hv(0)−r. So even when the follower is behind the
preceding vehicle, this error definition implies a negative
initial error which would cause the follower to decelerate
even when it is far behind its predecessor. This is unde-
sirable, so to overcome this problem, we assume that not
only the follower has planned a future path, but also the
preceding vehicle has planned a future path, for a distance
of Δ into the future, and communicates its planned path
to the following vehicle using V2V communication.

The planned trajectory of the follower is converging to the
trajectory of the predecessor, since it is a solution to the
lateral control problem. So if we move a distance Δ along
both the trajectory of the predecessor and the follower,
those two points are closer to each other for larger Δ.
We can use this insight to redefine the error. We move a
distance Δ along the future path of the predecessor, i.e. to
sl +Δ. The associated point on the path of the follower is
given by α−1(sl(t)+Δ). From that point we move Δ back

along the path of the follower, and compare that position
to the position of the follower, which leads to the following
error definition:

e(t) = α−1(sl(t) + Δ)− (s(t) + Δ)− hv(t)− r.

Using (10) and (13) we obtain

ė(t) =
vl(t)

v̄(α−1(sl(t) + Δ))
− v(t)− ha(t).

Taking the controller

a(t) =
1

h

[
vl(t)

v̄(α−1(sl(t) + Δ))
− v(t) + kσ(e(t))

]
, (14)

with k > 0, results in

ė(t) = −kσ(e(t)) k > 0

which clearly is a globally asymptotically stable and lo-
cally exponentially stable system. We therefore obtain the
following:

Proposition 9. Consider the system (1, 13), a solution
to the lateral control problem, as well as the path of a
preceding vehicle planned for a distance Δ into the future.
Then the controller (14) achieves

lim
t→∞α−1(sl(t) + Δ)− (s(t) + Δ)− hv(t)− r =

lim
t→∞α−1(sl(t))− s(t)− hv(t)− r = 0.

Furthermore, the resulting closed-loop system is locally
exponentially stable.

Remark 10. Implementing the controller (14) in real time
is rather straightforward. Assume that the preceding ve-
hicle communicates at time t: xl(sl(t) + Δ), yl(sl(t) +
Δ), θl(sl(t) + Δ), and κl(sl(t) + Δ). Furthermore, let
x̃(t) = x(α−1(sl(t) + Δ)), ỹ(t) = y(α−1(sl(t) + Δ)), and

θ̃(t) = θ(α−1(sl(t) + Δ)). Then we have

˙̃x(t)=
vl(t) cos θ̃(t)

ṽ(t)
˙̃y(t)=

vl(t) sin θ̃(t)

ṽ(t)
˙̃
θ(t)=

vl(t)κ̃(t)

ṽ(t)

where, using (8),

ṽ(t) =
1− c1σ1(x̃e(t))

cos θ̃e(t)

κ̃(t) = c3ỹe(t)
(
1− c1σ1(x̃e(t))

)
+

+ ṽ(t)κl(sl(t) + Δ) + c2σ2(θ̃e(t))

and⎡
⎣x̃e(t)
ỹe(t)

θ̃e(t)

⎤
⎦ =

⎡
⎣ cos θ̃(t) sin θ̃(t) 0

− sin θ̃(t) cos θ̃(t) 0
0 0 1

⎤
⎦
⎡
⎣xl(sl(t) + Δ)− x̃(t)
yl(sl(t) + Δ)− ỹ(t)

θl(sl(t) + Δ)− θ̃(t)

⎤
⎦ .

6. SIMULATION RESULTS

To illustrate our results we considered MATLAB R© simu-
lations for a platoon of four vehicles with L = 3[m]. The
first vehicle starts at x = 0[m], y = 0[m], θ = 0[rad] with a
velocity v = 0[m/s]. It accelerates with a = 2[m/s2] until
it reaches a velocity of 33.3[m/s], after which it drives
with constant velocity. At t = 20[s] it starts driving a
half circle with a radius of 800[m], after which it continues
straight. From t = 100[s] to t = 105[s] a deceleration of
a = −2 is used, and from t = 105[s] to t = 110[s] an
acceleration of a = 2 is used, after which the first vehicle
drives at constant velocity. The second, third and fourth
vehicle are all initiated with v = 0[m/s] at respectively
(x, y, θ) = (−10, 0, 0), (−10,−10, 1.5), and (−20,−10, 0).
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Fig. 1. Resulting paths for platoon of four vehicles.
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Fig. 2. Zooming in to the transition point from straight
line to circle clearly shows that paths remain indis-
tinguishable: corners are not cut. The same holds
halfway the circle.

The following vehicles all use the lateral controller (8) with

c1σ(xe) = 0.99 sat
[ 2

0.99
xe

]
c2σ2(θe) = 4 sat(θe) c3 = 4,

where

sat(x) =

⎧⎨
⎩
−1 for x ≤ −1,

x for −1 ≤ x ≤ 1,

1 for 1 ≤ x,

placing the poles of the linearisation of the error dynamics
for a straight line at −2. Note that each vehicle uses only
information of its predecessor, resulting in a distributed
controller for the platoon.

The resulting paths are depicted in Fig. 1, where we use
black for the first vehicle, blue for the second, red for the
third, and green for the fourth vehicle.

As can be seen, the second vehicle perfectly follows the
first vehicle. The path of the third vehicle nicely converges
toward the path of the second vehicle, and the path of
the fourth vehicle converges to that of the third. From
the position (x, y) = (−4, 0) the resulting paths are
indistinguishable. Also when switching from a straight line
to a circle the trajectories clearly show no corner cutting,
cf. Fig. 2. The same holds when zooming in on halfway the
circle.

For the longitudinal controller the following vehicles all
four use (14) with h = 0.3[s], r = 4.5[m], kσ(e) =
sat(e), and Δ = 10[m]: the required inter vehicle distance
for a velocity of v = 33.3[m/s]. In Fig. 3 we depict
for each vehicle respectively the velocity v(t) (top) and
acceleration a(t) (bottom). Again we use black for the
first vehicle, blue for the second, red for the third, and
green for the fourth vehicle. The left two figures depict the
velocity and accelerations initially used, whereas the right
two figures depict the velocity and accelerations during
the deceleration and acceleration of the first vehicle. In
particular we see that for following vehicles the velocity
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Fig. 3. The velocity v and acceleration a for each of the
four vehicles in the platoon as a function of time,
using respectively black, blue, red, and green for the
consecutive vehicles.

reduction reduces downstream, implying string stability
of the platoon.

7. CONCLUSION

In this paper we considered a new approach for solving
the vehicle platooning problem incorporating both lateral
and longitudinal control. To that end, we dealt with the
lateral and longitudinal control problems separately. We
considered the lateral control problem as a path following
problem. That is, for the following vehicle we determined
a path which converges to that of the preceding vehicle.
We solved the lateral control problem by assuming that
a virtual vehicle is driving along the trajectory of the
preceding vehicle, adjusting its velocity for the follower
to catch up with it. By associating the position of the
following vehicle with the position of the virtual vehicle, we
obtain a mapping from a point on the path of the following
vehicle to a point on the path of the preceding vehicle
and vice versa. Subsequently, this mapping is used when
solving the longitudinal control problem. By means of this
mapping we can translate the position of the preceding
vehicle to a position on the curve of the follower. As a
result, we can consider the longitudinal control problem
along the planned path of the following vehicle, effectively
reducing it to a standard CACC problem of controlling
two points on a straight line towards a required inter
vehicle distance. An advantage of our approach is that
once the following vehicle is on the path of the preceding
vehicle, it stays on that path. In particular this implies
that for curved paths corners are not cut. We illustrated
the benefits of our approach by means of simulation.

A disadvantage of our approach is that two separate dif-
ferential equations need to be solved, one in the spatial
domain and the other in the time domain. Therefore, our
next step is to implement our controller in an experimental
setup. A special point of interest will be the communica-
tion of planned trajectories to downstream vehicles. In our
simulations we communicate all points generated by the
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ODE solver and use splines for fitting the intermediate
points required downstream. How to obtain satisfactory
results while keeping the required communication to a
minimum is in particular worth investigating. Another
point of interest is to improve the lateral controller. Similar
to tracking control of marine vessels, we could define a de-
sired orientation of the following vehicle pointing towards
the virtual vehicle. By controlling the orientation of the
following vehicle towards this desired orientation we focus
even more on first converging towards the desired path and
only then on following the path. Next, we want to improve
the longitudinal controller by incorporating constraints on
velocity and acceleration. A final point of interest is in
updating the mapping between the paths of preceding and
following vehicle based on relative position measurements.
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