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Abstract 

This paper deals with the design of feedback controllers 
for a chaotic dynamical system l i e  the Duffing equa- 
tion. Lyapunov theory is used to show that the pro- 
posed bounded controllers achieve global convergence 
for any desired trajectory. Some simulation examples 
illustrate the presented ideas. 

1 Introduction 

Starting with (7) controlling chaotic systems has re- 
cently become an extremely exciting and interesting 
research area, see the bibliography [l) and the papers- 
collection 181. Basically, the method advocated by Ott, 
Grebogi and Yorke [7) consists of making small t ime 
dependent perturbations on available system param- 
eters so that an initially chaotic system is steered t* 
wards any orbit contained in the chaotic attractor. The 
OGY-method, and more general, most literature on 
control of chaos, seems distinct from what i s  called con- 
trol theory, although some clear connections exist. 
The purpose of the present note is to work out, by 
means of a specific example, from a control theoretic 
point of view, a feedback control scheme that ensures 
the tracking of any desired trajectory under given input 
constraints. The example we consider is the controlled 
forced Duffing equation [Z, 61: 

z +pi. + p13: + z3 = U + qcos(wt) (1) 

with p 2 0, p l ,  q and w constants and U(.) the (phys- 
ical) control. For U E 0, depending on the choice of 
the constants, it is known that solutions of (1) exhibit 
periodic, almost periodic, and chaotic behaviour; see 
e.g. [2]. Typically the control U in (1) can be under- 
stood as a force (torque) applied to the uncontrolled 
forced Duffing equation. Clearly this also distinguishes 
the way controls appear from typical 'control of chaos' 
work like in the OGY-method, see [7], where control ac- 
tions are generated via parameter perturbations. N s  
tably, the differences with the OGY-method may be 

summarized 88: 

The proposed state feedback controller achieves 
global tracking, i.e. no matter where the original 
system starts and no matter whether the uncon- 
trolled system has a chaotic attractor or not. 
Tracking towards any desired trajectory is guar- 
anteed, in particular the desired trajectory may 
not be an uncontrolled system trajectory, the 
prize b e i i  that a nonzero control action is 
needed to stay on the desired trajectory. 
The tracking is achieved by means of a state feed- 
back controller, which automatically acts as an 
error correction mechanism. 

The organization of this pgper is as follows. In section 2 
bounded feedback controllers, which are of composite 
form, are given. Simulations illustrating the control 
performance and tracking ability of the controllers are 
given in section 3. Section 4 contains concluding re- 
marks. 
We conclude this introduction with some terminology 
and notation. 
Let F denote the class of nondecreasing continuous dif- 
ferentiable functions f : R + R satisfying f ( 0 )  = 0, 
f'(0) > 0 and SUP,~R If(z)l 5 I .  This class is a subset 
of the class of saturating functions proposed in [3]. Ex- 
amples of functions f(z) E T are f(z) = tanh(z) and 

Throughout we discuss the tracking problem under in- 
put constraints. Therefore we assume that the trajec- 
tory 51 to track is bounded and has bounded first and 
second derivative, i.e. there exist positive constants Bo, 
B1, and B2 such that 

f(z) = arctan(z). 

I z d ( t ) l  5 BO, l*d(t)l 5 B1, lZd( t ) \  5 &?, t 2 0 (2) 
A specific case which deserves separate attention, is 
formed by those desired trajectories that satisfy 

i 2 d  + Pkd + PlZd + zs - q cOS(wt)l 5 B (3) 

for some B 2 0. ckarly, when B = 0, 2 d  is a trajectory 
of the uncontrolled system, and in this case our work 
is related to (but different from) various other control 
of chaos papers, see e.g. [SI. 



2 State feedback control of the D a g  
equation 

Assume we want the system (1) to follow any smooth 
desired trajectory z d ( t ) ,  satisfying (2). For this pur- 
pose, we select the control via a state feedback law 

U = X d  + @d + P l x d  + Zi - Q COS(fd) - Kpe - Kde (4) 

where e z - Z d ,  & and Kp are positive constants, 
and f1 , f ’  E 3. 
The controller (4) consists of two components, namely 

qcos(wt), which can be computed off-line, 

Kpe + Kde. 

1. the feedforward part: j l d  + p i d  + plzd + $2 - 
2. the P(roportiona1) D(8erential) feedback part: 

The feedback terms in (4) are required to guarantee 
that the system converges towards z&). Once on this 
trajectory, the feedforward component keeps the q ~ +  
tem moving along it; note that this part equals zero if 
xd is a trajectory of the uncontrolled system. 
The closed-loop system consisting of (1) and (4) is de- 
scribed by the time-varying second-order dynamics 

e + 03 + &)e + ( P I +  K,)e + e3 + 3e2xd + 3 e 4  = o ( 5 )  

Proposition 1 Let Z d ( t )  be any smooth bounded refer- 
ence trajectory, satisfpng (2). Then the state feedback 
controller (4) guamntees that (1) asymptotically con- 
verges towards xd(t) ,  i.e. 

lim (e( t ) ,  e ( t ) )  = (0,O) 
t-oo 

prvvided that K p  > -pl and Kd 2 -p i- 2804. 

Proof: We will use Lyapunov’s direct method for ob- 
taining our results, see for instance [4, 5 ,  91. 
Define = (Kd + p ) / 2  and consider the candidate Lya- 
punov function 

1 1 1 
2 2 4 V(e ,  C) = - ( B  + Xe)2 + -(A2 + p1 + Kp)e2 + -e4 (6 )  

which is positive definite. Along the closed-loop error 
dynamics (5), its timederivative becomes: 

V ( e ,  e )  = - A ~ ’  - (3zde + 3 z j ) e ~  -- 

- (PI  + Kp + e’ + 3zde + 3zi)Ae2 

which is negative definite on R provided that 

(3zde c 3x3’ - 4~’@1 + K~ + e2 + 3xde -+ 3 x 3  < 0. 

Since X Z Izdl& and (PI + K p  + e’ + 3sde + 3.2) = 
p i  + K p  + (e  + $ 2 d ) 2  + i z j  > o we obtain: 

Therefore, V ( e )  e) is negative definite which completes 

When we know the initid error-state, we are able to 
determine an upperbound for the control law. Since 
(6)  is a decreasing function along solutions of (5 ) ,  it 
follows that for d t 1 0 

the proof. 

-(A2 +PI + Kp) E Do 

Ie(t)l 5 J4V(e(O),e(O)) E D1 

(7) 

(8) 

lu(t)l 5 + KpDo + KdDl (9) 

and 

resulting in 

This upperbound on the controller (4) depends on 
V(e(O),e(O)), and the larger the initial errors are, the 
larger the upperbound will be. 
To overcome this problem, we use a ’composite control 
law’. Apart from the traclung controller (4) we develop 
a bounded controller that globally controls the system 
into a specific area containing the origin. As soon as the 
system is in !hat area, we have bounds on both e and 
C, such that we can switch to the tracking controller 
(4). Since the first phase controller will be globally, i.e. 
it controls the system towards the specific area from 
any initial error state, the composite controller will be 
a bounded global’ asym$otically stable tracking con- 
troller. 

Proposition 2 Consider the system (1) (with p 2 O), 
together with the control law 

U -qCOS(Wt) - KpfI(2)  - KdfZ(2) (10) 

with K p  2 0, Kd > 0 and f 1 ,  fz E F. Then for dl 
CO > 0 and Cl > 0 there ezists a t, 2 0 such that 
Iz(t)l 5 CO und li;(t)l 5 C1 f o r  all t 2 t,, provided that 
Kp is chosen lave enough, i.e. Kp > 0 for p1 > 0 and 

otherwise. 

ProoE The controller (10) results in the time-invariant 
closed-loop system 

X + f i  + PlZ  -k Z3 -k Kpfl(2) + KdfZ(5) = 0. (11) 

consider the radially unbounded candidate Lyapunov 
function 

( 3 ~ e  + 3 ~ : ) ~  - 4A2(pl + K p  + e’ + 3zde + 32:) 
L (3zde + 3 ~ : ) ~  - 124e’ + 3zde + 3zjj - 

where Fl(z) = f l ( ( )&.  This Lyapunov function is 
positive definite. Differentiating (12) along solutions of 

-4A2(pl + Kp) -32$(3Zd + e)’ - (11) yields 

-4X’(p1 + Kp)  < 0 Vl(5, i) = -@’ - Kdkf2(5), 
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which is negative semi-definite in the state (qk). 
Therefore, we have to determine the largest invariant 
set in {(ilk) E R21V1(z,k) = 0 } ,  which is the origin. 
Application of LaSalle’s theorem completes the proof. 

Corollary 1 Consider the system (1). For all CO > 7 
and C1 > 0 ,  there exists a switching tame t ,  2 0 such 
that the composite control law 

-ncos(wt)-K,,lfl(z)-Kd,f2(~) t < t a  

Xd f pxd + PlXd f xi- 
U =  { 

-9 cos(&) - Kp,2e - Kd,2e t 2 t, 
(13) 

results in a globally asymptotically stable closed-loop 
system, provided that Kd.2 > - p  + 2&&, 

firthermore, there exists a @ > 0 such that the com- 
posite controller (13) satisfies (u(t)l 5 p for all t 1 0. 

Proof: Let t ,  be a moment both Iz(t,)l I CO and 
Ik(tS)I 5 C1. Fkom Proposition 2 the existence of t, 
follows and from Proposition 1 it follows that the sec- 
ond phase controller is asymptotically stable. There 
fore the composite controller (13) is globally asymptot- 
ically stable. 
Since Izd(t)l 5 Bo and Ikd(t)l 5 B1 for all t >_ 0, we 
have le(t,)l 5 BO + CO and Ik(t.)l 5 B1 +Cl, resulting 
in (9) for t 1 t,. For the first phase we have lu(t)l 5 
IqI + Kp,l  + Kd,l ,  therefore we have Iu(t)[ 5 p for d l  
t 2 O w i t h  

K P , ~  ’ - P I ,  K P , ~  ’ m u z ~ [ - m , m  - f i e  

p = m={lql+Kp,i+Kd,i ,  ~ + K p , i ~ o + K d , z ~ l }  (14) 

It may be observed that the upperbound (14) is not 
accurate and thus possibly a better bound exists. 

3 Simulations 

To support our results, we simulated with 
MATLABTMthe system (1) with the controller (4). 
The Duffing parameters were selected as p = 0.4, 
p1 = -1.1, q = 2.1 and U = 1.8, in which case the 
Duf€ing equation displays chaotic behaviour [2]. 
In our first simulation we initialize our system in 
(z(O), i(0)) = (0,O) and the desired trajectory to track 
is an orbit of the uncontrolled system (i.e. B = 0), 
initiated in (zd(O),kd(O)) = (0 , l ) .  To see clearly the 
difference between the chaotic uncontrolled motion and 
the regulated system, no control is applied during the 
first 30 seconds. At t = 30s we initiate the compos- 
ite controller (13) with Kp,l = 5, &,I = 3, Kp,2 = 5 
and Kd.2 = 7. The switching moment t ,  is taken aa 
the first moment t at which both Iz(t)l 5 CO = 0.1 
and Ik(t)l 5 C, = 0.1. The resulting performance is 
depicted in Figure 1. 

We can see in Figure la that within five seconds the 
system perfectly follows the desired trajectory. In Fig- 
ure I b  we can see the control-effort is initiated at  
t = 30. At t = 32.6 the state is small  enough to 
switch to the second phase controller in order to es- 
tablish tracking of the desired trajectory. 
To show that we are able to track any desired tra- 
jectory, Figure 2 shows an anologous simulation, only 
our desired trajectory z&) has been taken as Zd(t) = 
sin(t). We again see that within five seconds, our con- 
troller succeeda in tracking the desired trajectory, but, 
of course, a nonzero controtaction in order to follow 
the desired trajectory ia needed. 
With the above perameter setting, we may compute, 
using Corollary 1 an upperbound for For the 
6rst phase we have lu(t)l 5 5 + 3 + 2.1 = 10.1. We 
switch to the second phase at a moment t. at which 
both Iz(t,)l 5 0.1 and Ii(t,)l 5 0.1 such that in the 
first simulation we guarantee that le(t,)l 5 2.2 and 
Ie(t,)l 5 3.0 (since Bo = 2.1 and B1 = 2.9). Therefore 
V ( t , )  5 110.5 and so for all t 1 t, we have that le(t)l 5 
3.1 and (61 5 19.3 implying that (u(t)l 5 151; a very 
poor estimate, which in the simulations turns out to be 
about 15 times smaller. 
The main r e p m  for the poor estimate on the upper- 
bound is caused by large le(t,)l. Therefore, a way to 
reduce the value of 151 is to switch at a moment that 
le(t.)l is small, for instance as le(t,)l 5 0.1. Notice 
we are only able to do this if the desired trajectory 
comes infinetely many h e s  sufficiently close to the 
origin. The anology to the OGY-method seems obvi- 
ous, although this popery not only holds for chaotic 
reference trajectories, but also for other signals. To il- 
lustrate this idea, Figure 3 shows the resulting perfor- 
mance when we redo our second simulation, tracking of 
z d ( t )  = sin(t), but this time we switch as soon 89 both 
le(t)l 5 0.1 and Ie(t)l 5 3.0. The resulting estimate for 
the upperbound on the control-effort can be calculated 
to satisfy \u(t)l 5 35.7. 

4 Concludingremarks 

We have presented a bounded feedback conti-oiler for 
trajectory tracking in the forced D&g equation. The 
methodology under which we have set up the controller 
(13) is subject to various modifications. 

1. In the first stage of the composite controller we 
ateer the system towards the origin; if the desired 
trajectory is far away from the origin it may b e  
come more profitable to steer the system with a 
slightly modi6ed controller towards a point closer 
to the desired trajectory. 

2. The switching time t ,  in the controller (13) is 
in some sense very important. Switching im- 
medeately once the controlled system has reached 
the box where \z(td)l I CO and k(td)l  L. C1 may 
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3. 

4. 

5. 

111 

lead to relatively large control actions due to rel- 
atively large errors (e(to), e(t0)). Thus it may be 
more appropriate to switch the controller at a 
later time for which I l (e(to),e(to)) l i  k smaller. 
The upperbound (14) is not tight and can cer- 
tainly be improved. However in any caae the main 
designer freedom in the composite controller (13) 
lies in the selection of the gains K p , i l  K d , i ,  i = 1,2  
(and as mentioned the selection of t a l .  The larger 
the gains, the faster the controller becomes. 
Our controller is globally defined and the trajec- 
tory tracking was established for any initial state 
(z(O),k(O)) and any desired trajectory. This 
was achieved via a careful Lyapunov analysis. 
Clearly, other Lyapunov functions may lead to 
other controllers and different convergence rates, 
but this is a usual problem of how to select a 
candidate Lyapunov function. 
It is worthwhile to note that for the second ]part 
of the controller (13) the closedloop system sat- 
isfies V < -crV for some a > 0 with V given by 
(6). This implies that in this phase the cdntroller 
guarantees exponential convergence towards the 
desired trajectory. 
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Figure 3: Z d ( t )  = sin(t), KP,l = KP.z = 5, &,I = 3, 
&,a = 7, OGY-like switching strategy. 
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