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Abstract— A control strategy for trajectory tracking of
straight line trajectories for autonomous surface vehicles (ASV)
is presented in this paper. Our control strategy is based on
input-output feedback linearization with the so called hand
position point as output. This is motivated by a method pre-
viously used for ground autonomous vehicles, without external
disturbances. The proposed control strategy may be used also
for path following. The control approach proposed in this paper
is furthermore able to deal with external disturbances, e.g.
unknown irrotational ocean currents, and gives an estimate
of the disturbance. Using Lyapunov analysis, almost-global
asymptotic stability (almost-GAS) of the closed-loop system
is proven. Simulation results are included to validate the
theoretical result.

I. INTRODUCTION

There is currently a large interest in developing au-

tonomous vehicles for the execution of tasks which are dull,

hard or impossible to execute for humans. For this reason

autonomous vehicles are extensively studied and developed

for use in different fields. We find unmanned vehicles for

ground applications (UGV), for aerial applications (UAV),

and marine applications, i.e., autonomous surface vehicles

(ASV) and autonomous underwater vehicles (AUV). In their

respective environments they represent a valid resource for

the execution of several tasks, including mapping [1] or

exploration of unknown environments [2]. Clearly, their

use is even more relevant in hazardous environments, and

environments which are impossible to reach for humans, e.g.

space exploration [3] and seabed exploration in the Arctic

[4]. In order to achieve reliable execution of tasks, control

strategies which aim to improve the autonomy of unmanned

vehicles, are needed.

An important control problem for ASVs and AUVs, which

has received a lot of attention in the last years, is the

trajectory tracking problem, i.e., reaching and following a

given trajectory with a time constraint on the along trajec-

tory position of the vehicle. This problem is particularly

challenging for ASVs and AUVs since they are generally

under-actuated [5], i.e., they are second order non-holonomic

vehicles. The trajectory tracking problem for marine vehicles

has been dealt with in several works and with different

approaches during the last years [6]–[9].
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In [6], the trajectory tracking problem is approached

by designing a feedback-linearizing controller, and

K −exponential stability for the closed-loop system

is proven using cascaded system theory. The designed

controller requires the well-known condition of persistence

of excitation (PE), i.e., the angular velocity of the vehicle

is required to be constantly excited. The PE condition is

also considered in [7], where two different controllers for

trajectory tracking are developed using Lyapunov’s direct

method. Both [6], [7] considered that the reference state

is generated by a virtual ship, of which the parameters

should be the same as for the real one. In practice this is

a difficult condition to satisfy. This assumption is removed

in [9], where the authors use cascaded system theory

and backstepping methods in order to solve the trajectory

tracking problem for under-actuated ships subjected to input

saturation. The proposed controller is able to drive the

position tracking error to a ball centered at the origin and

whose radius may be made arbitrarily small. Also in [9] the

PE condition is required.

In [8], the backstepping method is used in order to design

a controller which makes the position and orientation errors

globally asymptotically and locally exponentially converge to

balls with radii depending on the desired states. The effect

of the ocean current is also considered.

The main contribution of this paper is a feedback lineariz-

ing controller for under-actuated ASVs and AUVs moving

in a horizontal plane, utilizing the concept of hand position
which is discussed further below. The choice of the hand po-
sition as output provides an external dynamics which behaves

as a double integrator, and a tracking dynamics which is

shown to be almost-GAS. The fact that the external dynamics

behaves as a double integrator simplifies the definition of a

trajectory tracking controller. In fact, in this case it is not

necessary to define geometric laws in order to point and

converge to a path, e.g. integral line-of-sight (ILOS) [10],

or geometric considerations [11]. Moreover, since control

strategies for systems with a double integrator dynamics

have been thoroughly studied in the past, this result makes it

possible to extend well-known control strategies for double

integrators to ASVs and AUVs, e.g. for multi-agent systems,

for which few results exist for under-actuated systems, and

this is the topic of future work.

Generally, in previous works on marine vessels, whether

disturbance rejection is taken into account or not, the trajec-

tory tracking problem is tackled by designing a controller in

order to make either the center of mass or the pivot point

converge to the desired trajectory [6]–[9], [12]–[14]. In this

paper we use a different approach. In particular, we adapt
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the definition of hand position from works about ground

vehicles [15]. Using the hand position point, the ground

vehicles are seen to have holonomic kinematics properties

[15]. Motivated by this, we extend the definition of hand

position to marine vehicles. Defining the hand position as

the output of our system, we use the input-output feedback-

linearization method [16] to design our controller. Since the

hand position point can be chosen with some freedom along

the center line of the vehicle, choosing it as output of the

system has other important advantages. For instance, assume

that we want a camera to follow a specific trajectory in the

space. If the camera can be placed only on the bow of the

vehicle we can choose the bow as the hand position. Then

with our approach it is easy to have the camera to follow the

assigned trajectory. The task would require more complex

path planning phase if the camera is on the bow and we

control the position of the center of mass.

Based on the discussion above, we address the particular

problem of trajectory tracking. We consider a complete

model with non-zero off-diagonal terms in the damping

and mass matrices. Furthermore, we take into account the

effect of unknown constant and irrotational ocean currents.

Finally, the control system is able to give an estimate of

the disturbance (both the magnitude and the direction of

the ocean current) when the system reaches the steady state.

We present a proof which shows almost-global asymptotic

stability (almost-GAS) for the closed-loop system. Further-

more, we present also a controller which solves the path

following control problem. In this paper we restrict our anal-

ysis to straight line trajectories and constant desired forward

velocity for the vehicle. However, this is not a significant

disadvantage since it is common for marine operations to

define a desired trajectory as a piecewise linear trajectory,

i.e., desired trajectories are generally defined by several way-

points and straight lines connecting these [5].

The paper is organized as follows: in Section II the model

of the class of vehicles which are considered is introduced;

our approach is analyzed in Section III; the control objectives

are given in IV; Section V deals with the control design for

the external dynamics; in Section VI the main results are

introduced; Section VII a case study is presented in order

to validate the theoretical results; finally in Section VIII the

conclusions are given.

II. VEHICLE MODEL

In this section a 3 degree of freedom (DOF) maneuvering

model that describes the motion of an ASV or an AUV

moving in the horizontal plane, is briefly described [5]. First,

the assumptions on which the model is based are presented.

A. Assumptions

Assumption 1: The motion of the vehicle is described in

3 DOF, e.g. surge, sway, yaw.

Assumption 2: The vehicle is port-starboard symmetric.

Assumption 3: The hydrodynamic damping is linear.

Remark 1: Nonlinear damping is not considered to not

increase the complexity of the controller. However, due to

the passive nature of the damping forces, the stability of the

vehicle should still be enforced in case of nonlinear damping.

Assumption 4: The ocean current in the inertial frame V=
[Vx,Vy]

T is constant, irrotational and bounded, i.e., ∃Vmax ≥ 0

such that
√

V 2
x +V 2

y ≤Vmax.

B. The Vessel Model

In the following we use the North-East-Down frame

(NED) [5] convention for the inertial frame i. The pose of the

vehicle, i.e., the position and the orientation of the vehicle,

in the NED frame is given by the vector η = [x,y,ψ]T .

The vector ν = [u,v,r]T gives the the surge velocity, sway

velocity and angular rate in the body frame. The rotation

matrix R = [e1,e2,e3]
T , with e1 = [cos(ψ),sin(ψ),0]T ,e2 =

[−sin(ψ),cos(ψ),0]T ,e3 = [0,0,1]T , gives the rotation from

the body frame to the inertial frame. The ocean current

affecting the system in the NED frame is given by V =
[Vx,Vy,0]

T , while vc = RT [Vx,Vy,0] is the vector of the

current in the body frame. The motion of an ASV or an

AUV moving in a horizontal plane, is given by the following

3 DOF maneuvering model given in [5]:

η̇ = Rνr +V (1a)

Mν̇r +C(νr)νr +D(νr)νr = Bf, (1b)

where νr = [ur,vr,r]T = ν − vc is the vector of the relative

velocities in the body frame. The vector f= [Tu,Tr]
T gives the

control inputs Tu which is the thruster force and Tr which is

the rudder angle. The vector f ∈R
2 and therefore the vehicle

is under-actuated in its configuration space R
3. The structure

of the matrices M,D,B is derived according to Assumptions

1, 2, 3, and is given by

M �
[

m11 0 0
0 m22 m23
0 m32 m33

]
;D �

[
d11 0 0
0 d22 d23
0 d32 d33

]
;B �

[
b11 0
0 b22
0 b32

]
. (2)

The mass matrix M = MT > 0 includes the hydrodynamic

added mass. The matrix D gives the linear damping terms,

and B ∈ R
3×2 is the actuator configuration matrix. The

Coriolis matrix C, which includes the Coriolis and centripetal

effects, can be derived from M as shown in [5]. We consider

the next assumption to hold:

Assumption 5: The body-fixed coordinated frame b (body

frame) is located at a point (x∗P,0), at a distance x∗P from the

vehicle’s center of gravity (CG) along the center-line of the

ship. The pivot point (x∗P,0) is chosen such that M−1B f =
[τu,0,τr]

T when the model (1) is written with respect to this

point.

Remark 2: The pivot point (x∗P,0) satisfying Assump-

tion 5 always exists for ships and AUVs with the center

of mass located on the centerline of the vehicle [5]. This is

implied by Assumption 2. Furthermore, the body-fixed frame

can always be translated to a desired location x∗P [5].

5661



In the following we consider (1) in component form

ẋ =ur cos(ψ)− vr sin(ψ)+Vx (3a)

ẏ =ur sin(ψ)+ vr cos(ψ)+Vy (3b)

ψ̇ =r (3c)

u̇r =Fur(vr)+ τu (3d)

v̇r =X(ur)r+Y (ur)vr (3e)

ṙ =Fr(ur,vr,r)+ τr. (3f)

The expressions for Fur(ur),Fr(ur,vr,r) are given in Ap-

pendix I. Furthermore, X(ur) =−X1ur+X2,Y (ur) =−Y1ur−
Y2 and X1,X2,Y1,Y2 are reported in Appendix I. We consider

the following assumption to hold:

Assumption 6: The following bounds hold on Y1,Y2

Y1 >0, Y2 > 0. (4)

Remark 3: The conditions Y1,Y2 < 0 imply Y (ur) < 0,

which is a natural assumption. In fact, Y (ur) ≥ 0 would

result in an unstable sway dynamics, which is unfeasible for

commercial marine vehicles by design. This is a common

assumption for marine systems control design, e.g. [10].

III. HAND POSITION AND FEEDBACK LINEARIZATION

Before defining the output tracking problem, we analyze

in this section the inherent dynamics of the system (3) in

order to make a qualified choice of the system output. In

previous works on output trajectory tracking of ASVs and

AUVs the motion of the center of mass or of the pivot

point P = [x,y]T , which was the origin of the body-frame

(cf. Figure 1), was chosen as output. Motivated by the ideas

developed for ground vehicles in [15], we take a different

approach and we choose instead the motion of a certain

”hand position” point as the output of the system.

In [15], the hand position is defined as hgv = [xgv,ygv]
T =

[xc + l cos(ψ),yc + l sin(ψ)]T , where [xc,yc]
T is the center of

the wheel’s axis, l > 0 is a constant and ψ is the yaw angle.

The point [xc,yc]
T has the same kinematic model as given

in (3a-3c) but with vr = 0, i.e., it has unicycle kinematics.

The point [xc,yc]
T has actuation in yaw and along the x-

axis of the body-fixed frame. The point hgv = [xgv,ygv]
T can

be considered as a point indirectly actuated through [xc,yc]
T

along the x and y axis of the body-fixed frame as illustrated

in Figure 1. In fact, from Figure 1, it is easy to see that

the application of a positive surge velocity at the point P
corresponds to a positive surge velocity at the point h, while

a positive (negative) yaw rate at the point P results in a

positive (negative) side velocity rl at the point h. Since the

kinematic model of the ship is similar to the one of a ground

vehicle, we aim to do the same with the choice of the hand

position as h = [x1,y1]
T = [x+ l cos(ψ),y+ l sin(ψ)]T , where

l > 0 is constant, [x,y]T is the pivot point and ψ the yaw angle

(cf. Figure 1). Therefore, the point h is indirectly controlled

through the actuation of the pivot point [x,y]T . The main

advantage of choosing the motion of the point h as output of

our systems is that applying the output feedback linearization

method [16], we see that its dynamic behavior is described

y
b

x
b

CG

h

l

x

y

P

y

x

ξ
1
=x + l sin(Ψ)

u

r

u
r

r d

y
b

x
b

CG

h

x

y

P

y

x

ξ
4

ξ
3

(b)(a)z
1

ξ
2
=y+ l cos(Ψ)

Fig. 1: a) The center of gravity (CG), the pivot point (P) and

the hand position h. b) Relative velocities in the NED frame.

by a double integrator together with a tracking dynamics

which is almost-GAS.
We now apply the output feedback linearization method

[16], choosing the hand position point h∈R
2 as output. First,

we need to check if (3) is input-output feedback linearizable

with output h, i.e, we need to check if the vector relative

degree ρ = [ρx1
ρy1

]T is well defined. In order to check this

condition we derive twice the expression of h = [x1 = x+
l cos(ψ), y1 = y+ l sin(ψ)]T and we get[

ẍ1
ÿ1

]
=
[

cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

][
Fu(v,r)−vr−lr2

ur+X(u)r+Y (u)v+Fr(u,v,r)l

]
+
[

cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]
︸ ︷︷ ︸

B(ψ)

[ τu
τr

]
. (5)

From (5), we see that the system has a well-defined vector

relative degree since ρx1
= ρy1

= 2 for l �= 0 since B(ψ) is

non-singular for l �= 0. Note that l = 0 makes B(ψ) singular

and therefore the pivot point cannot be chosen as output.
In order to perform an input-output feedback linearization

we define the change of coordinates

z1 =ψ (6a)

z2 =r (6b)

ξ1 =x1 (6c)

ξ2 =y1 (6d)

ξ3 =ur cos(ψ)− vr sin(ψ)− rl sin(ψ) (6e)

ξ4 =ur sin(ψ)+ vr cos(ψ)+ rl cos(ψ). (6f)

Note that we cannot take ξ3 = ξ̇1,ξ4 = ξ̇2 since this would

imply that our change of coordinates incorporates the knowl-

edge of the ocean current. Since we assume that we do not

know the ocean current, our change of coordinates results in

ξ3 = ξ̇1 −Vx,ξ4 = ξ̇2 −Vy. Therefore, ξ3,ξ4 are the relative

velocities of the vehicle in the global frame.
Using the new coordinates, (3) can be rewritten as

ż1 =z2 (7a)

ż2 =Fz2
(z1,ξ3,ξ4)+ τr (7b)[

ξ̇1

ξ̇2

]
=
[

ξ3

ξ4

]
+
[

Vx
Vy

]
(7c)[

ξ̇3

ξ̇4

]
=

[
Fξ3

(z1,ξ3,ξ4,Vx,Vy)

Fξ4
(z1,ξ3,ξ4,Vx,Vy)

]
+
[

cos(z1) −l sin(z1)
sin(z1) l cos(z1)

][ τu
τr

]
(7d)
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where

[
Fξ3

(z1,ξ3,ξ4,Vx,Vy)

Fξ4
(z1,ξ3,ξ4)

]
=
[

cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

][
Fur (vr ,r)−vrr−dr2

urr+X(ur)r+Y (ur)vr+Fr(ur ,vr ,r)l

]
(8)

and Fz2
(z1,ξ3,ξ4) is obtained from Fr(ur,vr,r) substituting

ur = ξ3 cos(z1) + ξ4 sin(z1), vr = −ξ3 sin(z1) + ξ4 cos(z1)−
z2l, and r = z2. Now we apply the following changed input

in order to linearize the external dynamics[
τu
τr

]
=
[

cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]−1
[
−Fξ3

(z1,ξ3,ξ4)+μ1

−Fξ4
(z1,ξ3,ξ4)+μ2

]
. (9)

In (9), the terms μ1,μ2 are new inputs which are defined in

Section V in order to solve the trajectory tracking problem.

After substituting (9) in (7) we obtain

ż1 =z2 (10a)

ż2 =−
((

Y1 − X1−1
l

)
(ξ3 cos(z1)+ξ4 sin(z1))+Y2 +

X2

l

)
z2−

−
(

Y1

l (ξ3 cos(z1)+ξ4 sin(z1))+
Y2

l

)
(ξ3 sin(z1)−ξ4 cos(z1))+

− μ1 sin(z1)
l +

μ2 cos(z1)
l (10b)

ξ̇1 =ξ3 +Vx (10c)

ξ̇2 =ξ4 +Vy (10d)

ξ̇3 =μ1 (10e)

ξ̇4 =μ2 (10f)

Since the state z1 in (10b) appears only as argument of

trigonometric functions of period 2π , we can consider (10a)

to (10b) to take values on the manifold M= S×R where S

is the one dimensional sphere.

IV. CONTROL OBJECTIVES

In this section we formalize the straight line trajectory

tracking problem for ASVs and AUVs in the presence of

an ocean current of unknown magnitude and direction. Our

control objective is to make the point h follow a desired

trajectory. As already mentioned above, we focus on straight

line trajectories and constant forward velocity. Without loss

of generality we choose the trajectory aligned along the

global x axis resulting in ξ1d = udt,ξ2d = 0, where ud is

a chosen positive constant and t is the time. From (10), we

need ξ3 → ud −Vx,ξ4 →−Vy. The control objectives are thus

lim
t→∞

(ξ1 −udt) = 0 (11a)

lim
t→∞

ξ2 = 0 (11b)

lim
t→∞

(ξ3 − (ud −Vx)) = 0 (11c)

lim
t→∞

(ξ4 − (−Vy)) = 0. (11d)

Notice that the control objectives are based on the knowl-

edge of Vx,Vy. However, we have already assumed that the

vehicle does not know V. For this reason, we include an

integral action in the controller in order to compensate for

and estimate the ocean current. We consider the following

assumption to hold

Assumption 7: The linear velocity is such that ud > Vx.

Furthermore, the vehicle’s thrusters provide enough power

in order to overcome the ocean current disturbance.

Remark 4: This is a necessary assumption in order to have

forward motion of the vehicle.

Remark 5: Note that controlling the position of h, the

pivot point (x,y) may be as far as l from the trajectory.

However, this is not a problem, since, if we choose h in

correspondence of a sensor (e.g., a camera) which has to

follow a given trajectory, our goal is to have h to track the

desired trajectory.

V. THE CONTROLLER

In this section we design the control law μ = [μ1,μ2]
T in

(10) in order to fulfill the control objectives (11).

In order to make the output track the reference trajectory

while compensating for the unknown ocean current distur-

bance, we choose the following new inputs

μ1 =− kvx(ξ3 −ξ3d )− kpx(ξ1 −ξ1d )− kIx(ξ1I −ξ1dI
) (12a)

μ2 =− kvy(ξ4 −ξ4d )− kpy(ξ2 −ξ2d )− kIy(ξ2I −ξ2dI
) (12b)

where kpx ,kpy ,kvx ,kvy ,kIx ,kIy are positive real gains, ξiI =∫
ξi where i ∈ {1,2,1d ,2d}, and ξ2d = ξ4d = 0. Based on

disturbance rejection theory for linear systems [17], the

integral states ξ1I ,ξ2I are used in order to compensate for

the ocean current disturbance and obtain an estimate of V.

VI. MAIN RESULT

In this section we present the main result. In the following

theorem the conditions under which the controller (9) makes

the system achieve the control objectives (11) are given.

Theorem 1: Consider an under-actuated marine vehicle

described by the model (3). Consider the hand position point

h = [x1,y1]
T = [x+ l cos(ψ),y+ l sin(ψ)]T , where [x,y]T is

the position of the pivot point of the ship, l is a positive

constant and ψ is the yaw angle of the vehicle. Then define

Ud =
√
(ud −Vx)2 +V 2

y > 0 as the desired relative velocity

magnitude and φ = arctan
( −Vy

ud−Vx

)
as the crab angle. If

Assumptions 1-7 are satisfied and if

0 <Ud < Y2
Y1

(13)

kvi >0, kpi > 0, kIi > 0, i ∈ {x,y} (14)

kvikpi >kIi i ∈ {x,y} (15)

l >max

{
m22

m23
,−X2

Y2

}
(16)

then the controller (9), where the new inputs μ1,μ2 are given

by (12), guarantees the achievement of the control objectives

(11). In particular, (z1,z2,ξ1,ξ2,ξ3,ξ4) → (φ ,0,udt,0,ud −
Vx,−Vy) almost-globally asymptotically. Furthermore, the

steady state values of the integral variables give an estimate

of the ocean current:

Vx =
kIx (ξ1I −ξ1Id

)

kvx
+ud , Vy =

kIy (ξ2I −ξ2Id
)

kvy
. (17)

Remark 6: From Figure 2 it is clear that the crab angle

φ is the yaw angle the ship has to move with in order
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Fig. 2: Internal dynamics and pendulum dynamics similari-

ties. When h is on the path the ocean current makes P swing

around h.

to counteract the ocean current effect. This is how an

experienced helmsman acts to compensate for ocean currents.

Typically this has been set as a constant crab angle, and

if chosen too small the ASV/AUV drifts, and chosen too

large, the ASV/AUV uses more energy than necessary since

it is hydrodynamically less energy efficient for a ship/torpedo

shaped form to travel with a heading transverse to the

path. Notice that we assume an unknown ocean current and

therefore also φ is in general unknown. However, the integral

action in (9) takes care of compensating for the unknown

value of the constant disturbance.

Remark 7: Note that φ is constant, and this implies φ̇ = 0.

Proof: Applying the change of variables z̃1 = z1 −
φ , z̃2 = z2− φ̇ = z2, ξ̃1I = ξ1I −ξ1Id

, ξ̃2I = ξ2I −ξ2II
, ξ̃1 = ξ1−

udt, ξ̃2 = ξ2, ξ̃3 = ξ3−(ud −Vx), ξ̃4 = ξ4+Vy and defining the

vectors z̃ = [z̃1, z̃2]
T , ξ̃ = [ξ̃1I , ξ̃2I , ξ̃1, ξ̃2, ξ̃3, ξ̃4]

T , the closed-

loop system can be written as

˙̃z =Hz̃(z̃1)z̃+G(z̃, ξ̃3, ξ̃4)ξ̃ (18a)

˙̃ξ =Hξ̃ ξ̃ (18b)

where G(·) is reported in Appendix I and

Hz̃(z̃) =
[

0 1
−(ccos(z1)+d) −(acos(z1)+b)

]
(19)

a =
(

Y1 − X1−1
l

)
Ud b =Y2 +

X2
l (20)

c =Y1U2
d

l d =Y2Ud
l (21)

Hξ̃ =

⎡
⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−kVx 0 −kpx 0 −kvx 0

0 −kVy 0 −kpy 0 −kvy

⎤
⎥⎦ . (22)

where, according to Assumption 6, we have c,d > 0 and (13)

implies d > c. Furthermore, the condition (16) implies also

a,b> 0. We now study the stability properties of the external

dynamics (18b) and the tracking dynamics (Equation (18a)

with G(z̃, ξ̃3, ξ̃4)ξ̃ = 0) and then the stability properties of

the overall system (18).

A. The external dynamics

The equilibrium point of (18b) is (0,0,0,0,0,0). The

matrix Hξ̃ is Hurwitz for kvi ,kpi ,kIi respecting (14-

15). Thus, we have that the origin is globally expo-

nentially stable, and thus that [ξ1I ,ξ2I ,ξ1,ξ2,ξ3,ξ4]
T →

[ξ1Id
+ kvxVx/kIx ,ξ24Id

+ kvyVy/kIy ,udt,0,ud −V y,−Vy]
T ,

globally exponentially.

Remark 8: Notice that from the integral states we obtain

an estimate of the unknown ocean current when the steady

state condition is reached. In particular, we have

Vx =
kIx (ξ1I −ξ1Id

)

kvx
+ud , Vy =

kIy (ξ2I −ξ2Id
)

kvy
. (23)

B. The tracking dynamics

Let us now focus on the tracking dynamics:

ż1 =z2 (24a)

ż2 =− (acos(z1)+b)z2 − (ccos(z1)+d)sin(z1). (24b)

As said in Section III, the system (24) can be studied on the

manifold M = S×R = {(cos(θ),sin(θ),r) | θ ∈ R,r ∈ R}.

The system (24) has two equilibria , and they are

Es = (1,0,0) ∈M Eu = (−1,0,0) ∈M (25)

where Es is a stable node, while, due to the assumption d > c,

Eu is a saddle point, which implies that it is an hyperbolic

equilibrium. Let us now define z̃s = [sin(z̃1), z̃2]
T and the

following Lyapunov function candidate (LFC)

W = 1
2 z̃T

s

[
a2+c a

a 1

]
︸ ︷︷ ︸

Pzs

z̃s +(ab+d)(1− cos(z̃1)). (26)

We have that W > 0 ∀(cos(z̃1),sin(z̃1), z̃2) ∈ M−{[1,0,0]}
and W = 0 only for (cos(z̃1),sin(z̃1), z̃2) = (1,0,0). The

derivative is

Ẇ =−z̃T
s

[
b 0
0 a(d+ccos(z̃1))

]
︸ ︷︷ ︸

Qz̃

z̃s (27)

where

Ẇ ≤ 0 ∀(sin(z̃1), z̃2) �= (0,0). (28)

This proves that (sin(z̃1), z̃2) = (0,0) is GAS. However,

sin(z̃1) = 0 corresponds either to cos(z̃1) = 1 or cos(z̃1) =−1

on the one-dimension unit sphere. But, as said above Eu is

unstable and hyperbolic. Then, according to [18, Theorem

3.2.1] we have that Eu has a stable and an unstable manifold

W s
u ,W

u
u , respectively. The unstable manifold W u

u is tangent

to the eigenspace spanned by the positive real part eigenvalue

of the Jacobian matrix of the system (24) evaluated at Eu.

This manifold is therefore one-dimensional and converges to

the only other equilibrium point of the system, that is Es.

The stable manifold W s
u is also one-dimensional since it is

spanned by the negative real part eigenvalue of the Jacobian

matrix of (24). Since the system (24) evolves on the manifold

M = S×R, which is 2-dimensional (it is a ”pipe-shaped”
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manifold, that is, it is a cylindrical surface in the space),

we have that W s
u has one dimension less than M and has

therefore zero Lebesgue measure.

At this point we can conclude that all the trajectories

which do not start on W s
u converge to the point Es. Fur-

thermore, since W s
u has zero Lebesgue measure, we can say

that Es is almost-GAS.

C. Stability of the complete system

Since (18b) is GES, we have two positive definite matrices

Pξ , Qξ such that they satisfy the Lyapunov equation HT
ξ Pξ +

Pξ Hξ =−Qξ . Thus, we choose the following LFC

V =W +κ ξ̃ TPξ ξ̃ (29)

where W is the same as in (26), and κ > 0 still to be

determined. Deriving (29) along the direction of (18) we

obtain

V̇ ≤−z̃T
s Qz̃z̃s −κ ξ̃ TQξ ξ̃ +

∂W
∂ z̃

G(·)ξ̃ . (30)

For G(·) and W it holds that

G(z̃, ξ̃3, ξ̃4)≤ G1(‖ξ̃‖)‖z̃s‖+G2(‖ξ̃‖)≤ Ḡ1‖z̃s‖+ Ḡ2∥∥∥∥∂W
∂ z̃

∥∥∥∥≤ ‖z̃s‖
∥∥∥∥
[

a2 + c+ ab+d
2 a

a 1

]∥∥∥∥≤ α1‖z̃s‖,

where Ḡ1 = G1(ξ̄ ), Ḡ2 = G2(ξ̄ ), and ξ̄ is the upperbound

of ‖ξ‖. Let λ min
Pzs

, λ min
Pξ

, λ min
Qz̃

, λ min
Qξ

denote the minimal

eigenvalue of Pzs , Pξ , Qz̃, Qξ respectively. Since (18b) is

GES, there exists a time t∗ such that for all t ≥ t∗: ‖ξ̃ (t)‖ ≤
λ min

Qz̃
/(2α1Ḡ1). For t ≤ t∗ and

κ > α2
1 Ḡ2

2

(
λ min

Qz̃
λ min

Qξ
+

2λ min
Qz̃

α1Ḡ1ξ̄ λ min
Pξ

λ min
Pzs

)−1

we have

V̇ ≤−z̃T
s Qz̃z̃s −κ ξ̃ TQξ ξ̃ +α1‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃

≤ α1Ḡ1ξ̄‖z̃s‖2 −λ min
Qz̃

‖z̃s‖2 +α1Ḡ2‖z̃s‖‖ξ̃‖−κλ min
Qξ

‖ξ̃‖2

≤ α1Ḡ1ξ̄‖z̃s‖2 +
2α1Ḡ1ξ̄ κλ min

Pξ

λ min
Pzs

‖ξ̃‖2 ≤ 2α1Ḡ1ξ̄
λ min

Pzs

V,

so V (t) remains bounded for t ≤ t∗. For t ≥ t∗ we have

V̇ ≤−z̃T
s Qz̃z̃s −κ ξ̃ TQξ ξ̃ +α1‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃ (31)

≤−1

2
λ min

Qz̃
‖z̃s‖2 +α1Ḡ2‖z̃s‖‖ξ̃‖−κλ min

Qξ
‖ξ̃‖2 (32)

which is negative definite for κ > 2α2
1 Ḡ2

2/(λ
min
Qz̃

λ min
Qξ

).

Thus the system always converge to the equilibrium(
sin(z̃1), z̃2, ξ̃

)
= (0,0,01×6). The state z̃1 converge either

to z̃1 = 0, of z̃1 = ±π , so we can conclude that (z̃, ξ̃ ) =
(01×2,01×6) is almost-GAS.

D. Path following control

The path following problem consists of a geometric task

which is fulfilled when the vehicle reaches a straight-line

path. In addition, the ship should move along this path

with a desired constant forward relative velocity. The main

difference with the trajectory tracking stays in the fact that

there is not a time constraint on the along-path position.

In fact, the along path position ξ1 is left uncontrolled [10].

With our approach we can fulfill also the path following task

slightly adapting the auxiliary controller (12). We consider

the NED frame such that its x-axis is aligned along the

path. This choice does not cause any loss of generality. We

describe a linear path as the set P = {(ξ1,ξ2)∈R
2|ξ2 = 0}.

The path following problem is then described by the control

objectives (11b), (11d) and

lim
t→∞

(ξ3 −ud) = 0 (33)

and ud >Vx. Note that since we do not have a time constraint

on ξ1 we do not consider it in our control objectives. In order

to fulfill (11b), (11d) and (33), we choose

μ1 =− kvx(ξ3 −ξ3d ) (34a)

μ2 =− kvy(ξ4 −ξ4d )− kpy(ξ2 −ξ2d )− kIy(ξ2I −ξ2dI
) (34b)

where ξ3d = ud ,ξ4d = 0,ξ2dI
=

∫
ξ2d . For the path following

task we have the following corollary of Theorem 1

Corollary 1: Consider an under-actuated marine vehicle

described by the model (3b-3f). Consider the hand posi-

tion point h = [x1,y1]
T = [x+ l cos(ψ),y+ l sin(ψ)]T , where

[x,y]T is the position of the pivot point of the ship, l is

a positive constant and ψ is the yaw angle of the vehicle.

Then define Ūd =
√

u2
d +V 2

y as the desired relative velocity

and φ̄ = arctan
(−Vy

ud

)
as the crab angle. If Assumptions 1-7

are satisfied and if

Ūd <Y2
Y1

(35)

kvi >0, kpi > 0, kIi > 0, i ∈ {x,y} (36)

kvikpi >kIi i ∈ {x,y} (37)

l >max

{
m22

m23
,−X2

Y2

}
(38)

then the controller (9), where the new inputs μ1,μ2 are given

by (12), guarantees the achievement of the control objectives

(11). In particular, (z1,z2,ξ2,ξ3,ξ4) → (φ̄ ,0,0,ud ,−Vy)
almost-globally asymptotically.

Remark 9: It is common for path following control laws

(e.g. ILOS [10]) to control the body frame forward velocity,

i.e., the surge velocity u → ud instead of the along-path

velocity, and leave the position along the x axis of the

NED frame uncontrolled. In the presence of an unknown

ocean current, the vehicle has to keep an unknown crab

angle φ̄ in order to stay on the path due to the under-

actuation. Therefore, the velocity u is misaligned with the

path. This results in an absolute velocity in the NED frame

Uss = ud cos(φ̄) in the steady state, i.e., when the vehicle

is on the path. With our approach, i.e., defining ξ3 = ud
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Fig. 3: Ship’s motion and internal dynamics states.
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Fig. 4: Time evolution of the error states and ocean current

estimates.

and leaving ξ1 uncontrolled, we are assigning the desired

along-path velocity. This implies that the body frame forward

velocity ur = ud cos(φ̄)−Vy sin(φ̄).

VII. SIMULATION RESULTS

In this section a simple case study is presented in order to

validate the theoretical results given in Section VI. Using

the model of the LAUV (Light Autonomous Underwater

Vehicle) given in [19] we define a desired straight-line

trajectory fixed along the global x-axis. The desired linear

velocity in the inertial frame is ud = 1[m/s] and ξ1d =
1t[m]. The initial orientation of the vehicle is ψ1|t=0 =
z1|t=0 = 45◦ and the initial position is [x1|t=0,y1|t=0]

T =
[ξ1|t=0,ξ2|t=0]

T = [−10,50]T [m]. The controller gains are

chosen as kvx = kvy = 10, kpx = kpy = .5 and kIx = kIy =
0.007. We consider an ocean current (unknown to the control

system) V = [Vx,Vy]
T = [−0.05,0.16]T [m/s]. From Figure 3

we can see how the ship approaches the desired trajectory

with a smooth motion, and how the ψ,r reach a steady state

condition. Note that ψ → φ ≈−8.66◦. From Figure 4 we can

see that all the control objectives (9) are achieved smoothly,

and how at the steady state condition we can exploit the

integral state in the controller (12) in order to obtain an

estimate of the unknown ocean current. Finally from Figure 5
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Fig. 5: Control inputs τu,τr.

we can see the time evolution of the control inputs τu,τr, they

set to the steady state values τu = 10[N] and τr = 1.5[kN].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new approach for

trajectory tracking of straight lines for ASVs and AUVs

moving in a horizontal plane. We take into account the effect

of unknown irrotational ocean currents. We adopt from recent

results for ground vehicles the definition of hand position to

marine vehicles, and then we use the feedback linearization

method to reduce the problem of controlling a second order

non-holonomic vehicle, i.e., the ASV or AUV, to the problem

of controlling a simple double integrator. In particular, the re-

sulting system has a double integrator as external dynamics,

and we prove that the resulting internal dynamics is almost-
GAS. The main advantage of our approach is given by the

fact that we can choose the hand-position as a point located

on the center line of the vehicle, maybe in correspondence

of a certain sensor (e.g., a camera) and steer this point to

a straight line trajectory using a simple PID controller. In

future work we build on this result to extend well-known

control strategies for double integrators for consensus based

formation control. We furthermore propose a straight-line

trajectory tracking controller and prove that the closed-loop

system is almost-GAS. The controller is also shown to

provide an estimate of the ocean current.

APPENDIX I

EQUATIONS

Fur (vr,r)� 1
m11

(m22vr +m23r)r− d11

m11
ur, (39)

X1(M)� m11m33−m2
23

m22m33−m2
23

X2(M,D)� d33m23−d23m33

m22m33−m2
23

(40)

Y1(M)� (m11−m22)m23

m22m33−m2
23

Y2(M,D)� d22m33−d32m23

m22m33−m2
23

(41)

X(ur)�−X1ur +X2 Y (ur)�−Y1ur −Y2, (42)

Fr(ur,vr,r)� m23d22−m22(d32+(m22−m11)ur)
m22m33−m2

23

vr

+
m23(d23+m11ur)−m22(d33+m23ur)

m22m33−m2
23

r,
(43)

G(z̃, ξ̃3, ξ̃4)�
[

0 0 0 0 0 0

− sin(z̃1)
l

cos(z̃1)
l 0 0 α(z̃,ξ̃3) β (z̃,ξ̃3,ξ̃4)

]
(44)

α(z̃, ξ̃3)�−
(
(Y1Ud cos(z̃1)

2 +Y1Ud cos(z̃1)sin(z̃1)+Y2 sin(z̃1)
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+Y2ξ̃3 sin(z̃1)cos(z̃1)+
(
−Y1 +

X1−1
d

)
z̃2 cos(z̃1)

)
(45)

β (z̃, ξ̃3, ξ̃4)� Y1Ud sin(z̃1)cos(z̃1)+Y1Ud cos(z̃1)
2 +Y2 cos(z̃1)

+Y1ξ̃3 sin(z̃1)+Y1 cos(z̃1)
2ξ̃3 −Y1 cos(z̃1)sin(z̃1)ξ̃4+

+
(
−Y1 +

X1−1
d

)
z̃2 sin(z̃1)
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