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ABSTRACT

We consider two fluid queues attended by a switching server
and address the optimal steady-state and transient trajec-
tory problems. The steady-state problem is formulated as
a quadratic problem (QP), given a fixed cycle time. Evalu-
ating the QP problem over a range of cycle times results in
the optimal steady-state trajectory. We minimize the hold-
ing costs, backlog costs and setup costs, allow setup times
and allow constraints on queue contents, cycle times and
service times. Second, given initial conditions, we derive
the optimal transient trajectory that leads to the optimal
steady-state trajectory in a finite amount of time with min-
imal costs. The transient switching behavior and optimal
initial modes are also addressed.

Categories and Subject Descriptors
G.1.6 [Optimization]: Quadratic programming methods

General Terms

Performance, Quadratic programming, Steady-state trajec-
tory, Transient trajectory.

1. INTRODUCTION

The control of systems with switching behavior is a prob-
lem of great importance and even the most simple system, a
server attending two queues, has been investigated by many
researchers, see for example [1, 2, 3, 4, 5, 6, 8, 9, 11]. We
consider a system of two fluid queues. Both queues share
a single server which can serve only one queue at a time.
Switching service to another queue might take time and/or
involves switching costs. Such models arise in numerous
contexts, such as manufacturing systems, signalized traffic
intersections, computer communication networks and hos-
pital rooms. Optimal schedules for manufacturing systems
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can reduce costs via, for instance, lowering the required stor-
age capacity and shortening lead times. For traffic signals at
signalized intersections, optimal schedules can reduce con-
gestion, and thereby reduce the amount of environmentally
harmful emissions, and improve mobility.

The optimal scheduling problem can be divided into two
subproblems. The first problem is the derivation of optimal
steady-state trajectories. The second problem concerns the
determination of optimal transient trajectories, that is, tra-
jectories that lead to the optimal steady-state trajectory in
finite time and at minimal costs. Both subproblems have
been intensively studied, see [1, 2, 3, 4, 5, 6, 8, 9, 11] and
references therein. In most work, systems are restricted.
Setup times, setup costs, backlog or limited queue contents
are required, omitted or not allowed. Also, often the system
is studied under the simplifying condition that the system
is symmetric, see [1, 2, 6, 9]. In this work, we present a
method to derive the optimal steady-state trajectory for a
two queue switching server without restrictions on parame-
ters and with the flexibility of allowing setup times, setup
costs and backlog, as well as constraints on cycle time, ser-
vice time and queue contents.

We follow the general framework introduced by [7] and model
the production flow as continuous rather than discrete. Sim-
ilar to [12], we formulate the steady-state problem as a QP
with the addition of backlog and setup costs.

Once the optimal steady-state trajectory is known, we study
the best way of reaching it from any initial state, i.e., with
minimal costs. This is a transient optimization problem,
occurring for instance in case of a machine which is failure
prone, or in case of a traffic intersection which gives priority
to busses [13]. In these cases, we assume that deviations
from the steady-state trajectory rarely occur, allowing the
system to recover to the steady-state situation after each
interruption. We present optimal transient trajectories for
systems without backlog and, for systems without capacity
constraints, the policy for optimal transient behavior.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system and presents the constraints.
The optimal steady-state problem is addressed in Section 3
and examples of optimal trajectories are presented. In Sec-
tion 4, the optimal transient problem is addressed. Conclu-
sions are provided in Section 5.



2. SYSTEM DESCRIPTION

We consider a system of two queues served by a single
switching server. Fluid arrives at each queue i = 1,2 with
arrival rate \;. The content of queue ¢ at time ¢ is denoted
by wi(t). The server is limited to only serve one queue at a
time. If the server serves queue i, the service rate is given
by ri € [0, p;]. In [10] it is shown that for optimal policies,
a server, once serving a queue, does not idle and serves at
mazimal rate. Three examples of the system under con-
sideration are presented in Figure 1, a signalized traffic in-
tersection with two flows in Figure la, a 2-queue switching
server in Figure 1b and a 2-product manufacturing system
in Figure 1lc. The latter system has constant demands A;
instead of constant arrivals.
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Figure 1: Different two queue switching server layouts.

Define the load of queue i by p; = % For stability, i.e., all
arriving fluid can be served, it is required that p1 + p2 < 1.

Typically, switching service between different queues im-
plies a setup process, either a setup time o;; for switching
from queue ¢ to queue j, setup costs s;; or a combination of
these. For instance, a setup time can be reserved for vehicles
to leave the intersection after the queue has received a red
light (end of service), thereby preventing collisions, or for a
machine to adjust configurations to do some cleaning.

Given the setup times and cyclic behavior, we assume that
the system can operate in four modes, denoted by m €
{1,2,3,4}. Without loss of generality, the first mode, m = 1,
indicates a setup to serve queue 1, m = 2 indicates serving
queue 1, m = 3 indicates a setup to serve queue 2 and m = 4
indicates serving queue 2. Note that for a system without
setup times, i.e., 0;; = 0j; = 0, modes 1 and 3 have a dura-
tion of zero time units.

A service (idle) time is defined as the uninterrupted interval
during which the queue is (not) served. Note that during a
setup no queue content is processed, hence a setup is part of
the idle time. The duration of a service (idle) time for queue
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i is nonnegative and is denoted by 7, (t»). The service time
is divided into two parts,

M A
Tn =T, + Ty

where the duration of serving at maximal rate is indicated
by 7/ and the duration of serving at arrival rate by 7. Note
that serving at arrival rate, i.e., 7, > 0, occurs only if both
backlog is not allowed and the queue is empty. This dura-
tion is referred to as slow-mode, since capacity is wasted.
However, as indicated in [11] and shown in Section 3.1, us-
ing a slow-mode might lead to optimal behavior, since it
enlarges the cycle time and thereby reduces the fraction of
time spent on setups, which also wastes capacity.

The cycle time T is the time it takes to serve both queues
in a cycle. The cycle time consists of setup times and times
serving the queues, i.e.,

T=o0o 41+ +ow+74+7. (1)

2.1 System constraints

Depending on the system under consideration, some re-
strictions can be imposed. As presented below, these con-
straints can originate from operational or safety issues. Note
that these constraints are not mandatory, but can be in-
cluded if required. Cycle time constraints can originate
from, for instance, limiting the cycle time of a manufac-
turing system to the operator’s available time or requiring a
minimal cycle time for safety reasons in traffic intersections.
Therefore, minimal and maximal cycle times, respectively
T™in and 7™, can be taken into account,

Tmin S T S Tmax. (2)

Furthermore, bounds on service times, denoted by 7" and

7% can be required, e.g., minimal and maximal service
(green) times for traffic intersections. The service time con-

straints are imposed via

min max
Ti <7 ST

i=1,2. (3)

In addition to the constraints on cycle and service times, the
queue lengths can be bounded, e.g., finite buffer capacity,
given by

xi(t) < ™™ i=1,2. (4)

Furthermore, for stability, all arrivals must be served within
a period, resulting in

MNT = ittt + N1 i=1,2. (5)

Note that we can impose additional constraints, regarding
service times and/or queue contents. Given the system de-
scription and the constraints, we present a method to derive
the optimal steady-state trajectory in Section 3. This tra-
jectory is used in Section 4 to derive the optimal transient
trajectory.



3. STEADY-STATE TRAJECTORY

Multiple performance criteria exists for evaluating the tra-
jectory. For the system under consideration, cycle time,
flow-time or costs are commonly used criteria. In this pa-
per, we focus on minimizing the costs. However, other cri-
teria can be easily incorporated. In the remainder of this
paper we assume linear costs on the queue levels. Inven-
tory costs ¢j are proportional with z; (¢), where z; () =
max(z;(t),0). Backlog costs ¢;, which for instance arise
when production is behind on the demand for the system
depicted in Figure lc, are proportional with x; (¢), where
z; (t) = min(x;(t),0). This results in the following costs for
the optimal steady-state trajectory

1 [T o o
Js =7 / CILJSIL(T) +cixy (T)+ C;QJ;(T) + ¢y zo (T)dT...
0

S21 + S12

+ T

The trajectory minimizing Js is the optimal steady-state
trajectory. The optimal trajectory is a trade-off between
loss of capacity due to setups, slow-modes and the average
setup costs. Elongating the cycle time by including a slow-
mode or creating backlog, results in less switches over time
where capacity is lost due to setups and lowers the average
setup costs.

For a system without both setup costs and backlog, i.e.,
s21 = s12 = 0 and x;(t) > 0, the optimal steady-state tra-
jectory can be analytically derived from [11]. This trajectory
is depicted in Figure 2, and contains at most one slow-mode,
ie., F = Aand/or C = D. If no setup times are considered,
D = E and A = B. The optimal policy consists of serving
queue ¢ until the other queue j reaches a threshold. There-
fore, the trajectory can include slow-modes at both queues.
A special case of this model, with g1 = p2 and ¢1 = ¢2 has
been studied in [1, 2, 5, 6, 9] and it is shown that the optimal
policy is a clearing policy, i.e., the server empties a queue
and then switches to serve the other queue.
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Figure 2: Optimal steady-state trajectory, with characteris-
tic points A — F.

We denote the minimal queue content of queue ¢ by z,. The
optimal trajectory implies that the contents of both queues
are zero at least once in a cycle. Otherwise, a constant in-
ventory or backlog is present which results in non-optimal
behavior. Therefore, z, <0, 7 =1,2.

Similar to the approach in [12], where the optimal steady-
state trajectory for a switching server that competes over
multiple queues (without setup costs and backlog) is pre-
sented, we derive the optimal steady-state trajectory using
quadratic programming. For a fixed cycle time, the opti-
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mization problem is quadratic and by evaluating the perfor-
mance of the system over a range of cycle times the optimal
trajectory is derived. Moreover, we allow setup costs and
backlog in our approach. Total inventory and backlog of a
queue during a cycle can be derived regarding the service
times, due to the fluid flows and cyclic behavior. Figure 3
presents the contents of queue 7 during a single cycle. All ser-
vice and setup times are indicated, together with the slope
rates.
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Figure 3: Evolution of z; during a cycle, including setup
and service periods and rates of increase/decrease.

Total inventory of queue i during a cycle is denoted by w;
and total backlog by w; :

T . .
WT:/ ot (r)dr = L2
0

(T —7:)*— 2, T +w;,i=1,2,

B 2 i — A
(6a)
_ T 2 1 1
w; :/0 z; (T)dr = %(ui—)\i +)\7i)+7—i)\£i7 =12
(6b)

It can be easily seen that the expressions for w;” and w; are
quadratic in the optimization variables 7; and z,. In case
of two queues, where every queue is served only once in a
cycle, the setup costs are constant and do not influence the
optimal steady-state trajectory for a fixed cycle time. How-
ever, these costs are important for the time-average costs.

The optimal steady-state costs, for a fixed cycle time, are
given by

Js(T) = 1 (s12 + 521 + Qs(T)) ,

z )

with Qs(T") the solution to the quadratic programming prob-
lem given by

2
Qs(T) = T“n:&nz Z_;cjwj +c; w;, (8a)
st T < g < e i=1,2, (8b)
z, < x;nax — (ul — )\i)TZH7 1= 17 2, (SC)
MNT = it + N7y, i=1,2, (8d)
T =00 +7+7 +o12+ 74+ 75, (8e)

where (8c) follows from (4), i.e., the maximal queue content
is given by z; + (us — Xi)7), as can be seen in Figure 3.
Then, the solution J¢(7") with minimal costs for cycle times



within the range (2) renders the optimal steady-state costs
Ji. From the optimal service times and optimal minimal
queue contents, belonging to J3, the contents of each queue
during a cycle can be derived. Combining the contents of
both queues then results in the optimal steady-state trajec-
tory.

Note that this approach can be easily extended to a system
with > 2 queues, provided that a fixed service sequence is
given. Otherwise, evaluating all possible service sequences,
and selecting the sequence with the best results, results in
the optimal trajectory. Consider, for instance, a system with
three queues. Then, if each queue is served once in a cycle,
two different service sequences exist, i.e., serving queues 1,
2 and 3 consecutively, or serving queues 1, 3 and 2 consec-
utively. Note that if all setup times and costs are identical
and each queue is served only once in a cycle, the order
of queues in a cycle is irrelevant, as each order of queues
has identical costs. Next, for each sequence, the optimal
steady-state costs are derived, with similar costs as in (7),
total inventory and backlog (6) and constraints (1), (3)-(5).
Then, the sequence with lowest steady-state costs renders
the optimal sequence. If a queue is served multiple times
in a cycle, e.g., serving queues 1, 2, 1 and 3 consecutively,
the total inventory and backlog as presented in (6) does not
hold for the queue(s) that is (are) served multiple times.
These levels can be derived, in a similar way as presented
above, but are omitted since it is outside the scope of this
paper. The interested reader for the optimal steady-state
trajectory of a switching server that competes over multiple
queues without setup costs and backlog, and that can also
serve multiple queues simultaneously at a queue-dependent
rate, is referred to [12].

3.1 Examples

Using the method described above, we illustrate some op-
timal steady-state trajectories for this system. We start
from a simple system, without setup costs, constraints on
cycle and service times and no backlog, and then add more
parameters and restrictions. For a non-symmetric system,
with parameters

)\1 = 2, )\2 = 17 (9&)
M1 = 81 M2 = 47 (9b)
g21 = 3, g12 = 77 (90)
cf =8, ey =1, (9d)

the optimal steady state costs J; = 120 is reached for a cy-
cle time of 7' = 32. Corresponding service times are 71" = 6,
=8, 74 = 6 and 75 = 0. The corresponding queue con-
tents during a cycle are depicted in Figure 4. Note that the
minimal cycle time for this system to be stable is 20 time
units.

The optimal steady-state trajectory is depicted in Figure 5a.
The trajectory, which includes a slow-mode, can also be de-
rived analytically using [11]. Adding setup costs s21 = 300
and s12 = 200 to the system results in the optimal trajec-
tory depicted in Figure 5b. It can be seen that this addition
elongates the cycle time and increases the duration of the
slow-mode. Allowing backlog, with ¢; = 50 and ¢; = 3,
shifts the optimal trajectory downwards and enlarges the cy-
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Figure 4: Optimal queue contents during a cycle for the
system with parameters (9).

cle time, see Figure 5c. Note that no backlog occurs at queue
1, which is optimal due to the long slow-mode. Next, the
service time of queue 1 is restricted (7{*** = 15), resulting in
the optimal trajectory depicted in Figure 5d. Adding upper
bounds on the queue contents zi"** = 35 and z5'** = 16,
also reduces the cycle time, see Figure 5e. In Figure 5f the
optimal trajectory of the system with a maximal cycle time
T = 25 is depicted. This trajectory has a cycle time
of 20 time units, the minimal required cycle time (no slow-
modes), and also queue 1 has backlog. Finally, in Figure 5g
the optimal steady-state trajectory for this system without
setup times is depicted. Due to the setup costs, this trajec-
tory is not the fixed point (0,0).

The optimal steady-state trajectory is used for deriving the
optimal transient trajectory, presented below.

4. OPTIMAL TRANSIENT TRAJECTORY

The transient optimization problem is that of bringing the
system back to the optimal steady-state trajectory at min-
imal costs. Machine failure in a manufacturing application
or bus priorities in a signalized traffic intersection are two
examples that remove the system from the steady-state tra-
jectory. We assume that deviations from the steady-state
trajectory rarely occur, allowing the system to recover to
the steady-state situation after each interruption. A tran-
sient solution is defined as a trajectory in the x1 — x2 space
that leads to the optimal steady-state trajectory in a finite
amount of time. An optimal transient solution is a transient
solution which minimizes the costs of reaching the optimal
steady-state trajectory. In the remainder, backlog is not al-
lowed for the transient trajectory, i.e., z;(t) > 0, i = 1,2.
Therefore, if queue i is served, the service rate is given by

_ S
Ti(t) = {)\Z

In other words, if the queue is nonempty, service is at maxi-
mal rate, otherwise at arrival rate. Note that backlog might
be incorporated in a similar way as presented for the steady-
state trajectory, i.e., by deriving the total inventory and to-
tal backlog during a cycle. However, as both queues in the
transient trajectory are not necessarily zero at least once
during a cycle, this derivation is more complex. There-
fore, solving the transient problem for systems with backlog
might result in using other optimization methods as QP. For
the system without backlog, the transient costs are defined
by

if z; (t) > 0,
if x; (t) =0.

t

Jp= litm inf [ cf z1(7)+cF x2(7)+s2101 (7)+81202(7) = T2 d,
— 00 0

(10)
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Figure 5: Optimal steady-state trajectories for the system with parameters (9).
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(g) No setup times.

The system with setup times only (a) is

extended with setup costs (b), backlog (c), maximal service time (d), maximal queue contents (e) and maximal cycle time

(f). In (g), no setup times are considered.

with n;(t) = é, j # i during a setup to queue i and
n;(t) = 0 otherwise. For the remainder of this paper, we
define the initial state by [m(0),2(0)"] € {1,2,3,4} x R%,
Ry := [0,00), as the state immediately after removal from
the periodic solution, e.g., after the machine failure or bus
priority. In order to reach the steady-state trajectory from
every possible initial state in finite time, the steady-state
trajectory requires a slow-mode, since serving at a lower
rate, i.e., not at full capacity, provides the transient trajec-
tory to ‘catch up’ with the steady-state trajectory.

For a fired number of cycles C, we present the transient
optimization problem as a QP problem. A cycle, starting
at mode m, is defined as the series of operations until the
end of the previous mode (which is 4 for mode 1, 1 for mode
2, etc.). Denote by 75, the service time of queue i for the
c-th cycle (¢ < (), consisting of the service time at maxi-
mal rate Ti‘f . and the service time at arrival rate Tli\c. In the
remainder of this paper we assume that the initial mode is
1, i.e., start setting up to serve queue 1, and derive the QP
problem for this particular case. The QP problems for the
other initial modes can be derived similarly. Constraints for
the transient problem (c.f. (2)-(4)) are listed below. Minimal
and maximal cycle time constraints are:

min m A n A mazx
T <021 +T170+T1’c+0'12+7'2’c+7_2,c <T ;

c=1,..,C. (11a)

Minimal and maximal service times:

7 < gy < T foriel1,2,c=1,..,C.

(11b)

Maximal queue contents:

xi(t) < ™™, forie1,2. (11c)

Considering the transient optimization problem for an infi-
nite number of cycles, the transient trajectory would remain
on the steady-state trajectory once it is reached. However,
due to the finite number of cycles considered in the QP prob-
lem, a termination effect occurs, e.g., elongating the cycle
time and/or lowering the accumulated queue contents in the
final cycle (or even earlier) can lower the costs. Therefore,
we consider in the QP problem C > 2 cycles and require
the C' — 2th cycle of the transient trajectory to follow the
optimal steady-state trajectory, i.e., the queue contents of
the C' — 2th cycle of the transient trajectory are identical to
the queue contents during the corresponding cycle of the op-
timal steady-state trajectory. If so, the trajectory is defined
as a feasible transient trajectory, otherwise the trajectory
is infeasible. Then, for a feasible trajectory, the final two
cycles, which can include termination effects, are not con-
sidered.

As an illustrative example, the queue levels of a transient
trajectory with C' = 5 is presented in Figure 6. The setup
and service periods are also indicated. Since the trajectory
starts in mode 1, cycle ¢ starts in mode 1 and ends at the end
of mode 4, i.e., serving at rate TQC. The transient trajectory
converges to the steady-state trajectory, presented in gray,
during service of queue 1 at arrival rate in the third cycle,
i.e., during Tﬁ?,. The trajectory remains on the steady-state
trajectory until the fifth, and final, cycle. In the final cy-



cle, service times are zero and the steady-state trajectory
is left, reflecting the termination effect. Note that the de-
picted trajectory is not the optimal transient trajectory, as
for instance slow-modes Tﬁl and Tﬁl occur while the queues
are non-empty. Also, the trajectory is not feasible, as the
third cycle not entirely follows the optimal steady-state tra-
jectory.

A I A i A
O T13T13 T T1aT14 s

I I A
021 Ti1 Tia 031 T2 T2
A =~
] P
—
# " L
t T2 T2,1 T2 T2 Tag T2 T2q 012

Figure 6: Queue levels during transient phase (C' = 5), con-
vergence to steady-state trajectory during 7'1/\’3.

Let us denote by z; . the content of queue i at the end of
the c-th cycle:

Ti,c+1 :wi,c+Ai(012+021 +T£C+Tg{\,c)_(/~’bi - Ai)’rzflfc’
i=1,2, e¢=1,..,C, (12)

where ;0 = z;(0). Then, the total queue contents w; . of
queue ¢ for cycle ¢ can be derived by:

wi,e =(T1,c-1 + %A1021)021 + (Z1,6-1 + A1o21 — ...
Tuarl )l + (@1e-1 + Aoar — par )T + o
(1,61 + A\1o21 + %)\1(012 + 7y + Tg/\,c) —
pati ) (o2 —&-7’5‘7C+7'2’\,C)7 c=1,..,0C, (13a)
wa,e =(T2,e—1 + %)\2(021 + T{fc + T1>\,c + 012)) (021 + ...
.+ T{\,c +012) 4+ (w2,c-1 + X021 + 7' + .
Tf\,c +o012) — %,u27'£fc)7'2”,c + (x2,0—1 + A2(021 + ...

T{fc + 7'1’\7C +o12) — MQT;C)TQA’(” c=1,..,C. (13b)

Using (13), the transient costs (10), considering C cycles,
can be written as

Jp(C) =C(s12 + s21) + Qp(C).

Here, Q,(C) is the solution to the quadratic programming
problem, for C cycles, given by

2 C
. + A . .
QP(C) = l{nln)\ chz Wi, — J.: (O—’b‘j + Ti‘jc + Ti,c)7 1 75 Js
Ti,erTisei=1c=1

(14)
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subject to constraints (11a)-(11b) and

T1,c > A1(012+T£C,T;C), c=1,...C, (15a)
z2,e > 0, c=1,...C, (15b)
Tie1 < — Moo, c=1,..,C, (15¢)
wac < ap™ — (u2 — A1)78, c=1,..,C, (15d)

where constraints (15a)-(15b) follow from z;(¢) > 0 and con-
straints (15¢)-(15d) follow from (11c).

To negate the termination effect, we calculate the costs of
the first C' — 2 cycles of the optimal trajectory for C' cycles,
resulting from (14), and denote these costs by J,(C). In
other words, the transient trajectory for C' cycles is derived,
and the costs of the first C' — 2 cycles only are considered.

Given a system with the initial state outside the steady-state
trajectory, the number of cycles required to derive the opti-
mal transient trajectory is not easily determined, as shown
by, for instance, the optimal trajectory in Figure 8. How-
ever, a lower bound on the number of cycles required for a
feasible transient trajectory C™" can be determined by us-
ing a clearing policy, regarding the initial state and consid-
ering a system without capacity or service time constraints.
For a system with capacity or service time constraints, this
number of cycles is usually not enough to reach the steady-
state trajectory. Starting from this lower bound, and by
adding extra cycles, we solve the QP problem until a feasible
transient trajectory is derived. Note that this transient tra-
jectory is not necessarily the optimal trajectory, i.e., adding
more cycles can lower the costs. Therefore, the number of
cycles considered in the QP problem (14) is increased un-
til the total costs required for the transient trajectory to
reach the steady-state trajectory does no longer change, i.e.,
Jy(C) = J;(C +1i), Vi > 0. Then, adding more cycles does
not result in a different transient trajectory, in the sense that
it only adds steady-state cycles to the solution. Hence, we
can then conclude that the transient solution is the optimal
one.

For the system with parameters (9), and without constraints
on queue length, cycle time and service times, the optimal
transient trajectory for initial state [1, 6, 25] is presented in
Figure 7a. Note, that the initial mode is setting up to serve
queue 1, and that the steady-state trajectory is reached dur-
ing the second cycle. It can be seen that for this initial
state a clearing policy (until the steady-state trajectory is
reached) yields the optimal performance. However, the op-
timal trajectory for initial state [1, 30, 23], presented in Fig-
ure 7b, gives a different result. First, after the setup, queue
1 is emptied. Second, after the setup, queue 2 is served un-
til a content of 3.43 is reached, then the system switches to
serve queue 1. Note that this queue is not emptied. Next,
queues 1 and 2 are both cleared before reaching the steady-
state trajectory.

For the trajectory depicted in Figure 7b, it is clearly shown
that a trade-off exists between a build-up of the much more
expensive queue 1 and switching before emptying queue 2.
This behavior is not present in symmetric systems, as a
clearing policy is optimal for symmetric systems, see for in-
stance [1, 9].
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(a) Initial state [1,6,25].  (b) Initial state [1, 30, 23].

Figure 7: Optimal transient trajectories with different initial
states. In (a) the clearing policy is optimal, in (b) it is not.

Each optimal transient trajectory contains switching points.
A switching point is the state [m, x1, x2] at which the system
switches to serve the other queue, i.e., switching between
modes m = 2 and m = 3 and between modes m = 4 and
m = 1. Experimentally combining the switching points of
optimal trajectories, i.e., solving the transient problem for
a set of initial states and collecting the switching points, re-
sults in a switching curve. A switching curve characterizes
the optimal transient structure for any given initial state.
Note that for a system with service time constraints, i.e.,
with at least one of the constraints (11a)-(11b), switching
curves may not exist in general, as the switching points
are affected by the constraints and will depend on the ini-
tial state. For the system without service time constraints,
switching curves can possibly be derived analytically as fol-
lows. Starting from the steady-state trajectory, an area can
be characterized from which the transient trajectory con-
verges with a single operation to the steady-state trajectory.
Next, an area can be characterized for which the system con-
verges to the steady-state trajectory in two steps, and the
optimal service times can be derived. Continuing these steps
might result in the switching curves.

The (experimentally determined) switching curves for the
system with parameters (9) are presented in Figure 8, along
with a trajectory with initial state [1,40, 80]. The switching
curve for a transition between modes m = 2 and m = 3 is
given by the line 1 = 0 and z2 > 17, where (0, 17) is the
switching point of the optimal steady-state trajectory, pre-
sented by point D in Figure 2. The switching curve for a
transition between modes m = 4 and m = 1 is discontinuous
with linear segments. These segments do not overlap, i.e.,
each initial state has a single optimal trajectory.

For the system with parameters (9) and ¢ = 4, the switch-
ing curve is continuous, see Figure 12. Here, the switching
curve for a transition between modes m = 4 and m = 1 is
piecewise linear.

Adding maximal queue length constraints z1"** = 75 and
1™ = 92 to this model results in the switching curves
depicted in Figure 10. The figure also displays the op-
timal transient trajectory with initial state [1,40,80]. It
can be seen that the switching curves, originating from the
queue level constraints, are located \;o;; below z;"**, as the

queue length increases during the setup. Note that the ini-
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Figure 8: Discontinuous switching curves (black), for the
system with parameters (9), and transient trajectory (gray)
for initial state [1,40, 80].
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Figure 9: Continuous switching curves (black), for the sys-
tem with parameters (9) and ¢} = 2, and transient trajec-
tory (gray) with initial state [1, 40, 80].

tial queue contents, for starting in mode 1, are limited to
:El(()) < :l’rlnax — Mo21 and LEQ(O) < .'Elznax — )\2(021 + (712).
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Figure 10: Switching curves (black) for the system with pa-
rameters (9), ¢ = 2, 21" = 75 and "™ = 92 with tran-
sient trajectory (gray) for initial state [1, 40, 80].

For an optimal transient policy, the switching curves can be
used to indicate the switching moments. From our experi-
ments we find that for CZL i > c;r 1, queue i is always emp-
tied and the optimal policy for c;r Wi = c;-L 1y is, as expected,
a clearing policy (unless prohibited by restrictions (11a)-

(11c)).



Furthermore, for an optimal transient policy, also the opti-
mal initial mode (given contents x(0)), if it is not predefined,
can be derived. Together with the switching curves, this
gives the policy for optimal transient behavior given initial
queue contents. Once the optimal initial mode is known,
the queues are served until a switching point is reached,
switch to the successive mode, until converging to the opti-
mal steady-state trajectory. If all initial modes are allowed,
the setup modes m(0) = 1 and m(0) = 3 are of course
not optimal. Therefore, a comparison of the transient costs
starting with both modes m(0) = 2 and m(0) = 4 results
in the optimal initial mode. For the system with parame-
ters (9), the optimal initial modes are presented in Figure 11,
along with the switching curves. For initial queue contents in
the gray area the optimal initial mode is m(0) = 2, m(0) =4
otherwise.
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Figure 11: Switching curves (black) and optimal initial mode
for the system with parameters (9), m(0) = 2 in the gray
area, m(0) = 4 otherwise.

Also for the system with parameters (9), where ¢ = 2 and
queue length constraints z1"** = 75 and 1" = 92, the opti-
mal initial modes are presented in Figure 12. The dark gray
area indicates that m(0) = 2 is optimal and the light gray
area indicates optimal mode m(0) = 4. For the remaining
area, no trajectories exist as these would violate the queue
constraints.
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Figure 12: Switching curves (black) and optimal initial mode
for the system with parameters (9), ¢ = 2, z1*** = 75 and
' =92, m(0) = 2 in the dark gray area and m(0) =4 in
the light gray area.
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5. CONCLUSIONS

In this paper we studied the optimal steady-state and
transient trajectories for a two queue switching server. The
steady-state problem is formulated as a QP, given a fixed cy-
cle time. By solving the QP over a range of cycle times, the
optimal steady-state trajectory is derived. An advantage of
this method is that it is very flexible in adding objectives
and constraints, e.g., setup times and/or setup costs, includ-
ing backlog and constraints on cycle times, service times and
queue lengths.

Second, we formulated the transient problem, i.e., a tran-
sient trajectory which minimizes the costs of reaching the
optimal steady-state trajectory. This is also formulated as a
QP, depending on the number of cycles to calculate. Evalu-
ating over a range of cycles results in the optimal transient
trajectory given initial queue contents and initial mode. For
the system without capacity constraints, switching curves
can be derived by combining switching points of optimal tra-
jectories, i.e., points at which the system switches to serve
other queues. These switching curves are the blueprint of
a policy for optimal transient behavior. Furthermore, the
optimal initial mode, if not predefined, can be derived. To-
gether with the switching curves, this gives the policy for
optimal transient behavior.

This work can be extended to systems with more than two
queues. For a fixed queue routing, i.e., fixed service order
of queues, the approach can be easily extended by adding
the extra queues. If the queue routing is not fixed, multiple
routes are possible to converge to the steady-state trajectory.
For all these routes, the optimal service periods can be de-
rived using our approach. Then, the best result yields the
optimal behavior. Also, analytical derivation of the switch-
ing curves is a suggestion for further study on this topic.
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