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Abstract: We consider the optimal scheduling problem of a single server multiclass fluid
flow network with non-negligible setup times. The server is able to serve several queues
simultaneously, each at its own rate, independent of the number of queues being served. As
performance criteria we consider the weighted average amount of fluid in the queues, also known
as work in progress, or we consider the cycle time. Restrictions on cycle time and service times
are taken into account. A 4-queue server is presented to illustrate the process of deriving the
optimal schedule.
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1. INTRODUCTION

Queueing networks constitute a large family of models in
a variety of settings, involving resources, such as ’jobs’
or ’customers’, that wait in queues until being served.
Once its service is completed, a resource moves to the next
prescribed queue, where it remains until being served. This
procedure continues until the resource leaves the network.
In a lot of applications, capacity over competing resources
is shared by servers. One can think of communication
via the Internet, signalized traffic intersections, or man-
ufacturing networks. For all these applications, switching
between resources might take time.

We consider the optimal scheduling problem multiclass
fluid flow networks that can be described by a single
switching server that competes over multiple queues. The
problem consists of determining optimal periodical behav-
ior or service timing plan, i.e., scheduling the service and
idle times of each queue during a single cycle. Analytical
derivation of optimal periodical behavior, e.g., as pre-
sented in van Eekelen et al. [2006], Ioslovich et al. [2011],
is only possible for networks with two queues or flows.
In practice, however, it is likely for servers to serve more
than two queues. Therefore, we aim at deriving optimal
periodical behavior of single server networks with multiple
queues, by using optimization techniques.

For a network with a number of competing unlimited
queues, negligible setup-times and cost of operation per
unit linear in the queue content, it is well-known that
the optimal policy is a µc-rule, see Baras et al. [1985]
or Buyukkoc et al. [1985]. This policy allocates service
to the non-empty queue with the largest rate of cost
decrease. In this paper we assume that the server is able
to serve several queues simultaneously, unlike the above
mentioned papers. Moreover, each queue is served at a
queue-dependent rate, which is independent of the number
of queues being served. These kind of models may arise
when studying, e.g., multiclass queueing tandems, multi-

server polling systems with overtaking constraints and
signalized traffic intersections. In addition to the network
studied in Lefeber et al. [2011], where optimal control of a
multiclass fluid flow network for which several queues can
be served simultaneously is presented, we include external
arrival rates in each queue and consider non-negligible
setup times.

Examples of multiclass queuing networks considered are
presented in Figure 1. The network on the left is a 4-
queue two-server polling system with physical constraints
such that the servers can not serve consecutive queues
and the servers can not overtake each other, e.g., think
of quay cranes at a container terminal serving vessels.
In the middle, a traffic intersection with four flows is
presented, for which conflicting flows can not be served
simultaneously. The network on the right presents a a four
queue tandem network where each of the three servers
can serve two queues and only one queue can be served
at a time. Each of these networks can be modeled as a
single server with four queues that can serve several queues
simultaneously, with a fixed service rate for each queue,
i.e., capacity is not shared over multiple queues.

Fig. 1. Three examples of multiclass queueing networks:
Two-server polling network (left), Traffic intersection
(middle) and multiclass queueing tandem network
(right).
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We decompose the optimal scheduling problem into four
subproblems that can be considered consecutively. Group-
ing of queues renders the first subproblem, i.e., which
queues can be served simultaneously? The specification of
the number and composition of groups of queues that can
be served simultaneously is a nontrivial task that can have
a major impact on the network performance. For schedul-
ing of signalized intersections, work exists on grouping of
non-conflicting traffic queues on an intersection, see for
instance Improta and Cantarella [1984], Mohsen Hosseini
and Orooji [2009], Stoffers [1968] or Tully [1977]. We
introduce a similar approach. However, we take all possible
groups into account, i.e., not only the maximal groups, but
also all subgroups of these groups. In Gallivan and Hey-
decker [1988] and Irani and Leung [1996] also subgroups
are taken into account, but the authors restrict themselves
to sequences with a single green (service) period for each
flow, whereas we allow multiple service periods for a flow
in a cycle.
The second subproblem consists of combining the groups.
For each combination, all queues are served at least once in
a sequence. A maximal number of groups in a sequence is
taken into account for computational reasons. However, all
possible combinations are evaluated under this restriction.
This includes considering combinations where some queues
have multiple service times and some queues are served
more often than others. Solving subproblems one and two
is computationally expensive. To diminish the load, we use
a recursive approach that eliminates unfeasible groups or
combinations of groups as soon as possible by employing
the constraints, instead of an exhaustive approach, i.e.,
deriving all possibilities.
The groups in each feasible combination of groups can be
ordered in various ways, resulting in multiple sequences
(or cycles) with possible different results. This renders the
third subproblem. Sequences with similar behavior, based
on the constitution of groups, are removed.
Finally, for each feasible sequence, optimal periodical be-
havior can be derived using linear or quadratic program-
ming techniques. This is the fourth subproblem. As per-
formance criteria, we consider the costs, which are a linear
function of the queue contents, or the cycle time.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the model description and notation. The
performance criteria are presented in Section 3. Derivation
of the optimal periodical behavior and network constraints
are presented in Section 4. In Section 5 an example of
4-queue switching server is presented to illustrate this
method. Conclusions are provided in Section 6.

2. MODEL

We consider multiclass fluid flow networks which can be
described by a single switching server that competes over
N > 1 queues. Each queue n ∈ N = {1, 2, ..., N} has fluid
input at constant arrival rate λn. The content of queue n
is denoted by xn. If the server serves queue n, the service
rate is given by rn ∈ [0, µn].

Before focussing on the model, we reconsider the networks
presented Figure 1. Each of these networks can be modeled
as a single server. This server can serve queues 1 and 3, 1
and 4, and 2 and 4 simultaneously. Also, each queue can
be served separately,

In van Eekelen [2008] it is shown that for optimal policies,
a server, once serving a queue, does not idle and serves at
maximal rate. Therefore, if queue n is served, the service
rate is given by

rn =

{
µn if xn > 0,

λn if xn = 0.
(1)

In other words, if the queue is nonempty, service is at
maximal rate, otherwise at arrival rate. Define the load of
queue n by ρn = λn

µn
. The queues are divided into groups.

A group m ∈ M is a set of queues, e.g., {n1, n2, n3},
that can be served simultaneously. The set of all groups
is denoted by M. A sequence s ∈ S consists of multiple
groups, e.g., (m1,m2,m3), and is a single repetition of the
service operations, sometimes referred to as signal cycle
or period. Note that a sequence specifies the order in
which the groups are served. The set of feasible sequences
is denoted by S. For computational reasons, we restrict
ourselves to a reasonable maximal number of groups in a
sequence, given by

|s| ≤ S, ∀s ∈ S. (2)

The time it takes to serve all groups in a sequence is
called the cycle time, denoted by T . A service (idle) time
is defined as the uninterrupted interval during which the
queue is (not) served. Note that during a setup no queue
content is processed, hence a setup is part of the idle
time. The duration of a service (idle) time for queue n in
group m is nonnegative, is labeled service (idle) time and is
denoted by τm,n (tm,n). Furthermore, the maximal number
of service times of a queue during one cycle for sequence s
is denoted by γs. A service time indicates the duration of
serving a queue without interruption, it starts after an idle
time, can be spread over multiple consecutive groups and
ends before another idle time. Receiving a service time at
the first and last group of a sequence also counts as a single
service time, as the sequence is repeated. Let Γ denote the
maximal number of service times for a queue in a sequence,
i.e.,

γs ≤ Γ, ∀s ∈ S. (3)

The maximal number of service times for a queue in one
cycle is bounded by

Γ ≤
⌊
S

2

⌋
, (4)

since the maximal number of service times, which are
interrupted by idle times, is at most half of the number
of groups in the sequence. For operational purposes, it is
desired to keep Γ low.

Switching between serving queue ni ∈ N to serving queue
nj ∈ N with ni 6= nj requires a setup-time σni,nj

≥ 0. The
setup time for switching from a group of queues m ∈M to
a single queue n ∈ N is the maximal setup time between
all these queues:
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σm,n = max
ni∈m

σni,n.

Furthermore, switching between non-conflicting queues,
i.e., queues that can be served simultaneously, does not
require a setup time. For sequence s, define the set of
groups in which queue n is served by

Gs,n = {i ∈ {1, 2, ..., |s|}|n ∈ mi}.

For s = (m1,m2,m3) and Gs,n = {m2,m3}, queue n is
served in group m2 after setup time σm1,n and service
ends at the end of serving group m3. Moreover, switching
between groups m2 and m3 does not interrupt the service
time of queue n, i.e., σm2,n = 0.

Assumption 1.
|s|∑
i=1

∑
n

σm,n > 0, ∀s ∈ S,

with n ∈ m(i mod |s|)+1.

This assumption states that during a sequence at least one
setup of non-zero duration is present.

For operational reasons, some restrictions can be imposed
on the network. Minimal and maximal cycle times, respec-
tively Tmin and Tmax, can be taken into account:

Tmin ≤ T ≤ Tmax. (5)

Also, minimal service times can be required. As the service
time of a queue is not restricted by a single group, let us
define by Gs,n the set of sets of consecutive groups in which
queue n is served in sequence s. Formally, for a sequence
s =

(
m1,m2, ...,m|s|

)
, we define

Gs,n = {gs,n∈P (Gs,n)\∅|∃!i ∈ gs,n : i mod |s|+1 /∈Gs,n
∧ ∃!j ∈ gs,n : (j − 2) mod |s|+ 1 /∈ Gs,n},

where P (q) denotes the powerset of any set q, which
is the set of all subsets of q, including q and ∅, e.g.,
P ({1, 2}) = {{1, 2}, {2}, {1}, ∅}.
The maximal number of service times that a queue receives
during one cycle, γs, can be derived from Gs,n as follows:

γs = max
n∈N
|Gs,n|.

The minimal service times are imposed via

∑
i∈gs,n

τmi,n ≥ τmin
n ∀gs,n ∈ Gs,n, ∀n ∈ N . (6)

For example, if s = (m1,m2, ...,m5) and queue n is
contained in groups m1, m3 and m5, we have

Gs,n = {1, 3, 5} ,
Gs,n = {{1, 5}, {3}} ,

which yields the following service time restrictions:

τ1,n + τ5,n ≥ τmin
n ,

τ3,n ≥ τmin
n .

Below we formulate the problem of determining the opti-
mal periodical schedule.

Problem formulation
Derive the optimal schedule of service and idle times for a
single switching server that competes over N queues, given
arrival rates, service rates and setup times and satisfying
|s| ≤ S and γs ≤ Γ. In other words, find the periodical
service and idle times for each queue that minimizes a
performance criterium.

3. PERFORMANCE CRITERIA

The optimal periodical behavior depends on the perfor-
mance criteria. There exists a plethora of performance
indicators. We consider the cycle time or the costs, which
are a linear function of the queue contents. This is also
referred to as minimizing the weighted average work in
process (wip) level. This term will be used throughout
the paper. These criteria are discussed below. Note that
we do not take setup costs into account. However, setups
are penalized by setup times which lead to larger queue
contents, and therefore higher costs.

3.1 Cycle time

The first performance criterium we consider is cycle time.
Moreover, the minimal cycle time is also used to speed
up the optimization of the weighted average wip level,
as shown below. Note that minimal cycle time does not
necessarily imply full capacity for the queues with the
highest load in each group. Due to both constraints (5)
and (6), the network might have spare capacity at the
minimal cycle time. For ease of exposition, we introduce
αm as the total time required by group m, i.e., setting up
to and serving group m:

αm = σm−1,n + τm,n ∀n ∈ m, (7)

where m− 1 indicates the predecessor of group m. Then,
the cycle time for sequence s can be described by:

T =

|s|∑
m=1

αm. (8)

The problem is to find the service and idle times for
each queue for a given sequence. Note that the idle times
of queue n are a combination of setup times and times
required by groups not serving queue n. Using the service
times as optimization variables, the cycle time (8) can be
written as a linear combination of the service times. These
linear objective functions are subject to linear equality and
linear inequality constraints, which are presented below.
Therefore, minimizing the cycle time results in a LP
problem.
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3.2 Weighted average wip level

A well-known performance criterium is the work in
progress (wip) level. The time averaged wip of queue n
is denoted by

wn =
1

T

∫ T

0

xn(τ)dτ. (9)

Weights on the queue content n, which can, for example,
represent costs, are denoted by cn. The weighted time
average wip level of the network is given by:

W =

N∑
n=1

cnwn. (10)

The average wip level (9) of a single queue can be described
by the duration of the service and idle times during a cycle,
discussed below. By means of an example we illustrate the
derivation of the average wip level. Consider a sequence
consisting of five groups and a queue n that is served
twice during a sequence, e.g., Gs,n = {1, 2, 4}. Note that
the queue receives two separate service periods although
it is contained in three groups. The queue content during
a single cycle is presented in Figure 2.

Fig. 2. Queue content evolution, queue served twice in a
cycle.

For ease of exposition, the subscript ,n is omitted in this
example and we denote by βm the idle time duration before
serving queue n in group m. The figure presents also all
service and idle times for each group and the maximal
queue contents at the group in which the flow is served,
i.e., x1 and x3. Note that if queue n is served multiple
times in a sequence, the queue is not necessarily emptied
each time during service. The total queue content during
this cycle equals the area beneath the graph.

Calculation of the total queue content, or wip level, can be
split into |Gs,n| parts, three for this example, where each
part consists of a possible idle time and successive service
time.

Let us consider the first part of queue content n in
Figure 2, i.e., the evolution during β1+τ1. The area can be
easily computed, since the part consists of a linear increase
with rate λn during β1, decrease with rate λn−µn during
τµ1 and constant level during τλ1 , which is zero in this
case. Therefore, the average queue content during β1 + τ1,
denoted by w1, is given by

w1 =
1

T
[x1(τ1 + β1)− (µn − λn) ( 1

2τ
µ
1 + τλ1 )τµ1

− 1
2λnβ

2
1 ], (11)

with

x1 = β1λn + x3 − τµ4 (µn − λn)

which can be generalized for each queue. With βi,f the sum
of setup times and green times τm, 6n, it can be seen that
equation (11) is quadratic in the optimization variables
τµm,n and τλm,n, provided that cycle time T is a constant.

4. OPTIMAL PERIODICAL BEHAVIOR

Optimal periodical behavior is derived in four consecutive
subproblems. These subproblems, i.e., grouping of queues,
combining groups, deriving feasible sequences and opti-
mizing a sequence, are presented below.

4.1 Group generation

First, all possible combinations of queues which can be
served simultaneously are grouped. This equals finding all
independent sets in a graph. More specifically, considering
graphs, this amounts to finding all sets of vertices in a
graph in such a way that in a set no edges are connected.
A multiclass queueing network can be considered as an
undirected graph G = (N,E) consisting of a set of vertices
N together with a set of edges E. Vertices represent queues
and edges denote conflicting queues, i.e., these queues can
not be served simultaneously (for instance queues 1 and 2
for the system in Figure 1). The graph corresponding to
the networks presented in Figure 1 is depicted in Figure 3.
For this network, servers 1 and 2, 2 and 3, and 3 and 4 are
unable to operate simultaneously. Hence, these vertices are
connected.

Fig. 3. Graph corresponding to the 4-queue switching
server.

Let us define allowed groups:

Definition 2. A set m ⊆ V is labeled allowed group, when
m is an independent set for graph G, i.e., for every two
vertices in m there is no edge connecting the two. Let M
denote the set of all allowed groups in G.

In other words, the set of allowed groups M is the set of
all independent sets of graph G. Generating all groups is
equivalent to finding all allowed groups. The groups are
generated by starting from an empty set and recursively
adding vertices to this set. The connection between the
vertices in the set is checked after every addition. If none
of the vertices in the set are connected, the set is stored
and the addition of vertices continues. If an edge between
vertices in the set exists, i.e., conflicting queues, the set is
dismissed and also all possible sets resulting from this set
are disregarded. Dismissing a set and thereby disregarding
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all possible sets resulting from this set speeds up the
process drastically compared to an exhaustive search. The
set of allowed groups for the 4-queue switching server is
given by:

M = {{1, 3}, {1, 4}, {2, 4}, {1}, {2}, {3}, {4}}.

A maximal group is defined by:

Definition 3. A group of P is a maximal group of P if it
is not properly contained in another group of P .

As mentioned before, unlike some approaches used in
literature, we do not only take the maximal groups into
account, but also all subsets of the maximal groups. It
might seem counterintuitive to take subsets of maximal
groups into account, as the maximal groups contain the
most queues and therefore achieve the highest decrease
in load if the queues in the group are served. However,
conflicting queues and topology-dependent setup times
can result in using proper subsets of maximal groups in
the optimal sequence. The set of maximal groups for our
illustrative example is given by

{{1, 3}, {1, 4}, {2, 4}}. (12)

All allowed groups are the powersets of these maximal
groups.

4.2 Combining groups

Having generated the groups, the second subproblem con-
sists of combining these groups. More specifically, find-
ing all feasible combinations of groups. A combination of
groups is feasible if it contains all queues, i.e., all queues are
served at least once in a sequence and the number of groups
satisfies (2). The sequences are generated using a similar
approach as in Section 4.1, by recursively enumerating all
possible combinations of groups, regarding the constraints.
The resulting sets are contained in the family of feasible
sets of powerset P (M), and is denoted by P feas(M). In
addition, a lower bound on the number of groups in a
sequence can be imposed if desired.

4.3 Sequence generation

Third, for each set of combined groups in P feas(M),
the groups can be ordered in different ways, resulting in
different sequences. If a combination of groups consists of i
groups, (i−1)! different sequences arise, since w.l.o.g. it can
be assumed that the first group is fixed in the sequence.
From all generated sequences, infeasible sequences are
discarded to minimize optimization time. A sequence is
infeasible if (3) is violated or if it contains two or more
identical groups in consecutive order, as these groups
can be lumped together resulting in a sequence which is
already considered or not allowed. This yields a set of
feasible sequences S.

4.4 Optimization

Having generated all feasible sequences s ∈ S in the first
three subproblems, we derive for each of these sequences

the service and idle times for best performance. From
these results, the best solution is selected, which renders
the optimal periodical behavior. An individual sequence
is optimized using linear programming (LP) or quadratic
programming (QP), depending on the performance crite-
ria.

In order to use QP, the objective function of deriving the
wip must be quadratic with respect to the optimization
variables, i.e., service times. In (11) it can be seen that
the objective function is quadratic in the optimization
variables, provided that the cycle time T , which is also a
function of the service times, is a constant. Hence, to derive
the optimum for a given sequence using QP, the solution of
the QP must be derived for all cycle times in the range (5).
However, by deriving the minimal required cycle time T ∗,
using a LP as shown above, the range can be reduced if
Tmin < T ∗ or the sequence can be discarded if Tmax < T ∗.
Next, the optimum is found by minimizing the objective
function over the range min(Tmin, T ∗) ≤ T ≤ Tmax. Most
of the times this optimum is located at the lower bound
of T and can be determined by solving the QP twice,
i.e., if J(min(Tmin, T ∗)) < J(min(Tmin, T ∗) + ε) where
J(t) is the minimal objective value as function of cycle
time. Otherwise, an efficient algorithm, e.g., the bisection
method, can be used to locate the optimum.

Moreover, in addition to the introduced constraints for
the cycle time (5) and the service times (6), a stability
constraint is required for periodical behavior. Total service
time for a queue during a sequence must be large enough
to serve all arrivals during a sequence, i.e.,

ρnT ≤
∑

m∈Gs,n

τm,n, ∀n ∈ N .

Furthermore, service at maximal rate is bounded, since the
queue contents are non-negative:

τµm,n ≤
xm,n + λnσm−1,n

µn − λn
, ∀n ∈ N ∀m ∈ Gs,n,

where xm,n denotes the queue content of xn at the start
of serving group m, and τµm,n denotes the service time at
maximal rate for queue n in group m. Note that this time,
together with the service time at arrival rate, denoted by
τλm,n, equals the service time, i.e.,

τm,n = τµm,n + τλm,n, ∀n ∈ N ∀m ∈ Gs,n.

Also, all queue contents and service times are nonnegative,
which are the final constraints for this problem.

5. EXAMPLE

To illustrate the derivation of the optimal schedule, we
consider the 4-queue switching server from Figure 1 again.
For this network we consider the parameters

λ = [6 1 2 3] ,

µ = [12 12 12 8] ,

c = [3 1 1 1] .
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Moreover, all setup times are equal to 5 time units.
Restrictions on the cycle time and minimal service times
are given by:

80 ≤ T ≤ 100,

τmin = [5 5 5 6] .

All weights are assumed 1. For this network a simple
schedule is desired, therefore a sequence is limited to
contain maximally six groups, i.e., S = 6. The objective
is to minimize the average weighted wip level. Using the
method described in this paper, the sequences with lowest
weighted average wip levels for given upper bound on the
number of groups S and maximal number of service times
given by (4) are presented in the following table. For each
of these sequences the constitution of groups are given,
labeled by mj with j = 1, 2, ..., S.

S m1 m2 m3 m4 m5 m6

3 1, 3 1, 4 2, 4 - - -
4 1, 3 1, 4 1, 3 2, 4 - -
5 1, 3 1, 4 1, 3 2, 4 1, 4 -
6 1, 3 1, 4 1, 3 2, 4 1, 3 1, 4

The average weighted wip level W , corresponding cycle
time T and group times αj for these sequences are pre-
sented in the table below.

S W T α1 α2 α3 α4 α5 α6

3 180.2 80 25.0 43.3 11.7 - - -
4 164.8 80 12.3 41.7 14.3 11.7 - -
5 149.2 80 11.7 28.3 11.7 11.7 16.7 -
6 144.6 80 10.0 19.2 10.0 11.7 10.0 19.2

For S = 2, (sequence {{1, 3}, {2, 4}}) no periodical solu-
tion exists, since not all arriving products can be served.
For S = 3 all arriving products can be served and all
queues are served once. The results from S > 3 clearly
show that performance improves by allowing multiple ser-
vice times to queues 3 and 4. Moreover, queue 1, which has
the highest load, is served in as many groups as possible.
Note that the solution for S = 5 with groups m4 and m5

interchanged yields the same results, as the setup times
are constant. If a single service period is allowed for each
queue (Γ = 1), an optimal periodical solution is given by
the solution for S = 3.

6. CONCLUSIONS

This paper presents a method to derive an optimal pe-
riodical schedule for a multiclass queueing network with
deterministic arrival and service rates. For each feasible se-
quence, including sequences where some queues are served
more than others, the service and idle times for each queue
are derived to obtain optimal periodical behavior. With
minimal cycle time as performance criterium, the problem
is solved using LP. For the weighted average wip level as
criterium, the problem can be written as a QP problem,
provided that the cycle time is constant. In this case,
optimal periodical behavior for a sequence is obtained by
solving the QP problem considering a range of feasible
cycle times.

Sequences are derived in three consecutive steps. First,
all possible combinations of queues that can be served

simultaneously are grouped. Second, these groups are
combined into all feasible sets of groups, i.e., each set
complies to restrictions on number of groups in a set and
number of service times. Third, from these sets all feasible
sequences are constructed by regarding the permutations
in groups.

So far, we considered a single server that can serve multiple
queues simultaneously. We are currently extending our
method to multiclass queueing networks which can not
be represented by a single server. Moreover, the arrival
rates for these queues can be piecewise constant if two
consecutive queues are served simultaneously.
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