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Abstract: The control strategy to organize the flow of goods is extremely important in man-
aging supply networks. Handling of uncertainty, e.g. customer demand, is often a considerable
challenge. We introduce methods of constrained robust optimal control, a technique from control
theory, to compute the explicit control strategy for small-sized demand-driven discrete-time
controlled dynamical systems with uncertainties. This allows us to avoid any assumptions about
the form of the policy a priori. We aim to show the applicability of the methods, instead of
finding innovative policies as the resulting policies are well known. Another control problem
arises when control actions depend on the information of multiple states and these states are
not (completely) known, e.g. due to communication issues. We use observers, another technique
from the control theory, to derive the required state information based on the in- and output.
By means of an example, it is shown that by using these observers, the control policy can be
perfectly utilized and no longer depends on communication.
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1. INTRODUCTION

A supply network is a generalization of the original concept
of a supply chain where mainly linear or tree-structured
facilities and material flows are considered. In today’s
network economy more complex structures exist where, in
principle, any of the involved components can supply each
other, and these are captured in the term ’supply network’.

Managers face increasing pressure to control inventories
and costs along the network while maximizing customer
service performance. Their most important task is organiz-
ing the flow of products and information within the supply
network. This includes both the design of the network as
well as the control of the material flow. Due to evolving
networks, it remains a major challenge to achieve optimal
performance. In particular, managing uncertainties, such
as the buyers demand, material availability or variabilities
in transport and service times, is of great importance.
This problem is classified as a Supply Chain Operations
Planning problem, with the objective to coordinate the
release of items in the supply network at minimal cost,
cf. de Kok and Fransoo (2003). They also derived optimiza-
tion models considering either the network structure or
control policies. Typically, a control strategy is given and
influence of the parameters on the dynamics are studied,
see for instance Daganzo (2003).

For the problem of finding an optimal control strategy
without any strategy assumptions a priori we believe tech-
niques from control theory are helpful. By way of illus-
tration we consider a supply network where a retailer can
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order products at multiple sources with different lead times
and costs, and faces an unknown customer demand. We
introduce a well-known method from control theory to find
optimal control strategies for flows in demand-driven sup-
ply networks, independent of structural assumptions about
the network and therefore without any prior assumptions
of a certain family of strategies. It is not our aim to derive
new policies, as the resulting policies are well known, but
our aim is to show that ideas from control theory can be
applicable for supply networks and that these therefore
can be a stepping stone for future results. Note that
introducing control theory applications to a production-
inventory problem is not a new phenomenon, cf. Ortega
(2004), Laumanns and Lefeber (2006) and Ivanov et al.
(2012) and references therein.

An additional complexity in the management of mate-
rial flows through a supply chain is introduced by the
organizational structure and barriers within the network.
Nowadays multiple sites worldwide are working together
to deliver a product, while reporting to different organiza-
tional units within the corporation. Each of these sites has
its unique culture, constraints, and objectives. Therefore,
for some networks complete centralized control of material
flows would be optimal but may not be feasible. For these
cases, global information is required throughout the net-
work with proper communication between warehouses.

However, proper communication is not always possible,
as for instance indicated in Cutting-Decelle et al. (2006)
and Cutting-Decelle et al. (2007). One could think of
complicated communication due to the infrastructure or
competition. Therefore, the combination of a network with
control laws concerning multiple states of the system and
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poor communication could yield non-optimal results. In
control theory similar problems exist where the complete
state of the system is not directly measurable. A solution
to this problem is to derive observers which estimate the
state based on measurements, see for instance O’Reilly
(1983); Rugh (1996). We show that this method is also
applicable in a supply network setting. Measuring inputs
and outputs of the system for a while enables the observer
to reconstruct unknown states. In other words, by estimat-
ing the unknown states in the supply network the control
laws can be perfectly utilized. The estimation is performed
using a state estimator which employs only the available
directly measurable input and output signals. Luenberger
(1964) introduced this method for linear systems. Hence,
the problem of designing controllers for systems with in-
complete state measurements is equivalent to constructing
observer-based controllers.

The remainder of this paper is organized as follows. The
supply network dynamics and constraints are presented in
Section 2. Section 3 introduces constrained robust optimal
control. An illustrative example of a supply network is
presented in Section 4, used to determine the optimal
control. State dependent control based on observers is
presented with an example in Section 5. Conclusions are
provided in Section 6.

2. SUPPLY NETWORK

The supply network consists of production units, intro-
duced by Bertrand et al. (1990), separated by stock points.
A production unit may be a single machine, a production
line or a production facility. A supply network is a set
of production units, separated by controlled stock points,
to which production orders are released. We consider the
supply network as a discrete time controlled dynamical
system with uncertainty. Two representations of a network
consisting of two stock points x1 and x2 with a production
unit PU in between is presented in Figure 1. The upper
representation in OR-framework is well known. The lower
figure represents the network as a discrete time controlled
dynamical system. An item in stock x2 has lead time L,
i.e., the time between the release of an order and avail-
ability of the goods in the next stock point x1. This lead
time is assumed to be deterministic and integer, and is di-
vided over L− 1 intermediate stock points x1,L−1, ..., x1,1,
cf. Laumanns and Lefeber (2006).

x2,0 x1,0x1,L-1 x1,1...

PUx2 x1

Fig. 1. Representation of two stock points x1 and x2

and production unit PU with lead time L in OR-
framework (top) and as a discrete time dynamical
system (bottom).

The dynamics of a supply network with uncertain demand
can be written as

x(k + 1) = Ax(k) + Bu(k) + Ed(k), (1)

where x(k) denotes the state vector. For a supply network

one can think of states describing the physical inventory of
an item at a warehouse, backlog of an item or the number
of ordered items waiting to be received. The vector u(k) de-
notes the input, which consists of order quantities of items
at warehouses. This vector belongs to the set U(k) ⊆ Rnu .
The exogenous disturbance d(k) ∈ D(k) ⊆ Rnd describes
the customer demand and is assumed to be restricted
to [0, dmax]. Linear combinations between these vectors
are implied by system matrix A ∈ Rnx×nx , input matrix
B ∈ Rnx×nu and disturbance matrix E ∈ Rnx×nd .

This system is constrained by

Fx(k) + Gu(k) ≤ g,

with F ∈ Rng×nx , G ∈ Rng×nu , g ∈ Rng and ng ∈ N0.
These constraints are used to model lower bounds, e.g.
nonnegativity constraints of the physical inventories or
order quantities, or upper bounds, e.g limited storage
capacity or maximum order quantity. By setting nonnega-
tive inventories the allowed order quantities become state-
dependent, e.g. a warehouse can not send more items than
available.
We consider the problem of finding optimal inputs u(k)
to the system with respect to the constraints and costs on
state and control variables.
The costs C(k) are described by

C(k) = Qx(k) + Ru(k),

where one can denote costs on inventory, backlog etc. in
state cost matrix Q ∈ R1×nx and cost depending on the
input, e.g. order costs, in input cost matrix R ∈ R1×nu .

3. CONSTRAINED ROBUST OPTIMAL CONTROL

Any policy (sequence of control input decisions) produces
a sequence of costs. The goal in constrained robust optimal
control is to find inputs that guarantee satisfaction of the
constraints for all possible combinations of disturbances
and that are favorable with respect to the resulting cost
distribution due to the disturbances. In many practical
situations, a stochastic description of the uncertainty may
not be available, and one may have information with less
detailed structure, such as bounds on the magnitude of
the uncertain quantities. Under these circumstances one
may use a min-max approach, whereby the worst possible
values of the uncertain disturbance within the given set are
assumed to occur, see for instance Bertsekas (2001). For
this system, the approach is to minimize the worst case
cost via a minimum over u and maximum over d. Given
that system (1) is in state x(t0) at time t0 = 0 and given a
horizon K ∈ N, we are looking for an optimal control input
sequence (u∗(k))K−1k=0 , i.e., sequence of all u∗(k) from k = 0
until k = K − 1, such that the cost-to-go is defined by

J∗[k](x(k)) = min
u(k)

J [k](x(k), u(k)) (2)

subject to
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Fx(k) + Gu(k) ≤ g,

Ax(k) + Bu(k) + Ed(k) ∈ X (k+1),

∀d(k) ∈ [0, dmax].

J [k](x(k), u(k)) =Qx(k) + Ru(k) + max
d(k)∈[0,dmax]

...

...J∗[k + 1](Ax(k) + Bu(k) + Ed(k))

for k = K − 1, ..., 0. Here x(k) is the state vector at
time t0 + k given the system started in x0 = x(t0) and
was exposed to input sequence (u(j))kj=0 and disturbance

sequence (d(j))kj=0 and where the system remained in the

set of feasible states X (k). This set is described by

X (k) ={x ∈ Rnx |∀d ∈ D∃u ∈ Rnu with

Fx(k) + Gu(k) ≤ g ∧Ax(k) + Bu(k) + Ed(k) ∈ X (k+1)}

meaning that for all possible disturbances there exists an
input which respects the constraints and makes sure that
the state at the next step is within the feasible set. As
boundary condition we assume zero costs

J∗[K](x(K)) = 0

and

X (k) = {x ∈ Rnx |Fx ≤ g}.

Then, the optimal control law u∗ can be computed by
dynamic programming (DP) over k

J [K](x(K)) =0,

J [k](x(k)) = min
u(k)∈U

Qx(k) + Ru(k) + max
d(k)∈[0,dmax]

...

...J [k + 1](Ax(k) + Bu(k) + Ed(k)),

k = 0, 1, ...,K − 1. (3)

Applying this algorithm results in the optimal cost-to-
go J [0](x(0)). Also, if u∗(k) minimizes the right hand

side of (3) for both x(k) and k, the policy (u∗(k))K−1k=0
is optimal. In each iteration the DP algorithm gives the
optimal cost-to-go for every possible state, denoted by
J∗[k].
Using this method, optimal control of a supply network is
derived by multiparametric linear programming (mpLP).
In the next section this method is presented by using an
illustrative example of a supply network.

4. ILLUSTRATIVE EXAMPLE

A supply network is considered to illustrate the method
of finding optimal inputs with robust optimal control as
described in the previous section. A graphical representa-
tion of this network is given in Figure 2, where nodes are
stages in the network, solid arcs denote that an upstream
stage supplies a downstream stage and intersected arcs
denote the upstream orders. The network consists of a
retailer R, the manufacturer M as first source and the
subcontractor S as the second source. Note that this is not
a convergent system, i.e., there is no assembly of items. For

each step k, the retailer faces an uncertain demand d(k)
by its customers and can choose to order u1(k) number of
items with lead time 1 from the manufacturer and u2(k)
number of items with lead time 2 from the subcontractor.
The inventory level of the retailer is denoted by xR. The
intermediate states xR1 and xR2 denote the number of
intermediate items, i.e., xR2(k) are the number of items
ordered at M at time k− 1 and xR1(k) are the number of
items ordered at M at time k−2 plus the number of items
ordered at S at time k−1. The number of items supplied to
the customer is denoted by s(k). Furthermore, the retailer
supplies items to the customer with a lead time of 1, and
xd(k) denotes the number of ordered items at time k − 1.

xd

RxR1xR2

M

S

d

s

u1

u2

Fig. 2. Supply network consisting of a retailer (R) and
two suppliers (M and S). The retailer faces demand
d, orders u1 and u2, and sells s items.

The dynamics of the system are described by

x(k + 1) =

1 1 0 −1
0 0 1 0
0 0 0 0
0 0 0 0

x(k) +

0 0
0 1
1 0
0 0

u(k) +

0
0
0
1

 d(k),

with x = [xR xR1 xR2 xd]
> ∈ R4

+ with R+ = [0,∞)

and u = [u1 u2]
> ∈ R2

+. The orders uj(k) (j=1,2) are
bounded by [0, umax

j ], representing for instance a maxi-
mal transportation capacity. Demand d(k) is bounded by
[0, dmax]. We assume that the retailer always meets the
customers demand, i.e., s = xd. Therefore, all buffer levels
are nonnegative, i.e., no backlog. This introduces an extra
constraint on the system, dmax ≤ umax

1 + umax
2 since the

demand can always be fulfilled by both suppliers. Further-
more, we assume the manufacturer and subcontractor to
have an infinite stock, i.e., retailer orders can always be
supplied. The retailer faces c+ inventory costs per item
on inventory in stock (xR) and order costs cu1

and cu2

per ordered item for ordering at the manufacturer and the
subcontractor, respectively. Total costs are expressed by

C(k) = c+xR(k) + cu1u1(k) + cu2u2(k). (4)

Throughout the paper we assume the following parame-
ters: dmax = 8, umax

1 = 9, umax
2 = 5, c+ = 1, cu1

= 1 and
cu2

= 4.
By solving optimization problem (2), it follows that the
feasible region, i.e., set of feasible states X∞, is given by

xR + xR1 − xd ≥ 0, (5)

xR + xR1 + xR2 − xd ≥ 3, (6)

where (5) makes sure that the physical inventory of xR

is nonnegative at a single order with maximal demand
and (6) makes sure that the physical inventory of xR
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remains nonnegative at a sequence of orders with maximal
demand. The resulting robust optimal control is given by

u∗1(k) = min[max(14− z(k), 0), 6], (7)

u∗2(k) = max(8− z(k), 0), (8)

with echelon inventory position z(k) = xR(k) + xR1(k) +
xR2(k)− xd(k). In this policy, items are ordered from the
manufacturer M with a maximal amount of 6 items when
the inventory falls below threshold 14−z(k), see (7). Items
are ordered from the subcontractor S when the inventory
falls below 8 − z(k), see (8). In the next subsection these
order-up-to levels are determined analytically. Note that
this is not a new policy, as Tan and Gershwin (2004)
proved that this dual-basestock policy is optimal for this
system. However, the robust optimal control approach
leads to the optimal ordering policy without any prior as-
sumption about the structure of the policy. This indicates
that the control theory approach is promising.

4.1 Order-up-to level

In order to process all orders without backlog we have
umax
1 + umax

2 ≥ dmax and u1 + u2 ≤ dmax. Let us denote
the desired order quantity at manufacturer M by ū1 and
the maximal remaining order quantity at subcontractor S
by ū2 = dmax− ū1. Given that backlog is not allowed, the
lower bound on the order-up-to level of the retailer is given
by

L = 2dmax − ū2 = dmax + ū1. (9)

Note that this lower bound is also the desired level since a
higher order-up-to level increases the inventory costs. The
order policy is given by

u1(k) = min[max(L− z(k), 0), ū1)], (10a)

u2(k) = min[max(L− ū1 − z(k), 0), ū2], (10b)

where the retailer orders between zero and ū1 products at
M and the remainder, if necessary, at S. If cu1 < cu2 , one is
inclined to order the products at the cheaper manufacturer
M . However, due to the larger lead time, ordering more
products at M results in a larger order-up-to level, see (9),
and complementary higher inventory costs. Therefore, a
trade-off exists between order costs and inventory costs,
which are related to ū1. The desired order quantities ū1 can
be derived by regarding the extreme cases: maximal order
costs CO and maximal inventory costs CI . With robust
control the maximal costs (max(CO, CI)) are minimized.
The maximal cost of ordering is given by

CO = (cu1
− cu2

)ū1 + cu2
dmax, (11)

which can be derived by regarding ordering at maximal
demand. Note that in this case, the inventory costs are
zero. The maximal costs spent on inventory, denoted by
CI , depend on the maximal inventory level. The inventory
level is maximal if d = 0 for at least two time-units and is
equal to the order-up-to level L. Therefore, maximal costs

spent on inventory are:

CI = c+L. (12)

It can be seen that CO is decreasing and CI is increasing
for increasing ū1. Therefore, maximal costs are minimal
when CO = CI , this results in

ū1 =
(cu2
− c+)dmax

cu2 + c+ − cu1

. (13)

If the retailer is able to order the maximal order quantity
from the manufacturer ū1 ≤ umax

1 and the maximal re-
maining quantity from the subcontractor ū2 ≤ umax

2 , the
basestock policy is given by (10). This policy was also used
in the numerical example.
Otherwise, if the retailer is not able to order the maximum
order quantity from the manufacturer the basestock level
follows from ū1 = umax

1 and solving CO = CI :

L =
(cu1
− cu2

)umax
1 + cu2

dmax

c+
− z, if ū1 > umax

1 .

Furthermore, if the retailer is not able to order ū2 from the
subcontractor the basestock level grows such that backlog
is prevented. In this case ū2 = umax

2 , therefore ū1 = dmax−
umax
2 and from (9) it follows that

L =2dmax − umax
2 , if ū2 < dmax − ū1. (14)

The feasible region of this network is given by

xR + xR2 − xd ≥ 0, (15)

z ≥ dmax − umax
2 , (16)

For completeness, optimal control for cu1
≥ cu2

is pre-
sented here. This might occur due to special offers from
the subcontractor. Logically, the maximal amount of prod-
ucts are ordered at the cheaper and faster subcontractor.
Therefore, ū2 = min(dmax, umax

2 ) and ū1 = max(dmax −
ū2, 0).

In this section we have shown by example that using the
method of constrained robust optimal control for a given
supply network results in an optimal control policy. This
policy was derived without any knowledge of policies a
priori. However, a drawback of the method is the limitation
to consider small networks. Due to DP, it involves an
enormous amount of storage to even record the solution
to a moderate complicated problem. For larger networks,
the optimal solution can not be solved any more with DP,
and a possible solution could be to use an approach of
the cost-to-go function, e.g. quadratic function instead of
piecewise linear function, where the solution remains close
to the optimal solution. Another option is to consider MPC
to derive controllers, see for instance Garcia et al. (1989).

5. OBSERVERS: STATE DEPENDENT CONTROL

Often control depends on multiple states. To achieve op-
timal performance, communication within the network is
very important. Ideally, the retailer and suppliers should
treat each other as strategic partners in the supply chain
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with flawless communication. However, as Cutting-Decelle
et al. (2006) and Cutting-Decelle et al. (2007) also indicate,
in many cases communication is a problem. For instance,
the retailer can get inaccurate or no information about the
supplier stock levels due to competition, organization or
infrastructure. Therefore, we introduce the use of observers
in the supply chain network to derive the control based
on local information. An observer predicts unobservable
or unmeasurable states based on observable/measurable
parameters. For instance, in an airplane it could be difficult
to measure the velocity of the plane directly while mea-
suring time and position are easy. By measuring the time
and position of the plane for a while, one can observe the
velocity. Analogous for the supply network, by measuring
the order and supply quantity long enough, the stock levels
can be observed. We illustrate this approach by expanding
the supply network from the previous example.

5.1 Example

In order to create a lack of state information due to
communication issues we extend the example from Sec-
tion 4 with warehouses that supply the manufacturer M
and subcontractor S, as illustrated in Figure 3. Inventory
levels of the retailer, manufacturer and subcontractor are
denoted by xR, xM and xS , respectively. Products ordered
at the warehouses have a lead time of 2. Ordered products
that have not been received by M or S are stored in inter-
mediate states xM1 and xS1, respectively. Resulting from
the robust optimal control (2)-(3), both the manufacturer
M and subcontractor S order their items with a basestock
policy at a warehouse with infinite stock (∞) via channels
uM and uS , respectively.

uM (k) = LM − xM (k)− xM1(k),

uS(k) = LS − xS(k)− xS1(k),

where Li are the basestock levels for xi, i ∈ {M,S}.

xd

RxR1xR2

MxM1∞

SxS1∞

d

u1

u2

uM

uS

Fig. 3. Supply network consisting of a retailer (R) and
two suppliers (M and S). The retailer faces demand
d, orders u1 and u2. The suppliers order via uM and
uS from a warehouse with infinite stock (∞).

The retailer uses the policy

u1(k) =min[max(LR − z(k), 0), xM (k)], (17a)

u2(k) =min[max(dmax − z(k), 0), xS(k)], (17b)

with basestock level LR. The resulting controller for the
retailer clearly depends on the stock levels of both suppli-
ers. Therefore, proper communication between retailer and
both suppliers is necessary to fulfill the customers demand.

Assuming that the retailer can get no information on the
stock levels of both suppliers, the retailer faces a problem
to ensure that the customers demand is met. We assume
that the policies and base stock levels of the suppliers are
known by the retailer. However, the actual stock levels
are unknown which introduces a problem concerning the
amount of products to order at the suppliers. To solve this
problem we introduce observers, which are well-known in
the control community, see for instance O’Reilly (1983);
Rugh (1996). First, consider the affine dynamics of the
manufacturer M :

[
xM (k + 1)
xM1(k + 1)

]
=

[
1 1
−1 −1

][
xM (k)
xM1(k)

]
+

[
−1
0

]
u1(k)+

[
0

LM

]
(18)

y(k) =[0 0]

[
xM (k)
xM1(k)

]
+ [1]u1(k), (19)

where u1 is the input from the retailer and y the output
from the manufacturer.

A useful property to determine the states is detectability.
A system is detectable when the states are asymptotically
determined by the in- and outputs. Detectability of sys-
tem (18)-(19) is addressed by considering the difference
between the actual states and estimated states. This is
denoted by the error dynamics

e(k) = |x(k)− x̂(k)|,

where x̂ indicates the estimated state. For system (18)-
(19) the error dynamics are given by

e(k + 1) =

[
1 1
−1 −1

]
e(k). (20)

It can be seen from the error dynamics for x2 and xM1

in (20) that after two iterations the errors are zero. There-
fore, system (18)-(19) is detectable. Furthermore, this indi-
cates that the states xM and xM1 can be exactly observed
after two steps:

xM (k + 2) = LM − u1(k + 1)− u1(k),

xM1(k + 2) = u1(k).

Similar results are obtained for states xS and xS1 of
subcontractor S via input u2:

xS(k + 2) = LS − u2(k + 1)− u2(k),

xS1(k + 2) = u2(k).

With this approach, the retailer can imply the control
defined in (17) using the estimation of the states of both
the manufacturer and subcontractor:

u1(k) =min[max(LR − z(k), 0), ...

LM − u1(k − 1)− u1(k − 2)], (21a)

u2(k) =min[max(dmax − z(k), 0), ...

LS − u2(k − 1)− u2(k − 2)], (21b)

The resulting-observer based controller (21) does not de-
pend on communication anymore. The observers estimate

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

1588



the unknown supplier stock levels in two steps, whereafter
the controller operates as desired.

6. CONCLUSION

First, we presented the use of techniques from robust opti-
mal control to derive optimal control policies for discrete-
time controlled dynamical systems with uncertainty. For
the considered example of a supply network this led to
the traditional, optimal ordering policy. However, this
approach differs from other approaches by not assuming a
certain strategy, or family of strategies, a priori. Also, in-
stead of considering a fixed parameter setting, it is possible
to derive optimal control for a network with unknown pa-
rameters. Due to use of Dynamic Programming, it involves
an enormous amount of storage to even record the solution
to a moderate complicated problem. For larger networks,
the optimal solution can not be solved any more with
Dynamic Programming, and a possible solution could be to
use an approach of the cost-to-go function, e.g. quadratic
function instead of piecewise linear function, where the
solution remains close to the optimal solution. Another
promising option from control theory is to consider the
multi-variable control algorithm Model Predictive Control
to derive controllers.

Second, the use of observers in supply networks is pre-
sented to derive explicit state-feedback control. The per-
formance in a supply network for which the control of
each state depends on more than the state itself can be
non-optimal, due to a lack of information or incomplete
information about other states in the network. Using ob-
servers in a observable/detectable supply network reduces
the control to an explicit state-feedback control, i.e., there
is no need for communication. An example is presented to
illustrate this approach.
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