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Abstract In this chapter we provide a framework within which concepts from the
field of systems and control can be used for controlling manufacturing systems.
After introducing some basic notions from manufacturing analysis, we start with
the concept of effective process times (EPTs) which can be used for modeling a
manufacturing system as a large queuing network. Next, we restrict ourselves to
mass production, which enables us to model manufacturing systems by means of
a linear system subject to nonlinear constraints (clearing functions). These models
serve as a starting point for designing controllers for these manufacturing systems
using Model-based Predictive Control (MPC). Finally, the resulting controllers can be
implemented on the queuing network model, and ultimately at the real manufacturing
system.

1 Preliminaries

In this section we first recall a few basic notions and the main principles from
manufacturing system analysis.

1.1 Basic Notions from Manufacturing Analysis

The items produced by a manufacturing system are called lots. Also the words product
and job are commonly used. Other important notions are throughput, flow time, wip
and utilization. These notions are illustrated in Fig. 1 at factory and machine level.
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Fig. 1 Basic quantities for manufacturing systems

Raw process time t0 of a lot denotes the net time a machine needs to process
the lot. This process time excludes additions such as setup
time, breakdown, or other sources that may increase the
time a lot spends in the machine. The raw process time
is typically measured in hours or minutes.

Throughput δ denotes the number of lots per unit time that leaves the
manufacturing system. At a machine level, this denotes
the number of lots that leave a machine per unit time. At
a factory level it denotes the number of lots that leave the
factory per unit time. The unit of throughput is typically
lots/hour.

Flow time ϕ denotes the time a lot is in the manufacturing system. At
a factory level this is the time from the release of the lot
into the factory until the finished lot leaves the factory. At
a machine level this is the time from entering the machine
(or the buffer in front of the machine) until leaving the
machine. Flow time is typically measured in days, hours,
or minutes. Instead of flow time the words cycle time and
throughput time are also commonly used.

Work in process (wip) w denotes the total number of lots in the manufacturing sys-
tem, i.e., in the factory or in the machine. Wip is measured
in lots.

Utilization u denotes the fraction of time that a machine is not idle.
A machine is considered idle if it could start processing
a new lot. Thus process time as well as downtime, setup-
time and preventive maintenance time all contribute to the
utilization. Utilization has no dimension and can never
exceed 1.0.
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Fig. 2 Basic relations between basic quantities for manufacturing systems

Ideally, a manufacturing system should have both a high throughput and a low
flow time or low wip. Unfortunately, these goals are conflicting (cf. Fig. 2) and can
not both be met simultaneously. If a high throughput is required, machines should
always be busy. As from time to time disturbances like machine failures happen,
buffers between two consecutive machines are required to make sure that the second
machine can still continue if the first machine fails (or vice versa). Therefore, for a
high throughput many lots are needed in the manufacturing system, i.e., wip needs
to be high. As a result, if a new lot starts in the system it has a large flow time, since
all lots that are currently in the system need to be completed first.

Conversely, the least possible flow time can be achieved if a lot arrives at a
completely empty system and never has to wait before processing takes place. As
a result, the wip level is small. However, for most of the time machines are not
processing, yielding a small throughput.

When trying to control manufacturing systems, a trade-off needs to be made
between throughput and flow time, so the nonlinear (steady state) relations depicted
in Fig. 2 need to be incorporated in any reasonable model of manufacturing systems.
We return to this in Sect. 4.1 when discussing clearing functions.

1.2 Analytical Models for Steady-State Analysis

In order to get some insights in the steady-state performance of a given manufac-
turing system simple relations can be used. We first deal with mass conservation
for determining the mean utilization of workstations and the number of machines
required for meeting a required throughput. Furthermore, relations from queueing
theory are used to obtain estimates for the mean wip and mean flow time.
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Fig. 3 Manufacturing system with rework and bypassing

1.2.1 Mass Conservation (Throughput)

Using mass conservation the mean utilization of workstations can easily be deter-
mined.

Example 1 Consider the manufacturing system with rework and bypassing in Fig. 3.
The manufacturing system consists of three buffers and four machines. Lots are
released at a rate of λ lots/hour. The numbers near the arrows indicate the fraction of
the lots that follow that route. For instance, of the lots leaving buffer B1 90% goes to
machine M1 and 10% goes to buffer B3. The process time of each machine is listed
in the table in Fig. 3.

Let δMi and δBi denote the throughput of machine Mi (i = 1, 2, 3, 4) and buffer
Bi (i = 1, 2, 3), respectively. Using mass conservation we obtain

δM1 = 0.9δB1 δB1 = λ

δM2 = 0.2δB2 δB2 = δM1 + δM2

δM3 = 0.8δB2 δB3 = δM3 + 0.1δB1

δM4 = δB3 δ = δM4 .

Solving these linear relations results in:

δM1 = 0.9λ δB1 = λ

δM2 = 0.225λ δB2 = 1.125λ

δM3 = 0.9λ δB3 = λ

δM4 = λ δ = λ.

Using the process times of the table in Fig. 3, we obtain for the utilizations:

uM1 = 0.9λ · 2.0/1 = 1.8λ uM3 = 0.9λ · 1.8/1 = 1.62λ

uM2 = 0.225λ · 6.0/1 = 1.35λ uM4 = λ · 1.6/1 = 1.6λ.

Machine M1 has the highest utilization, therefore it is the bottleneck and the maximal
throughput for this line is λ = 1/1.8 = 0.56 lots per hour. ��

Using mass conservation, utilizations of workstations can be determined straight-
forwardly. This also provides a way for determining the number of machines required
for meeting a given throughput. By modifying the given percentages the effect of
rework or a change in product mix can also be studied.
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1.2.2 Queueing Relations (Wip, Flow time)

For determining a rough estimate of the corresponding mean flow time and mean
wip, basic relations from queueing theory can be used.

Consider a single machine workstation that consists of infinite buffer B∞ and
machine M (see Fig. 4). Lots arrive at the buffer with a stochastic interarrival time.
The interarrival time distribution has mean ta and a standard deviation σa which we
characterize by the coefficient of variation ca = σa/μa. The machine has stochastic
process times, with mean process time t0 and coefficient of variation c0. Finished lots
leave the machine with a stochastic interdeparture time, with mean td and coefficient
of variation cd. Assuming independent interarrival times and independent process
times, the mean waiting time ϕB in buffer B can be approximated for a stable system
by means of Kingman’s equation [10]:

ϕB = c2
a + c2

0

2
· u

1 − u
· t0 (1)

with the utilization u defined by: u = t0/ta. Equation 1 is exact for an M/G/1 system,
i.e., a single machine workstation with exponentially distributed interarrival times
and any distribution for the process time. For other single machine workstations it is
an approximation.

For a stable system, we have td = ta. We can approximate the coefficient of
variation cd by Kuehn’s linking equation [11]:

c2
d = (1 − u2) · c2

a + u2 · c2
0. (2)

This result is exact for an M/M/1 system. For other single machine workstations it
is an approximation. Having characterized the departure process of a workstation,
the arrival process at the next workstation has been characterized as well. As a result,
a line of workstations can also be described.

Example 2 (Three workstations in series) Consider the three workstation flow line
in Fig. 5. For the interarrival time at workstation 0 we have ta = 4.0 h and c2

a = 1.

The three workstations are identical with respect to the process times: t0,i = 3.0 h
for i = 0, 1, 2 and c2

0,i = 0.5 for i = 0, 1, 2. We want to determine the mean total
flow time per lot.

Since ta > t0,i for i = 0, 1, 2, we have a stable system and ta,i = td,i = 4.0 h
for i = 0, 1, 2. Subsequently, the utilization for each workstation is ui = 3.0/4.0 =
0.75 for i = 0, 1, 2.

Using (1) we calculate the mean flow time for workstation 0
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Fig. 5 Three workstation flow line

ϕ0 = ϕB+t0 = c2
a + c2

0

2
· u

1 − u
·t0+t0 = 1 + 0.5

2
· 0.75

1 − 0.75
·3.0+3.0 = 9.75 h.

Using (2), we determine the coefficient of variation on the interarrival time ca,1
for workstation W1

c2
a,1 = c2

d,0 = (1 − u2) · c2
a + u2 · c2

0 = (1 − 0.752) · 1 + 0.752 · 0.5 = 0.719

and the mean flow time for workstation 1

ϕ1 = 0.719 + 0.5

2
· 0.75

1 − 0.75
· 3.0 + 3.0 = 8.49 h.

In a similar way, we determine that c2
a,2 = 0.596, ϕ2 = 7.93 h. We then calculate

the mean total flow time to be

ϕtot = ϕ0 + ϕ1 + ϕ2 = 26.2 h.

Note that the minimal flow time without variability (c2
a = c2

0,i = 0) equals 9.0 h. ��
Equations 1 and 2 are particular instances of a workstation consisting of a

single machine. For workstations consisting of m identical machines in parallel the
following approximations can be used [8, 16]:

ϕB = c2
a + c2

0

2
· u

√
2(m+1)−1

m(1 − u)
· t0 (3)

c2
d = (1 − u2) · c2

a + u2 · c2
0 + √

m − 1√
m

, (4)

where the utilization u = t0/(m · ta). Notice that in case m = 1 these equations
reduce to (1) and (2).

Once the mean flow time has been determined, a third basic relation from queueing
theory, Little’s law [14], can be used for determining the mean wip level. Little’s law
states that the mean wip level (number of lots in a manufacturing system) w is equal
to the product of the mean throughput δ and the mean flow time ϕ, provided the
system is in steady state:

w = δ · ϕ. (5)
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An example illustrates how Kingman’s equation and Little’s law can be used.

Example 3 Consider the system of Example 2 as depicted in Fig. 5. From
Example 2 we know that the flow times for the three workstations are respectively

ϕ0 = 9.75 h, ϕ1 = 8.49 h, ϕ2 = 7.93 h.

Since the steady-state throughput was assumed to be δ = 1/ta = 1/4.0 = 0.25
lots/hour, we obtain via Little’s law

w0 = 0.25 · 9.75 = 2.44 lots,

w1 = 0.25 · 8.49 = 2.12 lots,

w2 = 0.25 · 7.93 = 1.98 lots. ��
The above mentioned relations are simple approximations that can be used for
getting a rough idea about the possible performance of a manufacturing system.
These approximations are fairly accurate for high utilizations but less accurate for
lower degrees of utilization. A basic assumption when using these approximations
is the independence of the interarrival times, which in general is not the case, e.g.,
for merging streams of lots. Furthermore, using these equations only steady state
behavior can be analyzed. For studying things like ramp-up behavior or for incor-
porating more details like operator behavior, more sophisticated models are needed,
as described next.

1.3 Discrete Event Models

A final observation of relevance for modeling manufacturing systems is the nature
of the system signals. In Fig. 6a characteristic graph of the wip at a workstation as
a function of time is shown. Wip always takes integer values with arbitrary (non-
negative real) duration. One could consider a manufacturing system to be a system
that takes values from a finite set of states and jumps from one state to the other as
time evolves. This jump from one state to the other is called an event. As we have a
countable (discrete) number of states, the name of this class of models is explained.

Manufacturing systems can be modeled as a network of concurrent processes. For
example, a buffer is modeled as a process that as long as it can store something is
willing to receive new products, and as long as it has something stored is willing
to send products. A basic machine is modeled as a process that waits to receive a
product; upon receipt it holds the product for a specified amount of time (delay).
Upon completion, the machine tries to send the product to the next buffer in the
manufacturing line. The machine keeps on doing these three consecutive things. The
delay used is often a sample from some distribution.

In particular in the design phase discrete event models are used. These discrete
event models usually contain a detailed description of everything that happens in
the manufacturing system under consideration, resulting into large models. Since in
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Fig. 6 A characteristic time-behavior of wip at a workstation

practice manufacturing systems are changing continuously, it is very hard to keep
these discrete event models up-to-date [4].

Fortunately, for a manufacturing system in operation it is possible to arrive at
more simple/less detailed discrete event models by using the concept of Effective
Process Times (EPTs) as discussed in the next section.

2 Effective Process Times (EPTs)

For the processing of a lot at a machine, many steps may be required. For example,
it could be that an operator needs to get the lot from a storage device, setup a specific
tool that is required for processing the lot, put the lot on an available machine, start
a specific program for processing the lot, wait until this processing has finished
(meanwhile doing something else), inspect the lot to determine if all went well,
possibly perform some additional processing (e.g., rework), remove the lot from the
machine and put it on another storage device and transport it to the next machine.
At all of these steps something might go wrong: the operator might not be available,
after setting up the machine the operator finds out that the required recipe cannot be
run on this machine, the machine might fail during processing, no storage device is
available anymore so the machine cannot be unloaded and is blocked, etc.

Even though one might build a discrete event model including all these
details, it is impossible to measure all sources of variability that might occur in
a manufacturing system. One might measure some of them and incorporate these in
a discrete event model. The number of operators and tools can be modeled explicitly
and it is common practice to collect data on mean times to failure and mean times to
repair of machines. Also schedules for (preventive) maintenance can be incorporated
explicitly in a discrete event model. Nevertheless, still not all sources of variability
are included. This is clearly illustrated in Fig. 7, obtained from [9]. The left graph
contains actual realizations of flow times of lots leaving a real manufacturing system,
whereas the right graph contains the results of a detailed discrete event simulation
model including stochasticity. It turns out that in reality flow times are much higher
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Fig. 7 A comparison

and much more irregular than simulation predicts. So, even if one endeavors to cap-
ture all variability present in a manufacturing system, still the outcome predicted by
the model is far from reality.

Hopp and Spearman [8] use the term Effective Process Time (EPT) as the time seen
by lots from a logistical point of view. In order to determine this Effective Process
Time, Hopp and Spearman assume that the contribution of the individual sources of
variability is known.

Instead of taking the bottom-up view of Hopp and Spearman, a top-down approach
can also be taken, as shown by Jacobs et al. [9], where algorithms have been intro-
duced that enable determination of Effective Process Time realizations from a list of
events. For these algorithms, the basic idea of the Effective Process Time to include
time losses was used as a starting point.

To illustrate this approach, we first deal with a workstation consisting of a single
machine, serving one lot type, using a First In First Out (FIFO) policy. Then we deal
with the more general case.

2.1 Single Machine, One Lot Type, FIFO Policy

Consider a workstation consisting of a single machine, serving one lot type, using a
First In First Out (FIFO) policy. Let the Gantt chart of Fig. 8 depict what happened
at this workstation during a certain time interval. At t = 0 the first lot arrives at the
workstation. After a setup, the processing of the lot starts at t = 2 and is completed at
t = 6. At t = 4 the second lot arrives at the workstation. At t = 6 this lot could have
been started, but apparently no operator was available, so only at t = 7 the setup for
this lot starts. Eventually, at t = 8 the processing of the lot starts and is completed at
t = 12. The fifth lot arrives at the workstation at t = 22, processing starts at t = 24,
but at t = 26 the machine breaks down. It takes until t = 28 before the machine
has been repaired and the processing of the fifth lot continues. The processing of the
fifth lot is completed at t = 30.
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Fig. 8 Gantt chart of 5 lots at
a single machine workstation
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Fig. 9 EPT realizations of
5 lots at a workstation

0 5 10 15 20 25 30

EPT 1 EPT 2 EPT 3 EPT 4 EPT 5

Machine breakdown
Waiting for operator
Queueing
Processing
Setup

Legend

If we take the point of view of a lot, what does a lot see from a logistical point of
view? The first lot arrives at an empty system at t = 0 and departs from this system
at t = 6. From the point of view of this lot, its processing took 6 time-units. The
second lot arrives at a non-empty system at t = 4. Clearly, this lot needs to wait.
However, at t = 6, if we forget about the second lot, the system becomes empty
again. So from t = 6 on the second lot does not need to wait anymore. At t = 12 the
second lot leaves the system, so from the point of view of this lot, its processing took
from t = 6 till t = 12; the lot does not know whether waiting for an operator and a
setup is part of its processing. Similarly, the third lot sees no need for waiting after
t = 12 and leaves the system at t = 17, so it assumes to have been processed from
t = 12 till t = 17. Following this reasoning, the resulting Effective Proces Times for
lots are as depicted in Fig. 9. Notice that only arrival and departure events of lots to
a workstation are needed for determining the Effective Process Times. Furthermore,
none of the contributing disturbances needs to be measured.

In highly automated manufacturing systems, arrival and departure events of lots
are being registered, so for these manufacturing systems, Effective Process Time
realizations can be determined rather easily. Next, these EPT realizations can be used
in a relatively simple discrete event model of the manufacturing system. This discrete
event model only contains the architecture of the manufacturing system, buffers
and machines. The process times of these machines are samples from their EPT-
distribution as measured from real manufacturing data. Machine failures, operators,
etc., do not need to be included as this is all included in the EPT-distributions.
Furthermore, the algorithms as provided in [9] are utilization independent. That
is, data collected at a certain throughput rate is also valid for different throughput
rates. Furthermore, since EPT-realizations characterize operational time variability,
they can be used for performance measuring. For more on this issue, the interested
reader is referred to [9].

Recently, the above mentioned EPT-model has been generalized. This general-
ization is presented next.
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(a) (b)

Fig. 10 a An example of a workstation. b The proposed aggregate model

2.2 Integrated Processing Workstations

Consider an integrated processing workstation consisting of m identical parallel
machines, each of which have l sequential integrated processes, cf. Fig. 10. We
replace the model of this workstation with a much simpler model, which is not
a true physical server anymore, i.e., the structure of the aggregate model differs
significantly from the real workstation. Nevertheless, the input/output behavior of
the aggregate model closely resembles the input/output behavior of the worksta-
tion it models. Lots arrive according to some arrival process to the queue of the
aggregate model. Lot i is defined as the i th arriving lot in this queue. The queue
consists of all lots that are currently in the system, including lots that are (supposed
to be) in process. Therefore, the queue is not a queue as in common queue-server
models. Lots are not physically processed, i.e., during “processing” lots stay in the
queue. Processing is modeled as a timer that determines when the next lot leaves the
queue. When the timer expires, i.e., the “process time” has elapsed, the lot that is
currently first in the queue leaves the system. Upon arrival of a new lot i , it is deter-
mined how many of the lots already present in the queue w are overtaken by lot i.
The number of lots to overtake K ∈ {0, 1, . . . , w} is sampled from a probability
distribution which depends on the number of lots w in the queue just before lot i
arrives. The arriving lot is placed on position w−K in the queue, where position 0
corresponds with the head of the queue. The timer starts when either a lot arrives to
an empty system, or a lot departs while leaving one or more lots behind. The duration
of the “process time” is sampled from a distribution which depends on the number of
lots w in the queue just after the timer starts, i.e., including a possibly newly arrived
lot. We model the server as a timer to allow newly arriving lots to overtake all lots
in the system while the timer is running. We need this to model the possibility that
a lot which arrives second to a multi-machine workstation leaves first.

Example 4 Consider the Gantt chart in Fig. 11 which depicts what happened at a
three machine workstation. At t = 1, the first lot arrives at the workstation, service
at machine 1 is started, and service is completed at t = 25. At t = 2, the second lot
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Fig. 11 Gantt chart of 4 lots
at a three machine
workstation, and the
corresponding realization for
the aggregate model

arrives at the workstation, service at machine 2 is started, and service is completed at
t = 14. At t = 4, the third lot arrives at the workstation. For some reason it is
not served at machine 3, but it waits to be served at machine 2. Its service at
machine 2 (effectively) starts at t = 14 and is completed at t = 20. Finally, the
fourth lot arrives at the workstation at t = 5, is served at machine 3, and leaves the
system at t = 9.

In the aggregate model we model the resulting input-output behavior of this system
differently. At t = 1, the first lot arrives and a timer is set, which expires at t = 9.

Meanwhile, the second lot arrives at t = 2 and is inserted at the head of the queue.
Next, the third lot arrives at t = 4, and is inserted in the middle of the queue, i.e.,
behind lot 2, but in front of lot 1. At t = 5, the fourth lot arrives which is inserted at
the head of the queue, i.e., it overtakes the three lots already in the queue. When the
timer expires at t = 9, the lot that is at the head of the queue leaves the system, i.e.,
lot 4 leaves the system. Then the timer is set again to expire at t = 14. Again, the
head of the queue leaves the system, which is lot 2. The timer is set again to expire
at t = 20, and lot 3 leaves the system. Next, the timer is set to ring at t = 25 and
finally lot 1 leaves the system.

For more details about this aggregate model for integrated processing worksta-
tions, including implementation issues and algorithms for deriving distributions from
real manufacturing data, the interested reader is referred to [19]. In that paper an
extensive simulation study and an industry case study demonstrate that the aggre-
gate model can accurately predict the cycle time distribution of integrated processing
workstations in semiconductor manufacturing.

Most importantly, EPTs can be determined from real manufacturing data and
yield relatively simple discrete event models of the manufacturing system under
consideration. These relatively simple discrete event models serve as a starting point
for controlling manufacturing systems.

3 Control Framework

In the previous section, the concept of Effective Process Times has been intro-
duced as a means to arrive at relatively simple discrete event models for manu-
facturing systems, using measurements from the real manufacturing system under
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Fig. 12 a Control framework (I). b Control framework (II)

consideration. This is the first step in a control framework. The resulting discrete
event models are large queueing networks which capture the dynamics reasonably
well. These relatively simple discrete event models are not only a starting point for
analyzing the dynamics of a manufacturing system, but can also be used as a starting
point for controller design. If one is able to control the dynamics of the discrete
event model of the manufacturing system, the resulting controller can also be used
for controlling the real manufacturing system.

Even though control theory exists for controlling discrete event systems, unfor-
tunately none of it is appropriate for controlling discrete event models of real-life
manufacturing systems. This is mainly due to the large number of states of a manu-
facturing system. Therefore, a different approach is needed.

If we concentrate on mass production, the distinction between lots is not really
necessary and lots can be viewed in a more continuous way. Instead of the discrete
event model we might consider an approximation model. This is the second step in the
control framework. Next, we can use standard control theory for deriving a controller
for the approximation model. These first three steps in the control framework are
illustrated in Fig. 12a. We elaborate on this second and third step in the next two
sections. For now it is sufficient to know that time is discretized into periods (e.g.,
shifts) and that the resulting controller provides production targets per shift for each
machine. So for now we assume that the derived controller behaves as desired on
the approximation model. As a fourth step this controller could be connected to the
discrete event model. This cannot be done directly, since the derived controller is
not a discrete event controller. The control actions still need to be transformed into
events. It might very well be that the optimal control action is to produce 2.75 lots
during the next shift. One still needs to decide how many lots to really start (2 or 3),
and also when to start them. This is the left conversion block in Fig. 12b. From this
figure, it can also be seen that a conversion is needed from discrete event model to
controller. In the remainder of this chapter we assume to sample the discrete event
model once every shift. Other strategies might be followed. For example, if at the
beginning of a shift a machine breaks down it might not be such a good idea to wait
until the end of the shift before setting new production targets. Designing proper
conversion blocks is the fourth step in the control framework.
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Fig. 13 A simple manufacturing system

After the fourth step, i.e., properly designing the two conversion blocks, a suitable
discrete event controller for the discrete event model is obtained, as illustrated in
Fig. 12b (dashed).

Eventually, as a fifth and final step, the designed controller can be disconnected
from the discrete event model, and attached to the manufacturing system.

4 An Approximation Model

The analytical approximations models of Sect. 1.2 are only concerned with steady
state, no dynamic behavior is included. This disadvantage is overcome by discrete
event models as discussed in Sect. 2, where each lot is modeled separately and
stochastically. In Sect. 2 we derived how less detailed discrete event models can be
built by abstracting from all kinds of disturbances like machine failure, setups, oper-
ator behavior, etc. By aggregating all disturbances into one Effective Process Time,
a complex manufacturing system can be modeled as a relatively simple queueing
network. Furthermore, the data required for this model can easily be measured from
manufacturing data.

Even though this approach considerably reduces the complexity of discrete event
models for manufacturing systems, this aggregate model is still unsuitable for
manufacturing planning and control. Therefore, in this section we introduce a next
level of aggregation, by abstracting from events. Using the abstraction presented in
Sect. 2 we can view a workstation as a node in a queueing network. In this section we
assume that such a node processes a deterministic continuous stream of fluid. That
is, we consider this queue as a so-called fluid queue.

For example, consider a simple manufacturing system consisting of two machines
in series, as displayed in Fig. 13. Let te,i denote the Effective Process Time of the
i th machine for i ∈ {1, 2}. Furthermore, let u0(t) denote the rate at which lots arrive
at the system at time t, ui (t) the rate at machine Mi starts lots at time t, xi (t) the
number of lots in buffer Bi at time t (i ∈ {1, 2}) and x3(t) the cumulative number of
lots produced by the manufacturing system at time t .

The rate of change of the buffer contents is given by the difference between the
rates at which lots enter and leave the buffer, taking into account the time-delay due
to processing:
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ẋ1(t) = u0(t) − u1(t),

ẋ2(t) = u1
(
t − te,1

) − u2(t),

ẋ3(t) = u2
(
t − te,2

)
.

(6)

In practice, manufacturing systems are often controlled by means of setting produc-
tion targets per shift. That is, time is divided into shifts for example, 8 or 12 h. For
this period of 8 or 12 h it is determined how many lots should be started on each
machine. The control problem then reduces to determining these production targets
per shift.

To that end, we sample the continuous time system (6) using a zero-order-hold
sampling, cf. [2]. Assuming that the longest Effective Process Time is less than
the duration of a shift, the resulting zero-order-hold sampling of the system in (6)
becomes
⎡

⎢
⎢
⎢⎢
⎣

x̄1(k + 1)

x̄2(k + 1)

x̄3(k + 1)

x̄4(k + 1)

x̄5(k + 1)

⎤

⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎣

1 0 0 0 0
0 1 0 te,1

h 0
0 0 1 0 te,2

h
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢⎢
⎣

x̄1(k)

x̄2(k)

x̄3(k)

x̄4(k)

x̄5(k)

⎤

⎥
⎥
⎥⎥
⎦

+

⎡

⎢
⎢
⎢⎢
⎣

1 −1 0
0 h−te,1

h −1

0 0 h−te,2
h

0 1 0
0 0 1

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎣
ū0(k)

ū1(k)

ū2(k)

⎤

⎦ (7)

where ū0(k) denotes the number of lots arriving at the system during shift k, ūi (k)

the number of lots started at machine Mi during shift k, x̄i (k) the number of lots in
buffer Bi at the beginning of shift k (i ∈ {1, 2}), and x̄3(k) the cumulative number of
lots produced by the manufacturing system at the beginning of shift k. Furthermore,
h denotes the sample period, e.g., 8 or 12 h. The auxiliary variables x̄4(k) and x̄5(k)

are required to remember the starts during the previous shift, in order to incorporate
the lots for which processing is started in shift k on machine M1 and M2 respectively
but completed in shift k+1. If the longest Effective Process Time exceeds the duration
of a shift, but not exceed the duration of two shifts, similarly auxiliary variables
x̄6(k), and x̄7(k) are required.
The model (6) and its discrete time equivalent (7) are also subject to constraints. We
present the constraints for the model (7). For the model (6), similar constraints hold.

The first constraint is a non-negativity constraint: buffer contents can never be
negative. Also production targets cannot become negative. Expressed mathematically
we have the following constraints:

x̄i (k) ≥ 0 i ∈ {1, 2, 3, 4, 5} ∀k (8a)

ū j (k) ≥ 0 j ∈ {1, 2, 3} ∀k (8b)

Furthermore, machines can produce at most at maximal capacity. That is, the total
time spent on serving the required number of lots during a shift cannot exceed the
duration of the shift:

te, j · ū j (k) ≤ h j ∈ {1, 2, 3} ∀k (8c)

where h again denotes the sample period or shift duration.
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Fig. 14 Effective clearing function of (9) with ca = ce = m = 1

4.1 Clearing Functions

The model (7) with constraints (8) describes the dynamics of a manufacturing sys-
tem well. By incorporating delays due to processing, the minimal flow time is also
taken into account. Furthermore, steady-state corresponds with the mass conserva-
tion results presented in Sect. 1.2.1.

Nevertheless, one property of manufacturing systems is not yet taken into account
in the model (7), (8). And that is the queueing relations (3).

In order not to lose the steady state queueing relation between throughput and
queue length, we include this relation as a system constraint.

Consider a workstation that consists of m identical servers in parallel that all
have a mean Effective Process Times te and coefficient of variation ce. Furthermore,
assume that the coefficient of variation of the interarrival times is ca and that the
utilization of this workstation is ρ < 1. Then we know from (3), (5) that in steady
state the mean number of lots in this workstation is approximately given by

x = c2
a + c2

e

2
· ρ

√
2(m+1)−1

m(1 − ρ)
+ ρ. (9)

In Fig. 14 this relation has been depicted graphically. In the left-hand side of this
figure one can clearly see that for an increasing utilization, the number of lots in this
workstation increases nonlinearly. By swapping axes, this relation can be understood
differently. Depending on the number of lots in the workstation, a certain utilization
can be achieved, or a certain throughput. This has been depicted in the right-hand
side of Fig. 14. This relation is also known as the clearing function as introduced
by [7].

For the purpose of production planning, this effective clearing function provides
an upper bound for the utilization of the workstation depending on the number of
lots in this workstation. Therefore, for the model (7), in addition to the constraints
(8) we also have (using ρ = ū · te/(h · m) and m = 1):
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c2
a,1 + c2

e,1

2
· u1(k)2

h
te,1

(
h

te,1
− u1(k)

) + te,1
h

u1(k) ≤ x̄1(k) ∀k

c2
a,2 + c2

e,2

2
· u2(k)2

h
te,2

(
h

te,2
− u2(k)

) + te,2
h

u2(k) ≤ x̄2(k) ∀k.

(10)

The clearing function model for production planning then consists of the model
(7) together with the constraints (8) and (10). When we want to use this clearing
function model for production planning, we need the parameters ce and ca. In Sect. 2
we explained how Effective Process Times can be determined for each workstation,
which provides us with the parameter ce for each workstation. Additionally, for
each workstation the interarrival times of lots can also be determined from arrival
events, which provides us with the parameter ca for each workstation. Therefore,
both parameters can easily be determined from manufacturing data.

We conclude this section with some remarks about the additional constraints (10).
The first remark is that these constraints are convex in the input u, so optimization
problems become “simple” convex optimization problems. A second remark is that
from a practical point of view, one can easily approximate each convex constraint by
means of several linear constraints. A third remark is that the constraints (10) only
hold for steady state, whereas our system is never in steady state. A more accurate
planning result is obtained by conditioning the expected throughput on the current
work in the buffer, resulting in so-called transient clearing functions. For the latter
subject, the interested reader is referred to [15].

5 Controller Design

In the previous section we derived a fluid model as an approximation for the discrete
event model derived earlier. The next step in the control framework presented in
Sect. 3 is to control the approximation model using standard techniques from control
theory.

Typically two control problems can be distinguished: the trajectory generation
problem and the reference tracking control problem. The solution of the first problem
serves as an input for the second problem.

To illustrate the difference between these two problems, consider the problem of
automatically flying an airplane from A to B by means of an autopilot. Then also two
problems are solved separately. The first problem is to determine a trajectory for the
airplane to fly which brings it from A to B. The resulting flight plan is a solution to
the trajectory generation problem. The second problem is the design of the autopilot
itself. Given an arbitrary feasible reference trajectory for this airplane, how to make
sure that it is tracked as well as possible, despite all kinds of disturbances. The latter is
the reference tracking control problem. We follow a similar approach for the control
of manufacturing systems.
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5.1 Trajectory Generation Problem

The trajectory generation problem is the problem of finding a feasible reference
trajectory for the system, also known as production planning. So for the example
considered previously, the problem is to find a trajectory

(
xr (k), ur (k)

)
which sat-

isfies (7) as well as the constraints (8) and (10). Clearly, many trajectories exist that
meet these requirements. Typically, “the best” trajectory is looked for. Therefore,
the trajectory generation or production planning problem is often formulated as an
optimization problem.

Example 5 Consider the system described by (7) together with the constraints (8) and
(10). Assume that ca,i = ce,i = 1, te,i = 1 (i = 1, 2), h = 2, and that the cumulative
demand is given by xr,3(k) = k. If one would like to satisfy this cumulative demand
while having a minimal number of jobs in the system, the trajectory generation
problem can be formulated as the following optimization problem:

min
ur (k),xr (k)

N∑

k=1
x1(k) + x2(k)

subject to xr,3 = k k = 1, . . . , N
(7), (8), (10) k = 1, . . . , N

The solution to this problem is given by

xr,1(k) = 1 ur,0(k) = 1 k = 1, . . . , N
xr,2(k) = 1 ur,1(k) = 1 k = 1, . . . , N
xr,3(k) = k ur,2(k) = 1 k = 1, . . . , N
xr,4(k) = 1 k = 1, . . . , N
xr,5(k) = 1 k = 1, . . . , N .

(11)

5.2 Reference Tracking: Model-Based Predictive Control (MPC)

For the reference tracking control problem, we assume that an arbitrary feasible
reference trajectory is given. So for the example considered before we assume that
a reference trajectory

(
xr (k), ur (k)

)
is given which satisfies (7) together with the

constraints (8) and (10). This could for example be the trajectory (11), but any other
feasible reference trajectory can be used as a starting point as well. The goal in the
reference tracking control problem is to find an input u(k) which guarantees that the
system tracks this reference input, while meeting the constraints (8) and (10).

In order to solve the reference tracking control problem, the tracking error dynam-
ics is considered. For the remainder of this section we assume that the system dynam-
ics is described by

x(k + 1) = Ax(k) + Bu(k)
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subject to the linear constraints

Ex(k) + Fu(k) ≤ g.

Without loss of generality this can be extended to nonlinear dynamics with nonlinear
constraints.

In addition, a feasible reference trajectory
(
xr (k), ur (k)

)
is given, i.e., a trajectory

which satisfies

xr (k + 1) = Axr (k) + Bur (k)

and

Exr (k) + Fur (k) ≤ g.

Next, one can define the tracking error x̃(k) = x(k)− xr (k), and the input correction
ũ(k) = u(k) − ur (k). Then the tracking error dynamics becomes

x̃(k + 1) = Ax̃(k) + Bũ(k) (12a)

subject to the constraints

E
(
x̃(k) + xr (k)

) + F
(
ũ(k) + ur (k)

) ≤ g

or

Ex̃(k) + Fũ(k) ≤ g − Exr (k) − Fur (k) (12b)

Using these error coordinates, the reference tracking control problem can be for-
mulated as to find an input correction ũ(k) which steers the error dynamics (12a)
toward 0, while satisfying the constraints (12b).

Since we have a system with constraints, the most suitable technique from standard
control theory is Model-based Predictive Control (MPC).

The basic idea of MPC is to use the model of the system (12a) to predict the state
evolution as a function of future inputs. Furthermore, a cost function is used which
penalizes the predicted future deviations from the reference trajectory. This cost
function is then minimized over the future inputs, subject to the constraints (12b).
This optimization takes place over a so-called prediction horizon p, i.e., the first
p inputs are determined in this optimization problem. The resulting control action
then consists of the first of these inputs. One time period later, the entire procedure is
repeated. Therefore, MPC is also called a receding horizon stategy. This is illustrated
in Fig. 15.

Assume that at time k, the tracking error x̃(k) = x̃(k|k) is measured. So we have
the tracking error x̃ at time k given that we are currently at time k. Using a horizon
of length p, we can define the input corrections for the times k, k + 1, . . . , k + p − 1
given that we are currently at time k: ũ(k|k), ũ(k + 1|k), . . . , ũ(k + p − 1|k).
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Fig. 15 The ingredients
of MPC

past future

Projected
Outputs

ŷ(k+1|k)
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k+2
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u(k)

target

Manipulated
Variables

By means of the model (12a) we are able to predict the resulting tracking errors as
a function of these future input corrections:

⎡

⎢
⎢⎢
⎣

x̃(k + 1|k)

x̃(k + 2|k)
...

x̃(k + p|k)

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

A
A2

...

Ap

⎤

⎥
⎥⎥
⎦

x(k|k) +

⎡

⎢
⎢
⎢⎢
⎣

B 0 . . . 0

AB
. . .

. . .
...

...
. . .

. . . 0
Ap−1 B . . . AB B

⎤

⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

ũ(k|k)

ũ(k + 1|k)
...

ũ(k + p − 1|k)

⎤

⎥
⎥⎥
⎦

(13)

Next we define a cost function for having a non-zero tracking error. One of the
properties of our controlled system is that if we happen to be on the reference, we
should stay on the reference. In particular this implies that the cost function should
be such that costs are 0 if and only if the system stay in (x̃, ũ) = (0, 0).

In control theory often a quadratic cost function is used:

min
u(k|k),...u(k+p−1|k)

p∑

i=1

x(k+i |k)T Qx(k+i |k)+u(k+i −1|k)T Ru(k+i −1|k) (14)

with Q = QT ≥ 0 and R = RT > 0. But also other cost functions can be used,
e.g., linear cost functions. What is most important is that costs are 0 if and only if the
system stays in (x̃, ũ) = (0, 0). Clearly the minimization should take place subject
to the constraints (12b). Using a quadratic cost function as in (14) results in a QP
(quadratic program) to be solved each time instant, whereas a linear cost function
results in an LP (linear program), see e.g., [18].

The result from solving the above-mentioned optimization problem is a vector of
future input corrections ũ(k|k), ũ(k + 1|k), . . . , ũ(k + p − 1|k). At time k the input
ũ(k|k) is applied. Subsequently, at time k + 1 the whole procedure starts all over
again.

We conclude this section with some remarks. First, the stability of the MPC
approach is not guaranteed. At least not in the way as presented here. In order to
achieve guaranteed stability, one should take the horizon p = ∞. This is not desirable
from a practical point of view. A second way of achieving stability is by adding the
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terminal constraint that after the horizon, the system should be on the reference, i.e.,
one could add the constraint that x̃(k + p) = 0. Notice that in order to have a feasible
optimization problem, again one should take p large enough.

For more information about MPC, the interested reader is referred to [5].

6 Concluding Remarks

In this chapter we provided a framework within which concepts from the field of
systems and control can be used for controlling manufacturing systems. We presented
the concept of Effective Process Times (EPTs) which can be used for modeling a
manufacturing system as a large queuing network. Restricting ourselves to mass
production enabled us to model manufacturing systems by means of a linear system
subject to nonlinear constraints (clearing functions). These models then served as a
starting point for designing controllers for these manufacturing systems using Model-
based Predictive Control (MPC). Thoughout this chapter we provided examples
to illustrate the most important ideas and concepts. We also provided additional
references for the interested reader.

We presented MPC as a possible approach from control theory for controlling
manufacturing systems. But many more suitable approaches can be used, ranging
from classical control theory using z-transforms and transfer functions, dynamic
programming and optimal control, to robust control and approximate dynamic pro-
gramming. A good overview of these kinds of approaches for the dynamic modeling
and control of supply chains has been provided in the review paper [17].

But also the approximation model presented in Sect. 4 is only one of the possible
choices for modeling manufacturing systems. An overview on aggregate models
for manufacturing systems has been given in [13]. In the model presented here a
fluid approximation has been presented where the number of jobs was modeled
continuously, but the position in the factory was modeled discretely. Using a less
detailed model, we can even abstract from workstations and model manufacturing
flow as a real fluid using continuum models [1, 3, 6]. Optimal control of PDE models
for manufacturing systems has been presented in [12].

From the above it is clear that the modeling and control of manufacturing systems
has been, and still is, an open and active research area. In this chapter we provided
some of the basic models and standard control approaches, illustrated by examples
so that they can be applied straighforwardly.
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