Stability Analysis for Fluid Limit Models of Multiclass Queueing Networks

Erjen Lefeber, Dieter Armbruster, Yoni Nazarathy
APS INFORMS 2011, Stockholm

Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Acknowledgment

This work is supported by the Netherlands Organization for Scientific Research (NWO-VIDI grant 639.072.072).

Contribution

We present a method (finite time algorithm) for describing solutions of a fluid limit model as differential inclusion.
This leads to a graph that can be used for analyzing stability of the fluid limit model.

Introduction

Multiclass queueing networks

Dai,Hasenbein,Vande Vate (2004)

- Head-of-the-line (HL)
- Work conserving (non-idling)
- Service of a class can be prohibited depending on the (non-)presence of customers of certain classes, e.g. Static Buffer Priority discipline (SBP)

Introduction

Key result: Dai (1995)

Consider a HL queueing network under some given policy. Assume that the associated fluid model for the network is stable. Then under certain technical assumptions the queueing network is stable.

Introduction

Key result: Dai (1995)

Consider a HL queueing network under some given policy. Assume that the associated fluid model for the network is stable. Then under certain technical assumptions the queueing network is stable.

Our problem of interest

When is an associated fluid model stable?

Problem

Problem

Consider the following set of signals

$$
\mathcal{B}=\left\{\begin{array}{c|cc}
& {\left[\begin{array}{cc}
X(t) \\
T(t)
\end{array}\right]} & \begin{array}{cc}
0 \leq X(t)=X(0)+\alpha t+F T(t) & T(0)=0 \\
T(t) \text { non-decreasing } & G[T(t)-T(s)] \leq \beta(t-s) \\
0=\int_{0}^{t} X_{i}(s) \mathrm{d} T_{j}(s)
\end{array}
\end{array}\right\}
$$

When does it hold that all signals $X(t) \in \mathcal{B}$ converge to 0 in finite time?

Problem

Problem

Consider the following set of signals

$$
\mathcal{B}=\left\{\begin{array}{c|cc}
& \left.\begin{array}{c}
X(t) \\
T(t)
\end{array}\right] & \begin{array}{cc}
0 \leq X(t)=X(0)+\alpha t+F T(t) & T(0)=0 \\
T(t) \text { non-decreasing } & G[T(t)-T(s)] \leq \beta(t-s) \\
0=\int_{0}^{t} X_{i}(s) \mathrm{d} T_{j}(s)
\end{array}
\end{array}\right\}
$$

When does it hold that all signals $X(t) \in \mathcal{B}$ converge to 0 in finite time?

Some remarks

- Think of $T(t)$ here as $\left[T(t)^{\prime}, Y(t)^{\prime}\right]^{\prime}$ or $\left[T(t)^{\prime}, T^{+}(t)^{\prime}\right]^{\prime}$
- Think of F as $\left[R^{\prime} \mid 0\right]^{\prime}$ with input-output-matrix $R=(I-P)^{-1} \operatorname{diag}(\mu)$
- G used for modeling constituency, as well as equality constraints

Problem

Problem

Consider the following set of signals

$$
\mathcal{B}=\left\{\begin{array}{c|cc}
& {\left[\begin{array}{c}
\left.\left\lvert\, \begin{array}{c}
0 \leq X(t) \\
T(t) \\
T(t)
\end{array}\right.\right] \\
T(t) \text { non-decreasing } \\
0=\int_{0}^{t} X_{i}(s) \mathrm{d} T_{j}(s)
\end{array}\right.} & G[T(t)-T(s)] \leq \beta(t-s) \\
& 0(0)=0 \\
\hline
\end{array}\right\}
$$

When does it hold that all signals $X(t) \in \mathcal{B}$ converge to 0 in finite time?

Additional assumptions

- $X(t)$ piecewise linear on countable partition of intervals
- rank conditions involving α, β, F, and G

Examples

Example 1: Push-pull ring

See also Weiss et al. (Session 3.11, yesterday)

$$
\begin{aligned}
X_{i}(t) & =X_{i}(0)+\lambda_{i} T_{i, 1}(t)-\mu_{i} T_{i, 2}(t) \\
t & =T_{i, 1}(t)+T_{i-1,2}(t) \\
0 & =\int_{0}^{t} X_{i}(s) \mathrm{d} T_{i+1,1}(s) \\
0 & \leq X_{i}(t) \\
T_{i, j}(t) & \text { non-decreasing } \\
T_{i, j}(0) & =0
\end{aligned}
$$

Examples

Example 2: Dai, Hasenbein, Vande Vate (2004)

$$
\begin{aligned}
& 0=T_{i}(0)=T_{i}^{+}(0) \\
& 0 \leq X_{i}(t)
\end{aligned}
$$

$$
X_{1}(t)=X_{1}(0)+\lambda t-\mu_{1} T_{1}(t)
$$

$$
0=\int_{0}^{t} X_{1}(s) \mathrm{d} T_{1}^{+}(s)
$$

$$
X_{i}(t)=X_{i}(0)+\mu_{i-1} T_{i-1}(t)-\mu_{i} T_{i}(t)
$$

$$
T_{1}^{+}(t)=t-T_{1}(t)
$$

$$
0=\int_{0}^{t}\left(X_{1}+X_{3}\right)(s) \mathrm{d} T_{3}^{+}(s)
$$

$$
T_{3}^{+}(t)=t-T_{1}(t)-T_{3}(t)
$$

$$
0=\int_{0}^{t}\left(X_{1}+X_{3}+X_{4}\right)(s) \mathrm{d} T_{4}^{+}(s)
$$

$$
T_{4}^{+}(t)=t-T_{1}(t)-T_{3}(t)-T_{4}(t)
$$

$$
T_{5}^{+}(t)=t-T_{5}(t)
$$

$$
T_{2}^{+}(t)=t-T_{5}(t)-T_{2}(t)
$$

$$
T_{i}(t), T_{i}^{+}(t) \text { non-decreasing }
$$

Preliminaries

Some standard observations

- For $s \leq t: 0 \leq T_{i}(t)-T_{i}(s) \leq t-s$, so solutions in \mathcal{B} are Lipschitz continuous
- In particular they are absolutely continuous
- Therefore differentiable almost everywhere

Definition

Points t where all time derivatives exist are called regular points.

Preliminaries

Some standard observations

- For $s \leq t: 0 \leq T_{i}(t)-T_{i}(s) \leq t-s$, so solutions in \mathcal{B} are Lipschitz continuous
- In particular they are absolutely continuous
- Therefore differentiable almost everywhere

Definition

Points t where all time derivatives exist are called regular points.

Remark

Since $X(t)$ piecewise linear on countable union of intervals, we can define derivatives at non-regular points by taking limits from the right.

Approach

- Rewrite $X(t) \in \mathcal{B}$ as a differential inclusion:

$$
\begin{equation*}
\dot{X}(t) \in S_{X(t)} \subset \mathcal{S} \tag{1}
\end{equation*}
$$

where $S_{X(t)}$ denotes set, depending on $X(t)$ and \mathcal{S} is a finite set.

Approach

- Rewrite $X(t) \in \mathcal{B}$ as a differential inclusion:

$$
\begin{equation*}
\dot{X}(t) \in S_{X(t)} \subset \mathcal{S} \tag{1}
\end{equation*}
$$

where $S_{X(t)}$ denotes set, depending on $X(t)$ and \mathcal{S} is a finite set. We do that in two steps

- Dynamics for regular points
- Dynamics for non-regular points

Approach

- Rewrite $X(t) \in \mathcal{B}$ as a differential inclusion:

$$
\begin{equation*}
\dot{X}(t) \in S_{X(t)} \subset \mathcal{S} \tag{1}
\end{equation*}
$$

where $S_{X(t)}$ denotes set, depending on $X(t)$ and \mathcal{S} is a finite set. We do that in two steps

- Dynamics for regular points
- Dynamics for non-regular points
- Derive graph with possible transitions

Approach

- Rewrite $X(t) \in \mathcal{B}$ as a differential inclusion:

$$
\begin{equation*}
\dot{X}(t) \in S_{X(t)} \subset \mathcal{S} \tag{1}
\end{equation*}
$$

where $S_{X(t)}$ denotes set, depending on $X(t)$ and \mathcal{S} is a finite set. We do that in two steps

- Dynamics for regular points
- Dynamics for non-regular points
- Derive graph with possible transitions
- Stability analysis of the differential inclusion (1) by means of the graph

Mode-dynamics for regular points

Partition state space into regions

Define $L(t)=\left(1_{\left\{X_{1}(t)>0\right\}}, \ldots, 1_{\left\{X_{n}(t)>0\right\}}\right) \in\{0,1\}^{n}$.
We refer to $L(t)=\left(\ell_{1}, \ldots, \ell_{n}\right)$ as the mode of the system at time t.
Goal
Derive mode-dynamics for regular points (i.e. regular modes).

Definition

Region is union of (regular) modes with same dynamics.

Mode-dynamics for regular points

Example 1: Push-pull ring

Recall equations

$$
\begin{aligned}
\dot{X}_{i}(t) & =\lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t) & & 0=X_{i}(t) \dot{T}_{i+1,1}(t) \\
1 & =\dot{T}_{i, 1}(t)+\dot{T}_{i-1,2}(t) & & 0 \leq \dot{T}_{i, j}(t), X_{i}(t)
\end{aligned}
$$

During mode: two cases

$$
\begin{aligned}
X_{i}(t)>0: & \dot{T}_{i+1,1}(t)=0 \\
X_{i}(t)=0, \text { i.e. } \dot{X}_{i}(t)=0: & \lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t)=0
\end{aligned}
$$

For each mode: 6 linear equations with 6 unknown $\dot{T}_{i, j}(t)$.

Mode-dynamics for regular points

Example 1: Push-pull ring

Recall equations

$$
\begin{aligned}
\dot{X}_{i}(t) & =\lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t) & & 0=X_{i}(t) \dot{T}_{i+1,1}(t) \\
1 & =\dot{T}_{i, 1}(t)+\dot{T}_{i-1,2}(t) & & 0 \leq \dot{T}_{i, j}(t), X_{i}(t)
\end{aligned}
$$

During mode: two cases

$$
\begin{aligned}
X_{i}(t)>0: & \dot{T}_{i+1,1}(t)=0 \\
X_{i}(t)=0, \text { i.e. } \dot{X}_{i}(t)=0: & \lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t)=0
\end{aligned}
$$

For each mode: 6 linear equations with 6 unknown $\dot{T}_{i, j}(t)$.
Solution needs to satisfy $0 \leq \dot{T}_{i, j}(t)$ for mode to be regular.

Mode-dynamics for regular points

Example 1: Push-pull ring $\left(\lambda_{i}>\mu_{i}\right)$

Regular modes (5):

$$
\begin{aligned}
& L(t)=(1,1,1): \dot{X}(t)=\left[-\mu_{1},-\mu_{2},-\mu_{3}\right]^{\prime} \\
& L(t)=(0,1,1): \dot{X}(t)=\left[0, \lambda_{2}-\mu_{2},-\mu_{3}\right]^{\prime} \\
& L(t)=(1,0,1): \dot{X}(t)=\left[-\mu_{1}, 0, \lambda_{3}-\mu_{3}\right]^{\prime} \\
& L(t)=(1,1,0): \dot{X}(t)=\left[\lambda_{1}-\mu_{1},-\mu_{2}, 0\right]^{\prime} \\
& L(t)=(0,0,0): \dot{X}(t)=[0,0,0]^{\prime}
\end{aligned}
$$

Result: 5 possible directions of movement.
Non-regular modes (3):

$$
\begin{aligned}
& L(t)=(1,0,0) \\
& L(t)=(0,1,0) \\
& L(t)=(0,0,1)
\end{aligned}
$$

Mode-dynamics for regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)

Along the same lines we obtain

- 16 regular modes
- 16 non-regular modes

Some modes have same direction of movement.

Result: 11 possible directions of movement.

Mode-dynamics for regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)

Along the same lines we obtain

- 16 regular modes
- 16 non-regular modes

Some modes have same direction of movement.

Result: 11 possible directions of movement.
Remark
Mode $L(t)=(0,0,0,1,0)$ is regular: $\dot{X}(t)=\left(0,0,0,-\frac{1}{10}, 0\right)$.

Mode-dynamics for regular points

Two problems

- Dynamics for non-regular modes?
- Non-unique direction of movement is a challenge

Next step

Need to determine dynamics for non-regular points.

Dynamics for non-regular points

Some observations

- So far, two options considered:
- $X_{i}(t)>0$
- $X_{i}(t)=0$ and $\dot{X}_{i}(t)=0$

For mode-dynamics in regular points this suffices.

Dynamics for non-regular points

Some observations

- So far, two options considered:
- $X_{i}(t)>0$
- $X_{i}(t)=0$ and $\dot{X}_{i}(t)=0$

For mode-dynamics in regular points this suffices.

- For non-regular points, a third case needs to be considered:
- $X_{i}(t)=0$ and $\dot{X}_{i}(t)>0$

Dynamics for non-regular points

Some observations

- So far, two options considered:
- $X_{i}(t)>0$
- $X_{i}(t)=0$ and $\dot{X}_{i}(t)=0$

For mode-dynamics in regular points this suffices.

- For non-regular points, a third case needs to be considered:
- $X_{i}(t)=0$ and $\dot{X}_{i}(t)>0$
- Extra condition: $X_{i}(t) \dot{T}_{j}(t)=0$ implies $\dot{X}_{i}(t) \dot{\bar{T}}_{j}(t)=0$

Dynamics for non-regular points

Example 1: Push-pull ring

Recall equations

$$
\begin{array}{rlrl}
\dot{X}_{i}(t) & =\lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t) & & 0 \\
1 & =x_{i}(t) \dot{T}_{i+1,1}(t) \\
0 & \leq \dot{T}_{i, j}(t)+\dot{T}_{i-1,2}(t) & & 0
\end{array}
$$

For each of the buffers consider three cases

$$
\begin{aligned}
x_{i}(t)>0: & \dot{T}_{i+1,1}(t)=0 \\
x_{i}(t)=0 \text { and } \dot{X}_{i}(t)=0: & \lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t)=0 \\
X_{i}(t)=0 \text { and } \dot{X}_{i}(t)>0: & \dot{T}_{i+1,1}(t)=0
\end{aligned}
$$

Dynamics for non-regular points

Example 1: Push-pull ring

Recall equations

$$
\begin{aligned}
\dot{X}_{i}(t) & =\lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t) & & 0=X_{i}(t) \dot{T}_{i+1,1}(t) \\
1 & =\dot{T}_{i, 1}(t)+\dot{T}_{i-1,2}(t) & & 0=\dot{X}_{i}(t) \dot{T}_{i+1,1}(t) \\
0 & \leq \dot{T}_{i, j}(t) & & 0 \leq X_{i}(t)
\end{aligned}
$$

For each of the buffers consider three cases

$$
\begin{aligned}
X_{i}(t)>0: & \dot{T}_{i+1,1}(t)=0 \\
X_{i}(t)=0 \text { and } \dot{X}_{i}(t)=0: & \lambda_{i} \dot{T}_{i, 1}(t)-\mu_{i} \dot{T}_{i, 2}(t)=0 \\
X_{i}(t)=0 \text { and } \dot{X}_{i}(t)>0: & \dot{T}_{i+1,1}(t)=0
\end{aligned}
$$

Solution needs to satisfy $\dot{T}_{i, j}(t) \geq 0$ and case conditions for feasibility.

Dynamics for non-regular points

Example 1: Push-pull ring $\left(\lambda_{i}>\mu_{i}\right)$

$$
\begin{aligned}
& L=(0, \cdot, 1): \dot{X}=\left(0, \lambda_{2}-\mu_{2},-\mu_{3}\right)^{\prime} \quad L=(1,1,1): \dot{X}=\left(-\mu_{1},-\mu_{2},-\mu_{3}\right)^{\prime} \\
& L=(\cdot, 1,0): \dot{X}=\left(\lambda_{1}-\mu_{1},-\mu_{2}, 0\right)^{\prime} \quad L=(0,0,0): \dot{X}=(0,0,0)^{\prime} \\
& L=(1,0, \cdot): \dot{X}=\left(-\mu_{1}, 0, \lambda_{3}-\mu_{3}\right)^{\prime}
\end{aligned}
$$

$$
L=(0, \cdot, 1)
$$

$$
L=(1,1,1)
$$

$$
L=(\cdot, 1,0)
$$

$$
L=(0,0,0)
$$

$$
L=(1,0, \cdot)
$$

Dynamics for non-regular points

Example 1: Push-pull ring $\left(\lambda_{i}>\mu_{i}\right)$

$$
\begin{aligned}
& L=(0, \cdot, 1): \dot{X}=\left(0, \lambda_{2}-\mu_{2},-\mu_{3}\right)^{\prime} \quad L=(1,1,1): \dot{X}=\left(-\mu_{1},-\mu_{2},-\mu_{3}\right)^{\prime} \\
& L=(\cdot, 1,0): \dot{X}=\left(\lambda_{1}-\mu_{1},-\mu_{2}, 0\right)^{\prime} \quad L=(0,0,0): \dot{X}=(0,0,0)^{\prime} \\
& L=(1,0, \cdot): \dot{X}=\left(-\mu_{1}, 0, \lambda_{3}-\mu_{3}\right)^{\prime}
\end{aligned}
$$

$$
L=(0,0,0)
$$

Dynamics for non-regular points

Example 1: Push-pull ring $\left(\lambda_{i}>\mu_{i}\right)$

$$
\begin{aligned}
& L=(0, \cdot, 1): \dot{X}=\left(0, \lambda_{2}-\mu_{2},-\mu_{3}\right)^{\prime} \quad L=(1,1,1): \dot{X}=\left(-\mu_{1},-\mu_{2},-\mu_{3}\right)^{\prime} \\
& L=(\cdot, 1,0): \dot{X}=\left(\lambda_{1}-\mu_{1},-\mu_{2}, 0\right)^{\prime} \quad L=(0,0,0): \dot{X}=(0,0,0)^{\prime} \\
& L=(1,0, \cdot): \dot{X}=\left(-\mu_{1}, 0, \lambda_{3}-\mu_{3}\right)^{\prime}
\end{aligned}
$$

$$
L=(1,0, \cdot)
$$

$$
L=(0,0,0)
$$

Need to investigate loop.

Dynamics for non-regular points

Example 1: Push-pull ring $\left(\lambda_{i}>\mu_{i}\right)$

Recall dynamics
$L(t)=(0, \cdot, 1): \dot{X}=\left(0, \lambda_{2}-\mu_{2},-\mu_{3}\right)^{\prime}$
$L(t)=(\cdot, 1,0): \dot{X}=\left(\lambda_{1}-\mu_{1},-\mu_{2}, 0\right)^{\prime}$
$L(t)=(1,0, \cdot): \dot{X}=\left(-\mu_{1}, 0, \lambda_{3}-\mu_{3}\right)^{\prime}$
Consider Lyapunov function (define $\rho_{i}=\lambda_{i} / \mu_{i}$)

$$
V=\left[1+\rho_{2}\left(\rho_{3}-1\right)\right] \frac{x_{1}}{\mu_{1}}+\left[1+\rho_{3}\left(\rho_{1}-1\right)\right] \frac{x_{2}}{\mu_{2}}+\left[1+\rho_{1}\left(\rho_{2}-1\right)\right] \frac{x_{3}}{\mu_{3}}
$$

Along any of the three modes we obtain:

$$
\dot{V}=\prod_{i=1}^{3}\left(\rho_{i}-1\right)-1
$$

Dynamics for non-regular points

Example 1: Push-pull ring $\left(\lambda_{i}>\mu_{i}\right)$ Resulting graph for $\prod_{i=1}^{3}\left(\rho_{i}-1\right)<1$:

For $\prod_{i=1}^{3}\left(\rho_{i}-1\right)>1$ we have instability.

Dynamics for non-regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)

Resulting dynamics

$$
\begin{aligned}
& 1: L(t)=(1, \cdot, \cdot, \cdot, 1): \dot{X}=[-3 / 20,1 / 4,0,0,-1 / 4]^{\prime} \\
& 2: L(t)=(0, \cdot, 1, \cdot, 1): \dot{X}=[0,1 / 10,-3 / 20,3 / 20,-1 / 4]^{\prime} \\
& 3: L(t)=(0,1,0,1,0): \dot{X} \in S_{(0,1,0,1,0)} \\
& 4: L(t)=(0, \cdot, 0,1,1): \dot{X}=[0,1 / 10,0,-3 / 5,7 / 20]^{\prime} \\
& 5: L(t)=(0, \cdot, 0,0,1): \dot{X}=[0,1 / 10,0,0,-1 / 4]^{\prime} \\
& 6: L(t)=(1,1, \cdot \cdot \cdot, 0): \dot{X}=[-3 / 20,-3 / 4,1,0,0]^{\prime} \\
& 7: L(t) \in\{(0,1,1, \cdot, 0),(0,1, \cdot 0,0)\}: \dot{X}=[0,-9 / 10,17 / 20,3 / 20,0]^{\prime} \\
& 8: L(t)=(1,0, \cdot \cdot, 0): \dot{X}=[-3 / 20,0,1 / 4,0,0]^{\prime} \\
& 9: L(t)=(0,0,1, \cdot, 0): \dot{X}=[0,0,-1 / 20,3 / 20,0]^{\prime} \\
& 10: L(t)=(0,0,0,1,0): \dot{X} \in S_{(0,0,0,1,0)}
\end{aligned}
$$

$$
11: L(t)=(0,0,0,0,0): \dot{X}=[0,0,0,0,0]^{\prime}
$$

Dynamics for non-regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)

Two interesting modes:

$$
\begin{aligned}
& 3: L(t)=(0,1,0,1,0): \\
& \dot{x}(t) \in\left\{\left[0,-\frac{9}{10}, \frac{17}{20}, \frac{3}{20}, 0\right]^{\prime},\left[0, \frac{1}{150}, 0,-\frac{2}{15}, 0\right]^{\prime},\left[0, \frac{1}{10}, 0,-\frac{3}{5}, \frac{7}{20}\right]^{\prime}\right\}
\end{aligned}
$$

$$
10: L(t)=(0,0,0,1,0):
$$

$$
\dot{x}(t) \in\left\{\left[0,0,0,-\frac{1}{10}, 0\right]^{\prime},\left[0, \frac{1}{150}, 0,-\frac{2}{15}, 0\right]^{\prime},\left[0, \frac{1}{10}, 0,-\frac{3}{5}, \frac{7}{20}\right]^{\prime}\right\}
$$

Remark

Notice: for mode 10 not two possible trajectories, but three.

Dynamics for non-regular points

Example 2: Dai, Hasenbein, Vande Vate (2004)

Resulting graph:

Need to investigate loops (3-)4-5-7-9-10: Unstable

Obtaining stable dynamics

Assume that \mathcal{B} contains both stable and unstable trajectories. Can we remove the unstable trajectories?

Obtaining stable dynamics

Assume that \mathcal{B} contains both stable and unstable trajectories. Can we remove the unstable trajectories?

Obtaining stable dynamics

Assume that \mathcal{B} contains both stable and unstable trajectories. Can we remove the unstable trajectories?

Obtaining stable dynamics

Modified policy:
Machine B starts a job of type two whenever both $x_{3}=0$ and $x_{2}>0$.

Obtaining stable dynamics

Modified policy:
Machine B starts a job of type two whenever both $x_{3}=0$ and $x_{2}>0$.

Illustration by simulation

Original SBP policy

Modified policy

Conclusions

- A method (algorithm) for describing solutions of a fluid limit model as differential inclusion has been presented.

Conclusions

- A method (algorithm) for describing solutions of a fluid limit model as differential inclusion has been presented.
- The method can be formalized as a finite time algorithm for general queueing networks with SBP policies. We require that service of a class can be prohibited depending on the (non-)presence of customers of certain classes

Conclusions

- A method (algorithm) for describing solutions of a fluid limit model as differential inclusion has been presented.
- The method can be formalized as a finite time algorithm for general queueing networks with SBP policies. We require that service of a class can be prohibited depending on the (non-)presence of customers of certain classes
- The differential inclusion leads to a graph that can be used for analyzing stability of the fluid limit model

Conclusions

- A method (algorithm) for describing solutions of a fluid limit model as differential inclusion has been presented.
- The method can be formalized as a finite time algorithm for general queueing networks with SBP policies. We require that service of a class can be prohibited depending on the (non-)presence of customers of certain classes
- The differential inclusion leads to a graph that can be used for analyzing stability of the fluid limit model
- Unstable solutions can be eliminated by modifying policy (on set of measure zero)

