

Model-based Predictive Control (MPC)

Erjen Lefeber (TU/e), Marco Laumanns (IBM,ETHZ)

SCM-MPC Workshop, München

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

My background

(Nonlinear) Control Theory

What I like

Apply ideas/concepts from control theory in other fields

2/22

Four major problems

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Four major problems

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Four major problems

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Four major problems

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

Example: Linear dynamics, discrete time

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Problem 1: Generate feasible reference trajectory

Determine $(u_r(k), x_r(k), y_r(k))$ satisfying

$$x_r(k+1) = Ax_r(k) + Bu_r(k)$$
$$y_r(k) = Cx_r(k)$$

Typical approach: solve optimization problem

/department of mechanical engineering

Example: Linear dynamics, discrete time

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Problem 1: Generate feasible reference trajectory

Determine $(u_r(k), x_r(k), y_r(k))$ satisfying

$$x_r(k+1) = Ax_r(k) + Bu_r(k)$$
$$y_r(k) = Cx_r(k)$$

Typical approach: solve optimization problem

/department of mechanical engineering

Example: Linear dynamics, discrete time

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Problem 1: Generate feasible reference trajectory

Determine $(u_r(k), x_r(k), y_r(k))$ satisfying

$$x_r(k+1) = Ax_r(k) + Bu_r(k)$$
$$y_r(k) = Cx_r(k)$$

Typical approach: solve optimization problem

/department of mechanical engineering

Design (static) state feedback controller

Given dynamics and reference

 $x(k+1) = Ax(k) + Bu(k) \qquad x_r(k+1) = Ax_r(k) + Bu_r(k)$

Define tracking error and change of input:

 $\tilde{x}(k) = x(k) - x_r(k)$ $\tilde{u}(k) = u(k) - u_r(k)$

Resulting in error dynamics:

$$\tilde{x}(k+1) = A\tilde{x}(k) + B\tilde{u}(k)$$

 $\tilde{y}(k) = C\tilde{x}(k)$

TU/e Technische Universiteit Eindhoven University of Technology

/department of mechanical engineering

Design (static) state feedback controller

Given dynamics and reference

 $x(k+1) = Ax(k) + Bu(k) \qquad x_r(k+1) = Ax_r(k) + Bu_r(k)$

Define tracking error and change of input:

 $\tilde{x}(k) = x(k) - x_r(k)$ $\tilde{u}(k) = u(k) - u_r(k)$

Resulting in error dynamics:

$$\widetilde{x}(k+1) = A\widetilde{x}(k) + B\widetilde{u}(k)$$

 $\widetilde{y}(k) = C\widetilde{x}(k)$

TU/e Technische Universiteit Eindhoven University of Technology

5/22

Design (static) state feedback controller

Given dynamics and reference

 $x(k+1) = Ax(k) + Bu(k) \qquad x_r(k+1) = Ax_r(k) + Bu_r(k)$

Define tracking error and change of input:

 $\tilde{x}(k) = x(k) - x_r(k)$ $\tilde{u}(k) = u(k) - u_r(k)$

Resulting in error dynamics:

$$\widetilde{x}(k+1) = A\widetilde{x}(k) + B\widetilde{u}(k)$$

 $\widetilde{y}(k) = C\widetilde{x}(k)$

TU/e Technische Universiteit Eindhoven University of Technology

Design (static) state feedback controller

Problem: Determine $\tilde{u}([\tilde{x}(k)])$ such that $\lim_{k\to\infty} \tilde{x}(k) = 0$, where

$$\tilde{x}(k+1) = A\tilde{x}(k) + B\tilde{u}(k)$$
 $\tilde{x}(0) = \tilde{x}_0$

Solution

Use $\tilde{u}(k) = -L\tilde{x}(k)$. Resulting closed loop dynamics:

 $\tilde{x}(k+1) = (A - BL)\tilde{x}(k)$ $x(0) = \tilde{x}_0$

Lemma: If rank $\begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} = n$ then eigenvalues of A - BL can be placed arbitrarily.

6/22

Design (static) state feedback controller

Problem: Determine $\tilde{u}([\tilde{x}(k)])$ such that $\lim_{k\to\infty} \tilde{x}(k) = 0$, where

$$\tilde{x}(k+1) = A\tilde{x}(k) + B\tilde{u}(k)$$
 $\tilde{x}(0) = \tilde{x}_0$

Solution

Use $\tilde{u}(k) = -L\tilde{x}(k)$. Resulting closed loop dynamics:

 $\tilde{x}(k+1) = (A - BL)\tilde{x}(k)$ $x(0) = \tilde{x}_0$

Lemma: If rank $\begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} = n$ then eigenvalues of A - BL can be placed arbitrarily.

Design (static) state feedback controller

Problem: Determine $\tilde{u}([\tilde{x}(k)])$ such that $\lim_{k\to\infty} \tilde{x}(k) = 0$, where

$$\tilde{x}(k+1) = A\tilde{x}(k) + B\tilde{u}(k)$$
 $\tilde{x}(0) = \tilde{x}_0$

Solution

Use $\tilde{u}(k) = -L\tilde{x}(k)$. Resulting closed loop dynamics:

 $\tilde{x}(k+1) = (A - BL)\tilde{x}(k)$ $x(0) = \tilde{x}_0$

Lemma: If rank $\begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} = n$ then eigenvalues of A - BL can be placed arbitrarily.

6/22

Design (static) state feedback controller

Problem: Determine $\tilde{u}([\tilde{x}(k)])$ such that $\lim_{k\to\infty} \tilde{x}(k) = 0$, where

$$\tilde{x}(k+1) = A\tilde{x}(k) + B\tilde{u}(k)$$
 $\tilde{x}(0) = \tilde{x}_0$

Solution

Use $\tilde{u}(k) = -L\tilde{x}(k)$. Resulting closed loop dynamics:

$$\widetilde{x}(k+1) = (A - BL)\widetilde{x}(k)$$
 $x(0) = \widetilde{x}_0$

Lemma: If rank $\begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix} = n$ then eigenvalues of A - BL can be placed arbitrarily.

6/22

Design (static) state feedback controller

Given dynamics and reference

 $x(k+1) = Ax(k) + Bu(k) \qquad x_r(k+1) = Ax_r(k) + Bu_r(k)$

we use the following controller:

$$u(k) = u_r(k) - L[x(k) - x_r(k)]$$

which guarantees that $\lim_{k\to\infty} x(k) - x_r(k) = 0$, provided *L* is properly chosen.

7/22

Design observer

Given dynamics

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Is it possible to reconstruct x(k) from u(k) and y(k)?

Solution

Let $\hat{x}(k)$ denote our estimate for x(k):

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k)$$
$$\hat{y}(k) = C\hat{x}(k)$$

TU/e Technische Universiteit Eindhoven University of Technology

Design observer

Given dynamics

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Is it possible to reconstruct x(k) from u(k) and y(k)?

Solution

Let $\hat{x}(k)$ denote our estimate for x(k):

 $\hat{x}(k+1) = A\hat{x}(k) + Bu(k)$ $\hat{y}(k) = C\hat{x}(k)$

8/22

Design observer

Given dynamics

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Is it possible to reconstruct x(k) from u(k) and y(k)?

Solution

Let $\hat{x}(k)$ denote our estimate for x(k):

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k)$$
$$\hat{y}(k) = C\hat{x}(k)$$

TU/e Technische Universiteit Eindhoven University of Technology

Design observer

Given dynamics

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \qquad x(0) = x_0 \\ y(k) &= Cx(k) \end{aligned}$$

Is it possible to reconstruct x(k) from u(k) and y(k)?

Solution

Let $\hat{x}(k)$ denote our estimate for x(k):

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K[y(k) - \hat{y}(k)]$$
$$\hat{y}(k) = C\hat{x}(k)$$

Design observer

Given dynamics and observer

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k)$$

 $x(0) = x_0$

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K[y(k) - \hat{y}(k)]$$
$$\hat{y}(k) = C\hat{x}(k)$$

For observer error $\bar{x}(k) = x(k) - \hat{x}(k)$, we obtain

$$\bar{x}(k+1) = A\bar{x}(k) - K\bar{y}(k) = [A - KC]\bar{x}(k)$$
$$\bar{y}(k) = C\bar{x}(k)$$

Design observer

Given dynamics and observer

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k)$$

 $x(0)=x_0$

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K[y(k) - \hat{y}(k)]$$
$$\hat{y}(k) = C\hat{x}(k)$$

For observer error $\bar{x}(k) = x(k) - \hat{x}(k)$, we obtain

$$\overline{x}(k+1) = A\overline{x}(k) - K\overline{y}(k) = [A - KC]\overline{x}(k)$$

$$\overline{y}(k) = C\overline{x}(k)$$

Design (dynamic) output feedback controller

Given dynamics and reference

 $x(k+1) = Ax(k) + Bu(k) \qquad x_r(k+1) = Ax_r(k) + Bu_r(k)$

we use the following controller:

$$u(k) = u_r(k) - L[\hat{x}(k) - x_r(k)]$$
$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K[y(k) - \hat{y}(k)]$$
$$\hat{y}(k) = C\hat{x}(k)$$

which guarantees that $\lim_{k\to\infty} x(k) - x_r(k) = 0$, provided K and L are properly chosen.

10/22

Introduction to Control Theory: Summary

Four major problems

- 1. Generate feasible reference trajectory
- 2. Design (static) state feedback controller
- 3. Design observer
- 4. Design (dynamic) output feedback controller

System

$$X(k+1) = A(k)X(k) + B(k)U(k) + V(k)$$
$$Y(k) = C(k)X(k) + W(k)$$

with V(k), W(k) Gaussian white noise (cov. matrices $\Sigma_v(k)$, $\Sigma_w(k)$).

Objective

Minimize

$$J = E\left(X(N)^{T}Q(N)X(N) + \sum_{k=0}^{N-1} X(k)^{T}Q(k)X(k) + U(k)^{T}R(k)U(k)\right)$$

where
$$Q(k) \ge 0$$
, $R(k) > 0$.

/department of mechanical engineering

System

$$X(k+1) = A(k)X(k) + B(k)U(k) + V(k)$$
$$Y(k) = C(k)X(k) + W(k)$$

with V(k), W(k) Gaussian white noise (cov. matrices $\Sigma_v(k)$, $\Sigma_w(k)$).

Objective

Minimize

$$J = E\left(X(N)^{T}Q(N)X(N) + \sum_{k=0}^{N-1} X(k)^{T}Q(k)X(k) + U(k)^{T}R(k)U(k)\right)$$

where $Q(k) \ge 0$, R(k) > 0.

Solution

Controller

$$U(k) = -L(k)\hat{X}(k)$$
$$\hat{X}(k+1) = A(k)\hat{X}(k) + B(k)U(k) + K(k)[Y(k) - C(k)\hat{X}(k)]$$

13/22

Solution

Controller

S

$$U(k) = -L(k)\hat{X}(k)$$

$$\hat{X}(k+1) = A(k)\hat{X}(k) + B(k)U(k) + K(k)[Y(k) - C(k)\hat{X}(k)]$$

$$K(k) = A(k)P(k)C(k)^{T}[C(k)P(k)C(k)^{T} + \Sigma_{w}(k)]^{-1}$$

$$P(k+1) = A(k)\Gamma[C(k), P(k), \Sigma_{w}(k)]A(k)^{T} + \Sigma_{v}(k)$$

$$L(k) = [B(k)^{T}S(k+1)B(k) + R(k)]^{-1}B(k)^{T}S(k+1)A(k)$$

$$S(k) = A(k)^{T}\Gamma[B(k)^{T}, S(k+1), R(k)]A(k) + Q(k)$$

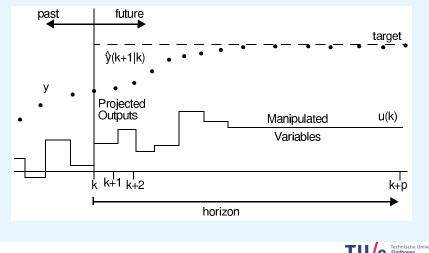
$$(N) = Q(N), P(0) = E(X_{0}X_{0}^{T}), \hat{x}(0) = E(X_{0}).$$
 Furthermore,

$$\Gamma[F, G, H] = G - GF^{T}(FGF^{T} + H)^{-1}FG$$

13/22

Model based predictive control

Receding horizon



First era: industrial success stories

- 1950s Various oil and petrochemical industries: optimal process settings computed every 15-20 minutes, implemented by manual operators.
- 60s and 70s Feedback controller from repeatedly using recomputed open loop controllers (Lee and Markus). Repeatedly solving Problem 1.
 - Deterministic (without any disturbance model)
 - Lack of stability guarantees
 - Lack of systematic tuning guidelines

First era: industrial success stories

- 1950s Various oil and petrochemical industries: optimal process settings computed every 15-20 minutes, implemented by manual operators.
- 60s and 70s Feedback controller from repeatedly using recomputed open loop controllers (Lee and Markus). Repeatedly solving Problem 1.
 - Deterministic (without any disturbance model)
 - Lack of stability guarantees
 - Lack of systematic tuning guidelines

First era: industrial success stories

- 1950s Various oil and petrochemical industries: optimal process settings computed every 15-20 minutes, implemented by manual operators.
- 60s and 70s Feedback controller from repeatedly using recomputed open loop controllers (Lee and Markus). Repeatedly solving Problem 1.
 - Deterministic (without any disturbance model)
 - Lack of stability guarantees
 - Lack of systematic tuning guidelines

Second era: founding of MPC theory

Consider system x(k + 1) = Ax(k) + Bu(k). At each time: measure (or estimate) state x_0 and solve

$$\min_{\substack{u(0),\dots,u(N-1)}} \hat{x}(N)^T Q_N x(N) + \sum_{k=0}^{N-1} \left[x(k)^T Q x(k) + u(k)^T R u(k) \right]$$

s.t. $x(k+1) = A x(k) + B u(k)$ $x(0) = x_0$
 $u(k) \in \mathbb{U}$
 $x(k) \in \mathbb{X}$ $x(N) \in \mathbb{X}_N$

where \mathbb{U} , \mathbb{X} , $\mathbb{X}(p)$ convex compact sets containing 0.

Result: feedback $u(x_0)$ (online calculation).

16/22

Second era: founding of MPC theory

Consider system x(k + 1) = Ax(k) + Bu(k). At each time: measure (or estimate) state x_0 and solve

$$\min_{\substack{u(0),\dots,u(N-1)}} \hat{x}(N)^T Q_N x(N) + \sum_{k=0}^{N-1} \left[x(k)^T Q x(k) + u(k)^T R u(k) \right]$$

s.t. $x(k+1) = A x(k) + B u(k)$ $x(0) = x_0$
 $u(k) \in \mathbb{U}$
 $x(k) \in \mathbb{X}$ $x(N) \in \mathbb{X}_N$

where U, X, X(p) convex compact sets containing 0. Result: feedback $u(x_0)$ (online calculation).

16/22

Model based predictive control

Example

Consider dynamics

x(k+1) = 4x(k) + u(k) $x(k|k) = x_0$

Horizon of 1: $\min_{u(k|k)} x(k+1|k)^2 + u(k|k)^2$

 $\min_{u(k|k)} [4x_0 + u(k|k)]^2 + u(k|k)^2 = 16x_0^2 + 8x_0u(k|k) + 2u(k|k)^2$

Optimal solution: $u(k|k) = \frac{-8x_0}{2\cdot 2} = -2x_0$

Closed-loop system: x(k + 1) = 4x(k) - 2x(k) = 2x(k) Unstable!

17/22

Example

Consider dynamics

$$x(k+1) = 4x(k) + u(k)$$
 $x(k|k) = x_0$

Horizon of 1: $\min_{u(k|k)} x(k+1|k)^2 + u(k|k)^2$

 $\min_{u(k|k)} [4x_0 + u(k|k)]^2 + u(k|k)^2 = 16x_0^2 + 8x_0u(k|k) + 2u(k|k)^2$

Optimal solution: $u(k|k) = \frac{-8x_0}{2\cdot 2} = -2x_0$

Closed-loop system: x(k + 1) = 4x(k) - 2x(k) = 2x(k) Unstable!

17/22

Example

Consider dynamics

$$x(k+1) = 4x(k) + u(k)$$
 $x(k|k) = x_0$

Horizon of 1: $\min_{u(k|k)} x(k+1|k)^2 + u(k|k)^2$

 $\min_{u(k|k)} [4x_0 + u(k|k)]^2 + u(k|k)^2 = 16x_0^2 + 8x_0u(k|k) + 2u(k|k)^2$

Optimal solution: $u(k|k) = \frac{-8x_0}{2\cdot 2} = -2x_0$

Closed-loop system: x(k + 1) = 4x(k) - 2x(k) = 2x(k) Unstable!

17/22

Example

Consider dynamics

$$x(k+1) = 4x(k) + u(k)$$
 $x(k|k) = x_0$

Horizon of 1: $\min_{u(k|k)} x(k+1|k)^2 + u(k|k)^2$

 $\min_{u(k|k)} [4x_0 + u(k|k)]^2 + u(k|k)^2 = 16x_0^2 + 8x_0u(k|k) + 2u(k|k)^2$

Optimal solution: $u(k|k) = \frac{-8x_0}{2 \cdot 2} = -2x_0$

Closed-loop system: x(k + 1) = 4x(k) - 2x(k) = 2x(k) Unstable!

17/22

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains unconstrained

Idea: Properly select terminal costs and horizon

Main steps

- 1. Solve infinite horizon LQR problem: u = Kx, $V = x^T Px$
- 2. Determine maximal output admissible set: X_N
- 3. Determine N s.t. $x(N) \in \mathbb{X}_N$

18/22

Observation 1: Infinite horizon results in stabilizing controller Observation 2: After finite amount of time: solution remains unconstrained

Idea: Properly select terminal costs and horizon

Main steps

- 1. Solve infinite horizon LQR problem: u = Kx, $V = x^T Px$
- 2. Determine maximal output admissible set: X_N
- 3. Determine N s.t. $x(N) \in \mathbb{X}_N$

18/22

Observation 1: Infinite horizon results in stabilizing controller Observation 2: After finite amount of time: solution remains unconstrained

Idea: Properly select terminal costs and horizon

Main steps

- 1. Solve infinite horizon LQR problem: u = Kx, $V = x^T Px$
- 2. Determine maximal output admissible set: X_N
- 3. Determine N s.t. $x(N) \in \mathbb{X}_N$

18/22

Observation 1: Infinite horizon results in stabilizing controller Observation 2: After finite amount of time: solution remains unconstrained

Idea: Properly select terminal costs and horizon

Main steps

- 1. Solve infinite horizon LQR problem: u = Kx, $V = x^T Px$
- 2. Determine maximal output admissible set: \mathbb{X}_N
- 3. Determine N s.t. $x(N) \in \mathbb{X}_N$

Observation 1: Infinite horizon results in stabilizing controller Observation 2: After finite amount of time: solution remains unconstrained

Idea: Properly select terminal costs and horizon

Main steps

- 1. Solve infinite horizon LQR problem: u = Kx, $V = x^T Px$
- 2. Determine maximal output admissible set: X_N
- 3. Determine N s.t. $x(N) \in \mathbb{X}_N$

18/22

Observation 1: Infinite horizon results in stabilizing controller Observation 2: After finite amount of time: solution remains unconstrained

Idea: Properly select terminal costs and horizon

Main steps

- 1. Solve infinite horizon LQR problem: u = Kx, $V = x^T Px$
- 2. Determine maximal output admissible set: X_N
- 3. Determine N s.t. $x(N) \in \mathbb{X}_N$

Second era: founding of MPC theory

- Robust MPC (next slide)
- Nonlinear MPC

Third era: Diversification through fast MPC

- MPC for hybrid systems and systems with logical constraints
- Explicit MPC (mpLP,mpQP)
- Fast optimization
- Application (mechanical and electronic systems)

/department of mechanical engineering

Second era: founding of MPC theory

- Robust MPC (next slide)
- Nonlinear MPC

Third era: Diversification through fast MPC

- MPC for hybrid systems and systems with logical constraints
- Explicit MPC (mpLP,mpQP)
- Fast optimization
- Application (mechanical and electronic systems)

19/22

Robust MPC

Dynamics

 $x(k+1) = Ax(k) + Bu(k) + Ed(k) \qquad d(k) \in \mathbb{D} = \{d : Ld \leq l\}$

$$J^{*(k)}(x^{(k)}) = \min_{u^{(k)}} J^{(k)}(x^{(k)}, u^{(k)})$$

s.t. $\begin{cases} Fx^{(k)} + Gu^{(k)} \le g \\ Ax^{(k)} + Bu^{(k)} \in \mathbb{X}^{(k)} \end{cases}$ $\forall d^{(k)} \in \mathbb{D}$
 $J^{(k)}(x^{(k)}, u^{(k)}) = \max_{d^{(k)} \in \mathbb{D}} ||Qx^{(k)}||_1 + ||Ru^{(k)}||_1 + J^{*(k+1)}(Ax^{(k)} + Bu^{(k)} + Ed^{(k)})$
 $\mathbb{X}^{(k)} = \{x \in \mathbb{R}^n : \forall d \in \mathbb{D} \; \exists u \in \mathbb{R}^{n_u} \text{ with}$
 $Fx + Gu \le g \text{ and } Ax + Bu + Ev \in \mathbb{X}^{(k+1)} \}.$
where $J^{*K}(x^{(K)}) = 0$ and $\mathbb{X}^{(K)} = \{x \in \mathbb{R}^n : Fx \le g\}$

Robust MPC

Dynamics

 $x(k+1) = Ax(k) + Bu(k) + Ed(k) \qquad d(k) \in \mathbb{D} = \{d : Ld \leq l\}$

$$J^{*(k)}(x^{(k)}) = \min_{u^{(k)}} J^{(k)}(x^{(k)}, u^{(k)})$$
s.t. $\begin{cases} Fx^{(k)} + Gu^{(k)} \le g \\ Ax^{(k)} + Bu^{(k)} \in \mathbb{X}^{(k)} \end{cases}$ $\forall d^{(k)} \in \mathbb{D}$

$$J^{(k)}(x^{(k)}, u^{(k)}) = \max_{d^{(k)} \in \mathbb{D}} ||Qx^{(k)}||_1 + ||Ru^{(k)}||_1 + J^{*(k+1)}(Ax^{(k)} + Bu^{(k)} + Ed^{(k)})$$
 $\mathbb{X}^{(k)} = \{x \in \mathbb{R}^n : \forall d \in \mathbb{D} \; \exists u \in \mathbb{R}^{n_u} \text{ with}$
 $Fx + Gu \le g \text{ and } Ax + Bu + Ev \in \mathbb{X}^{(k+1)} \}.$
where $J^{*K}(x^{(K)}) = 0$ and $\mathbb{X}^{(K)} = \{x \in \mathbb{R}^n : Fx \le g\}$

Robust MPC

Dynamics

 $x(k+1) = Ax(k) + Bu(k) + Ed(k) \qquad d(k) \in \mathbb{D} = \{d : Ld \leq l\}$

$$J^{*(k)}(x^{(k)}) = \min_{u^{(k)}} J^{(k)}(x^{(k)}, u^{(k)})$$

s.t. $\begin{cases} Fx^{(k)} + Gu^{(k)} \le g \\ Ax^{(k)} + Bu^{(k)} \in \mathbb{X}^{(k)} \end{cases}$ $\forall d^{(k)} \in \mathbb{D}$
 $J^{(k)}(x^{(k)}, u^{(k)}) = \max_{d^{(k)} \in \mathbb{D}} ||Qx^{(k)}||_1 + ||Ru^{(k)}||_1 + J^{*(k+1)}(Ax^{(k)} + Bu^{(k)} + Ed^{(k)})$
 $\mathbb{X}^{(k)} = \{x \in \mathbb{R}^n : \forall d \in \mathbb{D} \; \exists u \in \mathbb{R}^{n_u} \text{ with}$
 $Fx + Gu \le g \text{ and } Ax + Bu + Ev \in \mathbb{X}^{(k+1)} \}.$

Robust MPC

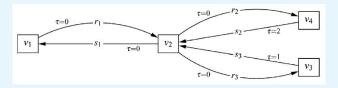
Dynamics

 $x(k+1) = Ax(k) + Bu(k) + Ed(k) \qquad d(k) \in \mathbb{D} = \{d : Ld \leq l\}$

$$J^{*(k)}(x^{(k)}) = \min_{u^{(k)}} J^{(k)}(x^{(k)}, u^{(k)})$$

s.t. $\left\{ \begin{matrix} Fx^{(k)} + Gu^{(k)} \leq g \\ Ax^{(k)} + Bu^{(k)} \in \mathbb{X}^{(k)} \end{matrix} \right\} \forall d^{(k)} \in \mathbb{D}$
 $J^{(k)}(x^{(k)}, u^{(k)}) = \max_{d^{(k)} \in \mathbb{D}} ||Qx^{(k)}||_1 + ||Ru^{(k)}||_1 + J^{*(k+1)}(Ax^{(k)} + Bu^{(k)} + Ed^{(k)})$
 $\mathbb{X}^{(k)} = \{x \in \mathbb{R}^n : \forall d \in \mathbb{D} \; \exists u \in \mathbb{R}^{n_u} \text{ with}$
 $Fx + Gu \leq g \text{ and } Ax + Bu + Ev \in \mathbb{X}^{(k+1)} \}.$
where $J^{*K}(x^{(K)}) = 0$ and $\mathbb{X}^{(K)} = \{x \in \mathbb{R}^n : Fx \leq g\}$

Robust MPC: Example



Retailer v_2 : uncertain demand $d(t) \in [0, 8]$

- Order $u_1(t) \in [0, 6]$ from supplier v_3 : cost 4, delay 1
- Order $u_2(t) \in [0, 6]$ from supplier v_4 : cost 1, delay 2

/department of mechanical engineering

Robust MPC: Example

$$x(t+1) = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t) + \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} d(t).$$

Resulting (dual base stock) policy:

$$u_1^*(x) = \min\{\max\{20 - x_1 - x_2 - x_3 - x_4, 0\}, 4\}, u_2^*(x) = \max\{16 - x_1 - x_2 - x_3 - x_4, 0\}.$$

