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My background

(Nonlinear) Control Theory

What I like

Apply ideas/concepts from control theory in other fields
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Introduction to Control Theory

Four major problems

1. Generate feasible reference trajectory

2. Design (static) state feedback controller

3. Design observer

4. Design (dynamic) output feedback controller
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Introduction to Control Theory: Problem 1

Example: Linear dynamics, discrete time

x(k + 1) = Ax(k ) + Bu(k ) x(0) = x0

y(k ) = Cx(k )

Problem 1: Generate feasible reference trajectory

Determine (ur(k ), xr(k ), yr(k )) satisfying

xr(k + 1) = Axr(k ) + Bur(k )

yr(k ) = Cxr(k )

Typical approach: solve optimization problem
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Introduction to Control Theory: Problem 2

Design (static) state feedback controller

Given dynamics and reference

x(k + 1) = Ax(k ) + Bu(k ) xr(k + 1) = Axr(k ) + Bur(k )

Define tracking error and change of input:

x̃(k ) = x(k )− xr(k ) ũ(k ) = u(k )− ur(k )

Resulting in error dynamics:

x̃(k + 1) = Ax̃(k ) + Bũ(k )

ỹ(k ) = Cx̃(k )
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Introduction to Control Theory: Problem 2

Design (static) state feedback controller

Problem: Determine ũ([x̃(k )]) such that limk→∞ x̃(k ) = 0, where

x̃(k + 1) = Ax̃(k ) + Bũ(k ) x̃(0) = x̃0

Solution

Use ũ(k ) = −L x̃(k ). Resulting closed loop dynamics:

x̃(k + 1) = (A − BL)x̃(k ) x(0) = x̃0

Lemma: If rank
[
B AB A2B . . . An−1B

]
= n then eigenvalues

of A − BL can be placed arbitrarily.



6/22

/w

Introduction to Control Theory: Problem 2

Design (static) state feedback controller
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Introduction to Control Theory: Problem 2

Design (static) state feedback controller

Given dynamics and reference

x(k + 1) = Ax(k ) + Bu(k ) xr(k + 1) = Axr(k ) + Bur(k )

we use the following controller:

u(k ) = ur(k )− L [x(k )− xr(k )]

which guarantees that limk→∞ x(k )− xr(k ) = 0, provided L is properly
chosen.
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Introduction to Control Theory: Problem 3

Design observer

Given dynamics

x(k + 1) = Ax(k ) + Bu(k ) x(0) = x0

y(k ) = Cx(k )

Is it possible to reconstruct x(k ) from u(k ) and y(k )?

Solution

Let x̂(k ) denote our estimate for x(k ):

x̂(k + 1) = Ax̂(k ) + Bu(k )

ŷ(k ) = Cx̂(k )
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ŷ(k ) = Cx̂(k )



9/22

/w

Introduction to Control Theory: Problem 3

Design observer

Given dynamics and observer

x(k + 1) = Ax(k ) + Bu(k ) x(0) = x0

y(k ) = Cx(k )

x̂(k + 1) = Ax̂(k ) + Bu(k ) + K [y(k )− ŷ(k )]

ŷ(k ) = Cx̂(k )

For observer error x̄(k ) = x(k )− x̂(k ), we obtain

x̄(k + 1) = Ax̄(k )− Kȳ(k ) = [A − KC ]x̄(k )

ȳ(k ) = Cx̄(k )
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Introduction to Control Theory: Problem 4

Design (dynamic) output feedback controller

Given dynamics and reference

x(k + 1) = Ax(k ) + Bu(k ) xr(k + 1) = Axr(k ) + Bur(k )

we use the following controller:

u(k ) = ur(k )− L [x̂(k )− xr(k )]

x̂(k + 1) = Ax̂(k ) + Bu(k ) + K [y(k )− ŷ(k )]

ŷ(k ) = Cx̂(k )

which guarantees that limk→∞ x(k )− xr(k ) = 0, provided K and L are
properly chosen.
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Introduction to Control Theory: Summary

Four major problems

1. Generate feasible reference trajectory

2. Design (static) state feedback controller

3. Design observer

4. Design (dynamic) output feedback controller
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Linear Quadratic Gaussian control (Problem 4)

System

X(k + 1) = A(k )X(k ) + B(k )U(k ) + V(k )

Y(k ) = C (k )X(k ) + W(k )

with V(k ),W(k ) Gaussian white noise (cov. matrices Σv(k ),Σw(k )).

Objective

Minimize

J = E

(
X(N)TQ (N)X(N) +

N−1∑
k=0

X(k )TQ (k )X(k ) + U(k )TR(k )U(k )

)

where Q (k ) ≥ 0, R(k ) > 0.
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Linear Quadratic Gaussian control (Problem 4)

Solution

Controller

U(k ) = −L(k )X̂(k )

X̂(k + 1) = A(k )X̂(k ) + B(k )U(k ) + K(k )[Y(k )− C (k )X̂(k )]
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Linear Quadratic Gaussian control (Problem 4)

Solution

Controller

U(k ) = −L(k )X̂(k )

X̂(k + 1) = A(k )X̂(k ) + B(k )U(k ) + K(k )[Y(k )− C (k )X̂(k )]

K(k ) = A(k )P(k )C (k )T [C (k )P(k )C (k )T + Σw(k )]−1

P(k + 1) = A(k )Γ[C (k ), P(k ),Σw(k )]A(k )T + Σv(k )

L(k ) = [B(k )TS (k + 1)B(k ) + R(k )]−1B(k )TS (k + 1)A(k )

S (k ) = A(k )TΓ[B(k )T ,S (k + 1),R(k )]A(k ) + Q (k )

S (N) = Q (N), P(0) = E(X0X T
0 ), x̂(0) = E(X0). Furthermore,

Γ[F ,G ,H ] = G − GF T (FGF T + H)−1FG
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Model based predictive control

Receding horizon
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Model based predictive control

First era: industrial success stories

1950s Various oil and petrochemical industries: optimal process
settings computed every 15-20 minutes, implemented by
manual operators.

60s and 70s Feedback controller from repeatedly using recomputed
open loop controllers (Lee and Markus). Repeatedly
solving Problem 1.

I Deterministic (without any disturbance model)
I Lack of stability guarantees
I Lack of systematic tuning guidelines
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Model based predictive control

Second era: founding of MPC theory

Consider system x(k + 1) = Ax(k ) + Bu(k ).
At each time: measure (or estimate) state x0 and solve

min
u(0),...u(N−1)

x̂(N)TQNx(N) +
N−1∑
k=0

[
x(k )TQx(k ) + u(k )TRu(k )

]
s.t. x(k + 1) = Ax(k ) + Bu(k ) x(0) = x0

u(k ) ∈ U
x(k ) ∈ X x(N) ∈ XN

where U, X, X(p) convex compact sets containing 0.

Result: feedback u(x0) (online calculation).
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Model based predictive control

Example

Consider dynamics

x(k + 1) = 4x(k ) + u(k ) x(k |k ) = x0

Horizon of 1: min
u(k |k)

x(k + 1|k )2 + u(k |k )2

min
u(k |k)

[4x0 + u(k |k )]2 + u(k |k )2 = 16x2
0 + 8x0u(k |k ) + 2u(k |k )2

Optimal solution: u(k |k ) = −8x0
2·2 = −2x0

Closed-loop system: x(k + 1) = 4x(k )− 2x(k ) = 2x(k ) Unstable!



17/22

/w

Model based predictive control

Example

Consider dynamics

x(k + 1) = 4x(k ) + u(k ) x(k |k ) = x0

Horizon of 1: min
u(k |k)

x(k + 1|k )2 + u(k |k )2

min
u(k |k)

[4x0 + u(k |k )]2 + u(k |k )2 = 16x2
0 + 8x0u(k |k ) + 2u(k |k )2

Optimal solution: u(k |k ) = −8x0
2·2 = −2x0

Closed-loop system: x(k + 1) = 4x(k )− 2x(k ) = 2x(k ) Unstable!



17/22

/w

Model based predictive control

Example

Consider dynamics

x(k + 1) = 4x(k ) + u(k ) x(k |k ) = x0

Horizon of 1: min
u(k |k)

x(k + 1|k )2 + u(k |k )2

min
u(k |k)

[4x0 + u(k |k )]2 + u(k |k )2 = 16x2
0 + 8x0u(k |k ) + 2u(k |k )2

Optimal solution: u(k |k ) = −8x0
2·2 = −2x0

Closed-loop system: x(k + 1) = 4x(k )− 2x(k ) = 2x(k ) Unstable!



17/22

/w

Model based predictive control

Example

Consider dynamics

x(k + 1) = 4x(k ) + u(k ) x(k |k ) = x0

Horizon of 1: min
u(k |k)

x(k + 1|k )2 + u(k |k )2

min
u(k |k)

[4x0 + u(k |k )]2 + u(k |k )2 = 16x2
0 + 8x0u(k |k ) + 2u(k |k )2

Optimal solution: u(k |k ) = −8x0
2·2 = −2x0

Closed-loop system: x(k + 1) = 4x(k )− 2x(k ) = 2x(k ) Unstable!



18/22

/w

Model based predictive control

Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains
unconstrained

Idea: Properly select terminal costs and horizon

Main steps

1. Solve infinite horizon LQR problem: u = Kx, V = xTPx

2. Determine maximal output admissible set: XN

3. Determine N s.t. x(N) ∈ XN
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Model based predictive control

Second era: founding of MPC theory

I Robust MPC (next slide)
I Nonlinear MPC

Third era: Diversification through fast MPC

I MPC for hybrid systems and systems with logical constraints
I Explicit MPC (mpLP,mpQP)
I Fast optimization
I Application (mechanical and electronic systems)
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Model based predictive control

Robust MPC

Dynamics

x(k + 1) = Ax(k ) + Bu(k ) + Ed (k ) d (k ) ∈ D = {d : Ld ≤ l}

J∗(k)(x(k)) = min
u(k)

J (k)(x(k), u(k))

s.t.
{
Fx(k) + Gu(k) ≤ g
Ax(k) + Bu(k) ∈ X(k)

}
∀d (k) ∈ D

J (k)(x(k), u(k)) = max
d (k)∈D

‖Qx(k)‖1 +‖Ru(k)‖1 +J∗(k+1)(Ax(k)+Bu(k)+Ed (k))

X(k) = {x ∈ Rn : ∀d ∈ D ∃u ∈ Rnu with

Fx + Gu ≤ g and Ax + Bu + Ev ∈ X(k+1) }.

where J∗K (x(K)) = 0 and X(K) = {x ∈ Rn : Fx ≤ g}
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Model based predictive control

Robust MPC: Example

Retailer v2: uncertain demand d (t) ∈ [0,8]

I Order u1(t) ∈ [0,6] from supplier v3: cost 4, delay 1
I Order u2(t) ∈ [0,6] from supplier v4: cost 1, delay 2
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Model based predictive control

Robust MPC: Example

x(t + 1) =


1 1 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 x(t) +


0 0
0 0
1 0
0 1

 u(t) +


−1
0
0
0

 d (t).

Resulting (dual base stock) policy:

u∗1 (x) = min{max{20− x1 − x2 − x3 − x4,0},4},
u∗2 (x) = max{16− x1 − x2 − x3 − x4,0}.


