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My background
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(Nonlinear) Control Theory

What | like
Apply ideas/concepts from control theory in other fields
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Introduction to Control Theory
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Four major problems

1. Generate feasible reference trajectory
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Introduction to Control Theory
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Four major problems

Generate feasible reference trajectory

Design (static) state feedback controller
Design observer

A WN R

Design (dynamic) output feedback controller
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Introduction to Control Theory: Problem 1

4/22

Example: Linear dynamics, discrete time

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)
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Example: Linear dynamics, discrete time

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

Problem 1: Generate feasible reference trajectory

Determine (u,(k), x.(k), y-(k)) satisfying

x(k + 1) = Ax,(k) + Buy(k)
ye(k) = Cxr(k)
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Example: Linear dynamics, discrete time

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

Problem 1: Generate feasible reference trajectory

Determine (u,(k), x.(k), y-(k)) satisfying

x(k + 1) = Ax,(k) + Buy(k)
ye(k) = Cxr(k)

Typical approach: solve optimization problem
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Introduction to Control Theory: Problem 2
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Design (static) state feedback controller

Given dynamics and reference

x(k +1) = Ax(k) + Bu(k) xr(k + 1) = Ax;(k) + Bu,(k)
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Introduction to Control Theory: Problem 2
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Design (static) state feedback controller

Given dynamics and reference
x(k + 1) = Ax(k) + Bu(k) xr(k + 1) = Ax,(k) + Bu,(k)
Define tracking error and change of input:

(k) = x(k) — x:(k) i(k) = u(k) — ur(k)
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Design (static) state feedback controller

Given dynamics and reference
x(k + 1) = Ax(k) + Bu(k) xr(k + 1) = Ax,(k) + Bu,(k)
Define tracking error and change of input:
x(k) = x(k) — x,(k) u(k) =u(k) — ur(k)

Resulting in error dynamics:
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Introduction to Control Theory: Problem 2
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Design (static) state feedback controller

Problem: Determine é([x(k)]) such that limy_, ., X(k) = 0, where

X(k + 1) = A%(k) + Bii(k) X(0) = %o
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Design (static) state feedback controller

Problem: Determine ui([x(k)]) such that limy_,, X(k) = 0, where

X(k + 1) = A%(k) + Bii(k) X(0) = %o

Use ii(k) = —Lx(k).
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Design (static) state feedback controller

Problem: Determine ui([x(k)]) such that limy_,, X(k) = 0, where

X(k + 1) = A%(k) + Bii(k) X(0) = %o

Use t(k) = —LXx(k). Resulting closed loop dynamics:

X(k +1) = (A — BL)X(k) x(0) = %o
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Design (static) state feedback controller

Problem: Determine ui([x(k)]) such that limy_,, X(k) = 0, where

X(k + 1) = A%(k) + Bii(k) X(0) = %o

Use t(k) = —LXx(k). Resulting closed loop dynamics:

X(k +1) = (A — BL)X(k) x(0) = %o

Lemma: Ifrank[B AB A2B ... A" !B] = nthen eigenvalues
of A — BL can be placed arbitrarily.
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Introduction to Control Theory: Problem 2
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Design (static) state feedback controller

Given dynamics and reference
x(k + 1) = Ax(k) + Bu(k) xr(k + 1) = Ax,(k) + Bu,(k)

we use the following controller:

u(k) = ur(k) = L[x(k) — (k)]

which guarantees that limy_, ., x(k) — x,(k) = 0, provided L is properly
chosen.
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Introduction to Control Theory: Problem 3
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Design observer

Given dynamics

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

Is it possible to reconstruct x(k) from u(k) and y(k)?
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Design observer

Given dynamics

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

Is it possible to reconstruct x(k) from u(k) and y(k)?

Let X(k) denote our estimate for x(k):
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Design observer

Given dynamics
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Design observer

Given dynamics

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

Is it possible to reconstruct x(k) from u(k) and y(k)?

Let X(k) denote our estimate for x(k):

y(k) = Cx(k)
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Introduction to Control Theory: Problem 3

9/22

Design observer

Given dynamics and observer

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

X(k +1) = Ax(k) + Bu(k) + K[y(k) — y(k)]
y(k) = Cx(k)

/department of mechanical engineering



Introduction to Control Theory: Problem 3

Design observer

Given dynamics and observer

x(k + 1) = Ax(k) + Bu(k) x(0) = xo
y(k) = Cx(k)

X(k +1) = Ax(k) + Bu(k) + K[y (k) — y(k)]
y(k) = Cx(k)

For observer error x(k) = x(k) — X(k), we obtain

X(k+1)=
y(k)

Ax(k) — Ky(k) = [A — KC]x(k)
cx(k)
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Introduction to Control Theory: Problem 4

Design (dynamic) output feedback controller

Given dynamics and reference
x(k +1) = Ax(k) + Bu(k) xr(k + 1) = Ax.(k) + Bu,(k)
we use the following controller:

u(k) = ur(k) — L{x(k) — xr(k)]
%(k +1) = Ax(k) + Bu(k) + K[y(k) — (k)]
§(k) = Cx(k)

which guarantees that limy_,, x(k) — x,(k) = 0, provided K and L are
properly chosen.
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Introduction to Control Theory: Summary
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Four major problems

Generate feasible reference trajectory

Design (static) state feedback controller
Design observer

A WN R

Design (dynamic) output feedback controller

TU Endnoven
/department of mechanical engineering e: sity of Technology



Linear Quadratic Gaussian control (Problem 4)
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X(k + 1) = A(k)X(k) + B(k)U(k) + V(k)
Y(k) = C(k)X(k) + W(k)

with V(k), W(k) Gaussian white noise (cov. matrices X, (k), X (k)).
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Linear Quadratic Gaussian control (Problem 4)

12/22

X(k + 1) = A(k)X(k) + B(k)U(k) + V(k)

Y(k)

C(k)X(k) + W(k)

with V(k), W(k) Gaussian white noise (cov. matrices X, (k), X (k)).

Obijective

Minimize
N—-1
J=E (X(N)TQ(N)X(N) + Z X(k)TQ(k)X(k) + U(k)TR(k)U(k)>
k=0

where Q(k) > 0, R(k) > 0.
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Linear Quadratic Gaussian control (Problem 4)
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Controller

U(k) = ~L(k)X(k)
X(k +1) = A(k)X (k) + B(k)U(k) + K(K)[Y(k) — C(k)X (k)]
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Linear Quadratic Gaussian control (Problem 4)
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Controller

U(k) = —L(k)X(k)

X(k +1) = A(K)X(k) + B(k)U (k) + K(K)[Y(k) — C(k)X(K)]
K(k) = A(K)P(k)C(k)T[C(k)P(Kk)C (k)T + Zw (k)]

P(k +1) = A(K)I[C(k), P(k), Zw(K)IA(K)T + Ty (k)
L(k) =[B(k)'S(k + 1)B(k) + R(k)]"*B(k)"S(k + 1)A(k)
S(k)=A(k)'T[B(k)T,S(k + 1), R(k)]A(k) + Q(k)

S(
S(N) = Q(N), P(0) = E(XoX]), X(0) = E(Xo). Furthermore,

[[F,G,H] = G — GFT(FGFT + H)"'FG

/department of mechanical engineering



Model based predictive control
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Receding horizon

past future
—>

target

. Projected

. Outputs [ — Manipulated u(k)
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Model based predictive control
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First era: industrial success stories

1950s Various oil and petrochemical industries: optimal process

settings computed every 15-20 minutes, implemented by
manual operators.

60s and 70s Feedback controller from repeatedly using recomputed
open loop controllers (Lee and Markus).
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15/22

First era: industrial success stories

1950s Various oil and petrochemical industries: optimal process
settings computed every 15-20 minutes, implemented by
manual operators.
60s and 70s Feedback controller from repeatedly using recomputed

open loop controllers (Lee and Markus). Repeatedly
solving Problem 1.
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Model based predictive control

15/22

First era: industrial success stories

1950s Various oil and petrochemical industries: optimal process
settings computed every 15-20 minutes, implemented by
manual operators.

60s and 70s Feedback controller from repeatedly using recomputed
open loop controllers (Lee and Markus). Repeatedly
solving Problem 1.

» Deterministic (without any disturbance model)
» Lack of stability guarantees
» Lack of systematic tuning guidelines
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Model based predictive control
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Second era: founding of MPC theory

Consider system x(k + 1) = Ax(k) + Bu(k).
At each time: measure (or estimate) state xo and solve

min  K(N)"Qux(N Z [x(k)TQx(k) + u(k)"Ru(k)]

u(0),...u(N—1) i
s.t. x(k +1) = Ax(k) + Bu(k) x(0) = xo
uk) eU

x(k)y e X xN) € Xy

where U, X, X(p) convex compact sets containing 0.
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Model based predictive control
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Second era: founding of MPC theory

Consider system x(k + 1) = Ax(k) + Bu(k).
At each time: measure (or estimate) state xo and solve

i X k) k) k)R
u(o),.r.T.]J?N—l)X( "Qux(N kz x(k) Qx(k) + u(k)"Ru(k )
s.t. x(k +1) = Ax(k) + Bu(k) x(0) = xo
ulk)eU
x(k)y e X xN) € Xy
where U, X, X(p) convex compact sets containing 0.

Result: feedback u(xo) (online calculation).
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Model based predictive control
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Consider dynamics

x(k +1) = 4x(k) + u(k) x(k|k) = xo
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Model based predictive control

Example

Consider dynamics

x(k +1) = 4x(k) + u(k)

Horizon of 1: min x(k + 1|k)? + u(k|k)?

u(klk)

/department of mechanical engineering

x(klk) = xo
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Model based predictive control
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Consider dynamics

x(k +1) = 4x(k) + u(k) x(k|k) = xo

Horizon of 1: min x(k + 1|k)? + u(k|k)?
u(k[k)

r&i‘g)[l;xo + u(k[k)]? 4 u(k|k)? = 16x2 + 8xou(k|k) + 2u(k|k)?
u

—8X0

Optimal solution: u(k|k) = 5%° = —2xo
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Model based predictive control

Example

Consider dynamics
x(k +1) = 4x(k) + u(k) x(k|k) = xo

Horizon of 1: min x(k + 1|k)? + u(k|k)?
u(k[k)

r&i‘g)[l;xo + u(k[k)]? 4 u(k|k)? = 16x2 + 8xou(k|k) + 2u(k|k)?
u

—8xp

Optimal solution: u(k|k) = 53

= —2X0

Closed-loop system: x(k + 1) = 4x(k) — 2x(k) = 2x(k) Unstable!
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Model based predictive control
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Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller
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Model based predictive control

Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains
unconstrained

ty of Technology
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Model based predictive control

Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains
unconstrained

Idea: Properly select terminal costs and horizon
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Model based predictive control

Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains
unconstrained

Idea: Properly select terminal costs and horizon

Main steps

1. Solve infinite horizon LQR problem: u = Kx, V = x'Px
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Model based predictive control

Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains
unconstrained

Idea: Properly select terminal costs and horizon

1. Solve infinite horizon LQR problem: u = Kx, V = x'Px
2. Determine maximal output admissible set: Xy
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Model based predictive control

Second era: founding of MPC theory

Observation 1: Infinite horizon results in stabilizing controller

Observation 2: After finite amount of time: solution remains
unconstrained

Idea: Properly select terminal costs and horizon

1. Solve infinite horizon LQR problem: u = Kx, V = x'Px
2. Determine maximal output admissible set: Xy
3. Determine N s.t. x(N) € Xy
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Model based predictive control
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Second era: founding of MPC theory

» Robust MPC (next slide)
» Nonlinear MPC
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Second era: founding of MPC theory

» Robust MPC (next slide)
» Nonlinear MPC

Third era: Diversification through fast MPC

» MPC for hybrid systems and systems with logical constraints
» Explicit MPC (mpLP,mpQP)

» Fast optimization

» Application (mechanical and electronic systems)
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Robust MPC

Dynamics

x(k +1) = Ax(k) + Bu(k) + Ed(k) d(k)eD={d:Ld <[}
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Dynamics
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Robust MPC

Dynamics

x(k +1) = Ax(k) + Bu(k) + Ed(k) d(k)eD={d:Ld <[}

(0 (x(K)Y = min J0) (x(6) (k)
N )

Fx() + Guk) < g (k)

B x k), (k) = r(r)(?x Qx4 + | Rut)| 1 4K Ax K)o Bu (k)4 Ed (K)
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Model based predictive control

Robust MPC

Dynamics

x(k +1) = Ax(k) + Bu(k) + Ed(k) d(k)eD={d:Ld <[}

(0 (x(K)Y = min J0) (x(6) (k)
N )

Fx() + Guk) < g (k)

B x k), (k) = r(r)(?x Qx4 + | Rut)| 1 4K Ax K)o Bu (k)4 Ed (K)
d®eD

XK) = {x e R" :Vd € D Ju € R™ with
Fx + Gu < g and Ax + Bu + Ev € X(kt1) 1,

where J*€(x(K)) = 0 and XK ={xecR":Fx< g}



Model based predictive control

Robust MPC: Example

Retailer v,: uncertain demand d(t) € [0, 8]
» Order u4(t) € [0, 6] from supplier v3: cost 4, delay 1
» Order u,(t) € [0, 6] from supplier vy: cost 1, delay 2
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Model based predictive control
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Robust MPC: Example

11 0 1 00

0 010 00 0
Xt+1) =g o o ol XD+ |1 olu®+] g |d®

0 0 0O 0 1 0

Resulting (dual base stock) policy:

*

uy(x) = min{max{20 — x1 — x — X3 — X4, 0}, 4},

*

uy(x) = max{16 — x; — X, — X3 — X4,0}.
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