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Example: Push pull queueing system

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy,
Weiss (2010)
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Example: Push pull queueing system
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Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy,
Weiss (2010)

Static production planning problem

max w'«
u,o

a1, nominal input rates
u; fraction of time spent on class i

TU Endnoven
/department of mechanical engineering e: sity of Technology



Example: Push pull queueing system

max wyoq + Woap
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Example: Push pull queueing system

Three possible solutions (exclusing singular cases \; = p1 Or Ay = up):
1. o = min{)\l, /1,1}, ay = 0,
2. a1 = o, ) = min{)\z,,uz},

Arpa(Az—p2) Aapa(Ad1—pa)

3. ;= A2~z Y2 T Ahgpaps
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Example: Push pull queueing system
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Three possible solutions (exclusing singular cases A\; = p1 or Ay = u):
1. o :min{)\l,,ul}, ap =0,
2. a1 =0,ap = min{)\z,,uz},

Apa(da—p2) o Aapr(Aa—p)
MA—pipg 2 A1 —papa °

Interesting solution: solution 3

» p1 = pp = 1 (full utilization of servers)

~  A(M—m) ~ (A w)
> P1 = X s <1,p2= A1A—papa <1

3. a1 —
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Example: Push pull queueing system
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Can we stabilize system with p; = 1 and p; < 1?
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Example: Push pull queueing system
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Can we stabilize system with p; = 1 and p; < 1?

Two cases

inherently stable case: Ay < p1 and Ay < o
inherently unstable case: A1 > pq and Ay > o
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Inherently stable case: \; > 1, Ay > 2
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Positive result

Pull priority stabilizes network
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Inherently stable case: Ay > 14, Ay > 115

Positive result

Pull priority stabilizes network

Observation
For inherently unstable case: pull priority is not stabilizing.
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Inherently unstable case: \; < 1, Ay < o
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Kopzon, Nazaraty, Weiss (2009); Nazarathy, Weiss (2010):

Positive result

Threshold policy stabilizes network
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Problem
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Guo, Lefeber, Nazarathy, Weiss, Zhang (2011):

Key research question

Can we stabilize a MCQN-IVQ with 3; < 1 for all servers?
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Problem
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Guo, Lefeber, Nazarathy, Weiss, Zhang (2011):

Key research question

Can we stabilize a MCQN-IVQ with 3; < 1 for all servers?

Some positive results

» 1VQ re-entrant line (LBFS stable; FBFS not necessarily)
» Two re-entrant lines on two servers (pull priority)
» Ring of machines (pull priority)

Fluid model framework for verifying stability
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Problem setting

Consider a MCQN-1VQ with s servers.
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Problem setting

Consider a MCQN-IVQ with s servers.
Server i serves 1 1VQ and n; > 1 standard queues. Assumption: p = 1.

Letn =377, nj; s x n constituency matrix C, rank C = s < n.
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Problem setting

Consider a MCQN-IVQ with s servers.
Server i serves 1 1VQ and n; > 1 standard queues. Assumption: p = 1.
Letn =377, nj; s x n constituency matrix C, rank C = s < n.

IVQ at server i served at rate );, Standard queue j served at rate j; > 0.

Let A = diag(\1, ..., As), M = diag(p1, ..., n)
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Problem setting

Consider a MCQN-IVQ with s servers.
Server i serves 1 1VQ and n; > 1 standard queues. Assumption: p = 1.
Letn =377, nj; s x n constituency matrix C, rank C = s < n.

IVQ at server i served at rate );, Standard queue j served at rate j; > 0.
Let A = diag(\1, ..., As), M = diag(p1, ..., n)

n x n Routing matrix P: pj fraction of class j routed to k.

Assumption: P has spectral radius < 1, i.e. (I — P’) invertible.
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Problem setting

Consider a MCQN-IVQ with s servers.

Server i serves 1 1VQ and n; > 1 standard queues. Assumption: p = 1.
Letn =377, nj; s x n constituency matrix C, rank C = s < n.

IVQ at server i served at rate );, Standard queue j served at rate j; > 0.
Let A = diag(\1, ..., As), M = diag(p1, ..., n)

n x n Routing matrix P: pj fraction of class j routed to k.

Assumption: P has spectral radius < 1, i.e. (I — P’) invertible.

s x n matrix Pyq. p'Q fraction of IVQ at server i routed to j
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Problem setting

Consider a MCQN-IVQ with s servers.

Server i serves 1 1VQ and n; > 1 standard queues. Assumption: p = 1.
Letn =377, nj; s x n constituency matrix C, rank C = s < n.

IVQ at server i served at rate );, Standard queue j served at rate j; > 0.
Let A = diag(\1, ..., As), M = diag(p1, ..., n)

n x n Routing matrix P: pj fraction of class j routed to k.

Assumption: P has spectral radius < 1, i.e. (I — P’) invertible.

s x n matrix Pyq. pj) @ fraction of IVQ at server i routed to j

Dynamics fluid model (u;(t) fraction of time spent on std. queue j)

Q(t) = Pi/[1 — Cu(t)] - (I — P")Mu(t) Q(0) = Qo
subject to

0<Q(t) 0 < u(t) Cu(t) < 1
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Problem setting

Dynamics fluid model

Q(t) = PhoMlL — Cu(t)] = (1 = PYMu(t)  Q(0) =
= PN — [Pyo/C + (I — P)M] u(t)
T . 7{
subject to
0<Q(t) 0 < u(t) Cu(t) <1
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Problem setting

Dynamics fluid model

Q(t) = P/1 — Cu(t)] — (I — P")Mu(t) Q(0) =
= PN — [Pyo/C + (I — P)M] u(t)
« h R
subject to
0<Q(t) 0 < u(t) Cu(t) <1

Additional assumptions

» Controllable system, i.e. R is invertable.
» p<1,ie. CRla < 1.
» All standard queues are served: u* = R~1a > 0
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Problem setting

To summarize:
Q(t) = a — Ru(t) Q(0) = Qo
subject to
0 < Q(t) 0 <u(t) Cu(t) <1

Furthermore
» C full rank 0-1 matrix, i.e., CC’ is invertible
» | — P’ and R are invertible (also (/ — P')~! > 0)
» 0< R la=u*
» (R o<1
Problem: Determine stabilizing u
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Dynamics:

ot ) R e R P
Constraints

0<Q(t) 0<u(t) u(t) < 1
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Dynamics:

GHRER I
Qx(t) A2 A2 pa] U2 0 1
Constraints

0 < Q(t) 0 < u(t) u(t) <1
Assumptions:
R invertible: pyps # Ay 0rpipr #1

-1 -1, _0. 1-m 1—py
CR*a<1,R'a=0: 1—p1pz>0’1 > 0.
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1-p1

1—py
s T pips >0 >0

Conditions: p1py #1 v

Py
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Example: uncontrollable case

Some words about case Ay = 1, A2 = pa, i.e., R not invertible
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Example: uncontrollable case

Some words about case Ay = 1, A2 = pa, i.e., R not invertible
Uncontrollable dynamics

o)~ (o] - ][]
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Example: uncontrollable case

Some words about case Ay = 1, A2 = pa, i.e., R not invertible
Uncontrollable dynamics

o)~ (o] - ][]
Define change of coordinates:

z1(t) = Qu(t) + Qu(t) 75(t) = XA2Qu(t) — A1Qa(t)
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Example: uncontrollable case

Some words about case Ay = 1, A2 = pa, i.e., R not invertible
Uncontrollable dynamics

o) =[] [ 2 [0
Define change of coordinates:
z(t) = Qu(t) + Qo(1) (1) = A2 Qu(t) — M1Qa(t)
Then we have

= [e e e [l

In particular the variable z,(t) evolves independent of the policy chosen.
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Example: controller design
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Q(t) = o — Ru(t) Q(0) =
0 < Q(t) O<u(t)<1
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Example: controller design
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Q(t) = a — Ru(t) Q(0) = Qo
0 < Q(t) 0<u(t) <1

Decouple state from input, i.e. what does u; control?
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Example: controller design

16/22

Q(t) = a — Ru(t) Q(0) = Qo
0 < Q(t) 0<u(t) <1

Decouple state from input, i.e. what does u; control?

Define change of coordinates z(t) = R—1Q(t):
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Example: controller design

16/22

Q(t) = o — Ru(t) Q(0) = Qo
0 < Q(t) 0<u(t)<1

Basic idea

Decouple state from input, i.e. what does u; control?

Define change of coordinates z(t) = R—1Q(t):

Transformed system

z(t) = R Yo —u(t) = u* — u(t) 2(0) =20 =R 'Qo

0 < Rz(t) 0<u(t)<1
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Change of coordinates

A

21(t) = —————Qq1(t) - —————Qy(t

(t) pip2 — A1z (0) P1p2 — A1A2 2(1)
-2 H1

()= ———Q1(t) + —————Qy(t

2(t) p1p2 — A1A2 1(0) H1p2 — A1A2 2(t)

Resulting control problem

Zl(t):Uf—U1(t) 0<u t)<1
() = uy — ua(t) 0 <u(t) <1

while making sure that
p A Zl(t)}
0<
- [Az Mz] [Zz(t)

Techni
. . . Eindho
/department of mechanical engineering TU/ University of Technology




Neglecting the latter constraint, the problem of controlling
z1(t) = uy — uq(t) 0<u(t)<1
Z5(t) = uy; — uy(t) 0<u(t)<1
becomes easy:

1 ifz(t)>0 1 ifz(t)>0
U1(t) = Uik ifZ1(t) =0 Uz(t) = U; isz(t) =0
0 ifZl(t) <0 0 isz(t) <0

nnnnnnnn
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Neglecting the latter constraint, the problem of controlling

z1(t) = uy — uq(t) 0<u(t)<1
Z5(t) = uy; — uy(t) 0<u(t)<1
becomes easy:
1 ifz(t)>0 1 ifz(t)>0
ui(t) =quy ifz(t)=0 u(t)y=qu; ifz(t)=0
0 ifz(t)<0 0 ifz(t)<O0

» Above controller also solves problem with constraint
> Optimal controller for minimizing [;° ||z(t)|1dt.
» Minimal time controller
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Example: Controller

Controller for stochastic queueing network

up(t) = {1 if MWZ“_ZM)‘Z Q(t) > Mluz /\1>\2 Q(t) and Qi(t) >0
0 if mol(t) < #1#2 >\1>\2 (t) or Ql(t) =0
. s
ux(t) = ! !f Hap2=A1Ay Ql(t) < Mmz >\1>\2 (t) and Qz(t) >0
0 if M1u2—2>\1>\2 Q(t) > ey K1 — /\1)\2 Qy(t) or Qy(t) =0
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Example: Controller

Controller for stochastic queueing network

t t)and Qi(t) >0

)
t)orQi(t)=0

)

)

Ul(l’): {:-) !f “1“2 >‘1)‘2 Ml,uz /\1>\2

Q(t) > Q(
|me1(t) < mm )\1>\2 Q(
Qi(t) < Qo
(t) > Q(

uy(t) = {1 if #1#2 Al)\z

0 if ,u1,uz >\1>\2 Q

t)and Qy(t) >0
t)orQy(t)=0

Mmz >\1>\2

M1 — /\1)\2
Lyapunov function: cost-to-go from optimal control problem

Z2/(1—uf)+22/(1—u3) ifzgy>0andz, >0

V(z) = Z2/uf +22/(1— u3) ifzz <0andz, >0
22/(1—u)+22/u; ifzg >0andz, <0
z2/ui + 23 /u; ifz17<0andz, <0
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Controller design: general case
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Q(t) = o — Ru(t)
0<Q(t) 0 < u(t)
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Q(0) = Qo

Cu(t) <1
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Controller design: general case
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Q(t) = o — Ru(t)
0<Q(t) 0 < u(t)

Change of coordinates: z(t) = R~1Q(t)
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Q(0) = Qo

Cu(t) <1
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Controller design: general case
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Q(t) = o — Ru(t) Q(0) = Qo
0<Q(t) 0<u(t) Cu(t) < 1

Change of coordinates: z(t) = R~1Q(t)

Transformed system

z(t) =u" — u(t) z(0) = 29
0 < Rz(t) 0 <u(t) Cu(t) <1
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Controller design: general case

20/22

Q(t) = a — Ru(t) Q(0) = Qo
0 < Q(t) 0 < u(t) Cu(t) <1
Change of coordinates: z(t) = R~1Q(t)
Transformed system
z(t) =u" —u(t) z(0) = 2o
0 < Rz(t) 0 <u(t) Cu(t) <1

i t)||.dt
min [~ (0]
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Multi parametric Separated Continuous Linear Program:

min/ |22 (1) | dt
0

u(t)

subject to

zZ(t)=u"—u(t) z(0) = 2o
0 < u(t) Cu(t) <1
0 < Rz(t)

Multi parametric since we want solution as function of z,.
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Multi parametric Separated Continuous Linear Program:

i t)|| dt
T('J)‘/o AL

subject to
z(t)y=u" — u(t) z(0) = 2o
0 < u(t) Cu(t) <1
0 < Rz(t)

Multi parametric since we want solution as function of z,.

mpSCLP can be solved explicitely and solution has nice structure
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