

Control of multi-class queueing networks with infinite virtual queues

Erjen Lefeber (TU/e)

Workshop on Optimization, Scheduling and Queues Honoring Gideon Weiss on his Retirement

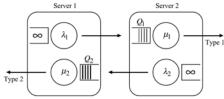
Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

June 8, 2012

Multi-class queueing network with IVQs

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010)



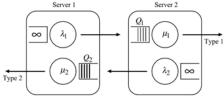
Static production planning problem

 $\max_{u,\alpha} w'\alpha$

 α_1, α_2 nominal input rates u_i fraction of time spent on cla

> TU/e Technische Universiteit Eindhoven University of Technology

Kopzon, Weiss (2002); Kopzon, Nazarathy, Weiss (2009); Nazarathy, Weiss (2010)

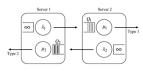


Static production planning problem

 $\max_{u,\alpha} w' \alpha$

α_{1}, α_{2} nominal input rates

 u_i fraction of time spent on class i



 $\max_{u,\alpha} w_1 \alpha_1 + w_2 \alpha_2$

s.t.
$$\begin{bmatrix} \lambda_{1} & 0 & 0 & 0 \\ \lambda_{1} & -\mu_{1} & 0 & 0 \\ 0 & 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{2} & -\mu_{2} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} = \begin{bmatrix} \alpha_{1} \\ 0 \\ \alpha_{2} \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Three possible solutions (exclusing singular cases $\lambda_1 = \mu_1$ or $\lambda_2 = \mu_2$): 1. $\alpha_1 = \min{\{\lambda_1, \mu_1\}}, \alpha_2 = 0$,

2.
$$\alpha_1 = 0, \alpha_2 = \min\{\lambda_2, \mu_2\},\$$

3.
$$\alpha_1 = \frac{\lambda_1 \mu_1(\lambda_2 - \mu_2)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}$$
, $\alpha_2 = \frac{\lambda_2 \mu_2(\lambda_1 - \mu_1)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}$.

Interesting solution: solution 3

$$\rho_1 = \rho_2 = 1 \text{ (full utilization of servers)}$$

$$\tilde{\rho}_1 = \frac{\lambda_2(\lambda_1 - \mu_1)}{\lambda_1 \lambda_2 - \mu_1 \mu_2} < 1, \tilde{\rho}_2 = \frac{\lambda_1(\lambda_2 - \mu_2)}{\lambda_1 \lambda_2 - \mu_1 \mu_2} < 1.$$

TU/e Technische Universiteit Eindhoven University of Technology

/department of mechanical engineering

5/22

Three possible solutions (exclusing singular cases $\lambda_1 = \mu_1$ or $\lambda_2 = \mu_2$): 1. $\alpha_1 = \min{\{\lambda_1, \mu_1\}}, \alpha_2 = 0$,

2.
$$\alpha_1 = 0, \alpha_2 = \min\{\lambda_2, \mu_2\},\$$

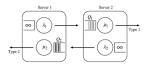
3.
$$\alpha_1 = \frac{\lambda_1 \mu_1(\lambda_2 - \mu_2)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}$$
, $\alpha_2 = \frac{\lambda_2 \mu_2(\lambda_1 - \mu_1)}{\lambda_1 \lambda_2 - \mu_1 \mu_2}$.

Interesting solution: solution 3

•
$$\rho_1 = \rho_2 = 1$$
 (full utilization of servers)

•
$$ilde{
ho}_1=rac{\lambda_2(\lambda_1-\mu_1)}{\lambda_1\lambda_2-\mu_1\mu_2}<$$
 1, $ilde{
ho}_2=rac{\lambda_1(\lambda_2-\mu_2)}{\lambda_1\lambda_2-\mu_1\mu_2}<$ 1.

TU/e Technische Universiteit Eindhoven University of Technology



Question

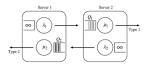
Can we stabilize system with $\rho_i = 1$ and $\tilde{\rho}_i < 1$?

Two cases

inherently stable case: $\lambda_1 < \mu_1$ and $\lambda_2 < \mu_2$ inherently unstable case: $\lambda_1 > \mu_1$ and $\lambda_2 > \mu_2$

/department of mechanical engineering

6/22



Question

Can we stabilize system with $\rho_i = 1$ and $\tilde{\rho}_i < 1$?

Two cases

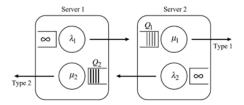
inherently stable case: $\lambda_1 < \mu_1$ and $\lambda_2 < \mu_2$

inherently unstable case: $\lambda_1 > \mu_1$ and $\lambda_2 > \mu_2$

/department of mechanical engineering

6/22

Inherently stable case: $\lambda_1 > \mu_1$, $\lambda_2 > \mu_2$



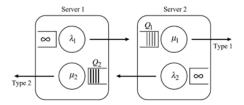
Positive result

Pull priority stabilizes network

Observation

For inherently unstable case: pull priority is not stabilizing.

Inherently stable case: $\lambda_1 > \mu_1$, $\lambda_2 > \mu_2$



Positive result

Pull priority stabilizes network

Observation

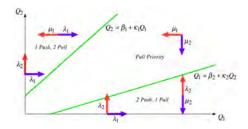
For inherently unstable case: pull priority is not stabilizing.

Inherently unstable case: $\lambda_1 < \mu_1$, $\lambda_2 < \mu_2$

Kopzon, Nazaraty, Weiss (2009); Nazarathy, Weiss (2010):

Positive result

Threshold policy stabilizes network



8/22

Problem

Guo, Lefeber, Nazarathy, Weiss, Zhang (2011):

Key research question

Can we stabilize a MCQN-IVQ with $\tilde{\rho}_i < 1$ for all servers?

Some positive results

- IVQ re-entrant line (LBFS stable; FBFS not necessarily)
- Two re-entrant lines on two servers (pull priority)
- Ring of machines (pull priority)

Fluid model framework for verifying stability

Problem

Guo, Lefeber, Nazarathy, Weiss, Zhang (2011):

Key research question

Can we stabilize a MCQN-IVQ with $\tilde{\rho}_i < 1$ for all servers?

Some positive results

- IVQ re-entrant line (LBFS stable; FBFS not necessarily)
- Two re-entrant lines on two servers (pull priority)
- Ring of machines (pull priority)

Fluid model framework for verifying stability

Consider a MCQN-IVQ with s servers.

Server *i* serves 1 IVQ and $n_i \ge 1$ standard queues. Assumption: $\rho = 1$. Let $n = \sum_{i=1}^{s} n_i$; $s \times n$ constituency matrix *C*, rank $C = s \le n$. IVQ at server *i* served at rate λ_i , Standard queue *j* served at rate $\mu_j > 0$. Let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$, $M = \text{diag}(\mu_1, \dots, \mu_n)$ $n \times n$ Routing matrix *P*: p_{jk} fraction of class *j* routed to *k*. Assumption: *P* has spectral radius < 1, i.e. (I - P') invertible. $s \times n$ matrix P_{IVQ} . p_{ij}^{IVQ} fraction of IVQ at server *i* routed to *j* Dynamics fluid model $(u_j(t)$ fraction of time spent on std. queue *j*)

$$\dot{Q}(t) = P'_{VQ} \Lambda [1 - Cu(t)] - (I - P') Mu(t)$$
 $Q(0) = Q_0$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Consider a MCQN-IVQ with *s* servers. Server *i* serves 1 IVQ and $n_i \ge 1$ standard queues. Assumption: $\rho = 1$. Let $n = \sum_{i=1}^{s} n_i$; $s \times n$ constituency matrix *C*, rank $C = s \le n$. IVQ at server *i* served at rate λ_i , Standard queue *j* served at rate $\mu_j > 0$. Let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$, $M = \text{diag}(\mu_1, \dots, \mu_n)$ $n \times n$ Routing matrix *P*: p_{jk} fraction of class *j* routed to *k*. Assumption: *P* has spectral radius < 1, i.e. (I - P') invertible. $s \times n$ matrix P_{IVQ} . p_{ij}^{IVQ} fraction of IVQ at server *i* routed to *j* Dynamics fluid model $(u_j(t)$ fraction of time spent on std. queue *j*)

$$\dot{Q}(t) = P'_{VQ} \Lambda [1 - Cu(t)] - (I - P') Mu(t)$$
 $Q(0) = Q_0$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Consider a MCQN-IVQ with *s* servers. Server *i* serves 1 IVQ and $n_i \ge 1$ standard queues. Assumption: $\rho = 1$. Let $n = \sum_{i=1}^{s} n_i$; $s \times n$ constituency matrix *C*, rank $C = s \le n$. IVQ at server *i* served at rate λ_i , Standard queue *j* served at rate $\mu_j > 0$. Let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$, $M = \text{diag}(\mu_1, \dots, \mu_n)$ $n \times n$ Routing matrix *P*: p_{jk} fraction of class *j* routed to *k*. Assumption: *P* has spectral radius < 1, i.e. (I - P') invertible. $s \times n$ matrix P_{IVQ} . p_{jj}^{IVQ} fraction of IVQ at server *i* routed to *j* Dynamics fluid model $(u_j(t)$ fraction of time spent on std. queue *j*)

$$\dot{Q}(t) = P'_{VQ}\Lambda[1 - Cu(t)] - (I - P')Mu(t)$$
 $Q(0) = Q_0$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Consider a MCQN-IVQ with *s* servers. Server *i* serves 1 IVQ and $n_i \ge 1$ standard queues. Assumption: $\rho = 1$. Let $n = \sum_{i=1}^{s} n_i$; $s \times n$ constituency matrix *C*, rank $C = s \le n$. IVQ at server *i* served at rate λ_i , Standard queue *j* served at rate $\mu_j > 0$. Let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$, $M = \text{diag}(\mu_1, \dots, \mu_n)$ $n \times n$ Routing matrix *P*: p_{jk} fraction of class *j* routed to *k*. Assumption: *P* has spectral radius < 1, i.e. (I - P') invertible. $s \times n$ matrix P_{IVQ} . p_{ij}^{IVQ} fraction of IVQ at server *i* routed to *j* Dynamics fluid model $(u_j(t)$ fraction of time spent on std. queue *j*)

$$\dot{Q}(t) = P'_{VQ}\Lambda[1 - Cu(t)] - (I - P')Mu(t)$$
 $Q(0) = Q_0$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Consider a MCQN-IVQ with *s* servers. Server *i* serves 1 IVQ and $n_i \ge 1$ standard queues. Assumption: $\rho = 1$. Let $n = \sum_{i=1}^{s} n_i$; $s \times n$ constituency matrix *C*, rank $C = s \le n$. IVQ at server *i* served at rate λ_i , Standard queue *j* served at rate $\mu_j > 0$. Let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$, $M = \text{diag}(\mu_1, \dots, \mu_n)$ $n \times n$ Routing matrix *P*: p_{jk} fraction of class *j* routed to *k*. Assumption: *P* has spectral radius < 1, i.e. (I - P') invertible. $s \times n$ matrix P_{IVQ} . p_{ij}^{IVQ} fraction of IVQ at server *i* routed to *j* Dynamics fluid model $(u_j(t)$ fraction of time spent on std. queue *j*)

$$\dot{Q}(t) = P'_{VQ} \Lambda[1 - Cu(t)] - (I - P')Mu(t)$$
 $Q(0) = Q_0$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Consider a MCQN-IVQ with *s* servers. Server *i* serves 1 IVQ and $n_i \ge 1$ standard queues. Assumption: $\rho = 1$. Let $n = \sum_{i=1}^{s} n_i$; $s \times n$ constituency matrix *C*, rank $C = s \le n$. IVQ at server *i* served at rate λ_i , Standard queue *j* served at rate $\mu_j > 0$. Let $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$, $M = \text{diag}(\mu_1, \dots, \mu_n)$ $n \times n$ Routing matrix *P*: p_{jk} fraction of class *j* routed to *k*. Assumption: *P* has spectral radius < 1, i.e. (I - P') invertible. $s \times n$ matrix P_{IVQ} . p_{ij}^{IVQ} fraction of IVQ at server *i* routed to *j* Dynamics fluid model $(u_j(t)$ fraction of time spent on std. queue *j*)

$$\dot{Q}(t) = P'_{VQ} \Lambda[1 - Cu(t)] - (I - P')Mu(t)$$
 $Q(0) = Q_0$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Dynamics fluid model

$$\dot{Q}(t) = P'_{\text{IVQ}} \wedge [1 - Cu(t)] - (I - P')Mu(t) \qquad Q(0) = Q_0$$
$$= \underbrace{P'_{\text{IVQ}} \wedge 1}_{\alpha} - \underbrace{[P'_{\text{IVQ}} \wedge C + (I - P')M]}_{R}u(t)$$
subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Additional assumptions

- ► Controllable system, i.e. *R* is invertable.
- $\tilde{\rho} < 1$, i.e. $CR^{-1}\alpha < 1$.
- ▶ All standard queues are served: $u^* = R^{-1}\alpha > 0$

Dynamics fluid model

$$\dot{Q}(t) = P'_{IVQ}\Lambda[1 - Cu(t)] - (I - P')Mu(t) \qquad Q(0) = Q_0$$

= $\underbrace{P'_{IVQ}\Lambda 1}_{\alpha} - \underbrace{[P'_{IVQ}\Lambda C + (I - P')M]}_{R}u(t)$

subject to

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Additional assumptions

- ► Controllable system, i.e. *R* is invertable.
- $\tilde{\rho} < 1$, i.e. $CR^{-1}\alpha < 1$.
- ▶ All standard queues are served: $u^* = R^{-1}\alpha > 0$

To summarize:

$$\dot{Q}(t) = \alpha - Ru(t)$$
 $Q(0) = Q_0$

subject to

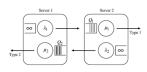
$$0 \leq Q(t)$$
 $0 \leq u(t)$ $Cu(t) \leq 1$

Furthermore

- ► C full rank 0-1 matrix, i.e., CC' is invertible
- I P' and R are invertible (also $(I P')^{-1} \ge 0$)
- ▶ $\mathbf{0} < \mathbf{R}^{-1} \alpha = \mathbf{u}^*$
- $CR^{-1}\alpha < 1$

Problem: Determine stabilizing u

13/22



Dynamics:

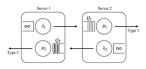
$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \mu_1 & \lambda_1 \\ \lambda_2 & \mu_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Constraints

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $u(t) \leq 1$

Assumptions:

R invertible: $\mu_1 \mu_2 \neq \lambda_1 \lambda_2$ or $\rho_1 \rho_2 \neq 1$ $CR^{-1} \alpha < 1$, $R^{-1} \alpha = 0$: $\frac{1-\rho_1}{1-\rho_1\rho_2} > 0$, $\frac{1-\rho_2}{1-\rho_1\rho_2} > 0$.



Dynamics:

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \mu_1 & \lambda_1 \\ \lambda_2 & \mu_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

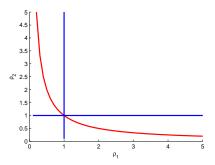
Constraints

$$0 \leq Q(t)$$
 $0 \leq u(t)$ $u(t) \leq 1$

Assumptions:

R invertible:
$$\mu_1 \mu_2 \neq \lambda_1 \lambda_2$$
 or $\rho_1 \rho_2 \neq 1$
 $CR^{-1} \alpha < 1$, $R^{-1} \alpha = 0$: $\frac{1-\rho_1}{1-\rho_1\rho_2} > 0$, $\frac{1-\rho_2}{1-\rho_1\rho_2} > 0$.

Conditions:
$$\rho_1 \rho_2 \neq 1$$
, $\frac{1-\rho_1}{1-\rho_1 \rho_2} > 0$, $\frac{1-\rho_2}{1-\rho_1 \rho_2} > 0$



14/22

Some words about case $\lambda_1 = \mu_1$, $\lambda_2 = \mu_2$, i.e., *R* not invertible

Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates:

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

In particular the variable $z_2(t)$ evolves independent of the policy chosen.

15/22

Some words about case $\lambda_1=\mu_1$, $\lambda_2=\mu_2$, i.e., ${\it R}$ not invertible Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates:

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

In particular the variable $z_2(t)$ evolves independent of the policy chosen.

15/22

Some words about case $\lambda_1=\mu_1$, $\lambda_2=\mu_2$, i.e., ${\it R}$ not invertible Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates:

 $z_1(t) = Q_1(t) + Q_2(t)$ $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

In particular the variable $z_2(t)$ evolves independent of the policy chosen.

15/22

Some words about case $\lambda_1=\mu_1$, $\lambda_2=\mu_2$, i.e., ${\it R}$ not invertible Uncontrollable dynamics

$$\begin{bmatrix} \dot{Q}_1(t) \\ \dot{Q}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} - \begin{bmatrix} \lambda_1 & \lambda_1 \\ \lambda_2 & \lambda_2 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

Define change of coordinates:

$$z_1(t) = Q_1(t) + Q_2(t)$$
 $z_2(t) = \lambda_2 Q_1(t) - \lambda_1 Q_2(t)$

Then we have

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 + \lambda_2 \\ 0 \end{bmatrix} - \begin{bmatrix} \lambda_1 + \lambda_2 & \lambda_1 + \lambda_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

In particular the variable $z_2(t)$ evolves independent of the policy chosen.

System

$$\dot{Q}(t) = lpha - Ru(t)$$
 $Q(0) = Q_0$
 $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does *u_i* control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$z(t) = R^{-1}\alpha - u(t) = u^* - u(t) \qquad z(0) = z_0 = R^{-1}Q_0$$

$$0 < Rz(t) \qquad 0 < u(t) < 1$$

/department of mechanical engineering

16/22

System

$$\dot{Q}(t) = lpha - Ru(t)$$
 $Q(0) = 0 \le Q(t)$ $0 \le u(t) \le 0$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$z(t) = R^{-1}\alpha - u(t) = u^* - u(t)$$
 $z(0) = z_0 = R^{-1}Q_0$

$$0 \leq Rz(t)$$
 $0 \leq u(t) \leq 1$

 Q_0

16/22

System

$$\dot{Q}(t) = lpha - Ru(t)$$
 $Q(0) = Q_0$
 $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$z(t) = R^{-1}\alpha - u(t) = u^* - u(t) \qquad z(0) = z_0 = R^{-1}Q_0$$

TU/e Technische Universiteit Eindhoven University of Technology

16/22

System

$$\dot{Q}(t) = lpha - Ru(t)$$
 $Q(0) = Q_0$
 $0 \le Q(t)$ $0 \le u(t) \le 1$

Basic idea

Decouple state from input, i.e. what does u_i control?

Define change of coordinates $z(t) = R^{-1}Q(t)$:

Transformed system

$$egin{aligned} z(t) &= R^{-1} lpha - u(t) = u^* - u(t) & z(0) &= z_0 = R^{-1} Q_0 \ 0 &\leq R z(t) & 0 &\leq u(t) &\leq 1 \end{aligned}$$

16/22

Change of coordinates

$$z_1(t) = \frac{\mu_2}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_1(t) - \frac{\lambda_1}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_2(t)$$
$$z_2(t) = \frac{-\lambda_2}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_1(t) + \frac{\mu_1}{\mu_1\mu_2 - \lambda_1\lambda_2} Q_2(t)$$

Resulting control problem

$$egin{aligned} z_1(t) &= u_1^* - u_1(t) & 0 \leq u_1(t) \leq 1 \ z_2(t) &= u_2^* - u_2(t) & 0 \leq u_2(t) \leq 1 \end{aligned}$$

while making sure that

$$\mathbf{0} \leq egin{bmatrix} \mu_1 & \lambda_1 \ \lambda_2 & \mu_2 \end{bmatrix} egin{bmatrix} \mathbf{z}_1(t) \ \mathbf{z}_2(t) \end{bmatrix}$$

Neglecting the latter constraint, the problem of controlling

$$\begin{aligned} z_1(t) &= u_1^* - u_1(t) & 0 \leq u_1(t) \leq 1 \\ z_2(t) &= u_2^* - u_2(t) & 0 \leq u_2(t) \leq 1 \end{aligned}$$

becomes easy:

$$u_1(t) = \begin{cases} 1 & \text{if } z_1(t) > 0 \\ u_1^* & \text{if } z_1(t) = 0 \\ 0 & \text{if } z_1(t) < 0 \end{cases} \qquad u_2(t) = \begin{cases} 1 & \text{if } z_2(t) > 0 \\ u_2^* & \text{if } z_2(t) = 0 \\ 0 & \text{if } z_2(t) < 0 \end{cases}$$

Observations

- Above controller also solves problem with constraint
- Optimal controller for minimizing $\int_0^\infty ||z(t)||_1 dt$.
- Minimal time controller

Neglecting the latter constraint, the problem of controlling

$$\begin{aligned} z_1(t) &= u_1^* - u_1(t) & 0 \leq u_1(t) \leq 1 \\ z_2(t) &= u_2^* - u_2(t) & 0 \leq u_2(t) \leq 1 \end{aligned}$$

becomes easy:

$$u_1(t) = \begin{cases} 1 & \text{if } z_1(t) > 0 \\ u_1^* & \text{if } z_1(t) = 0 \\ 0 & \text{if } z_1(t) < 0 \end{cases} \qquad u_2(t) = \begin{cases} 1 & \text{if } z_2(t) > 0 \\ u_2^* & \text{if } z_2(t) = 0 \\ 0 & \text{if } z_2(t) < 0 \end{cases}$$

Observations

- Above controller also solves problem with constraint
- Optimal controller for minimizing $\int_0^\infty ||z(t)||_1 dt$.
- Minimal time controller

Example: Controller

Controller for stochastic queueing network

$$u_{1}(t) = \begin{cases} 1 & \text{if } \frac{\mu_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) > \frac{\lambda_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ and } Q_{1}(t) > 0 \\ 0 & \text{if } \frac{\mu_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) < \frac{\lambda_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ or } Q_{1}(t) = 0 \\ u_{2}(t) = \begin{cases} 1 & \text{if } \frac{\lambda_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) < \frac{\mu_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ and } Q_{2}(t) > 0 \\ 0 & \text{if } \frac{\lambda_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) > \frac{\mu_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ or } Q_{2}(t) = 0 \end{cases}$$

Lyapunov function: cost-to-go from optimal control problem

$$V(z) = \begin{cases} z_1^2/(1-u_1^*) + z_2^2/(1-u_2^*) & \text{if } z_1 \ge 0 \text{ and } z_2 \ge 0\\ z_1^2/u_1^* + z_2^2/(1-u_2^*) & \text{if } z_1 \le 0 \text{ and } z_2 \ge 0\\ z_1^2/(1-u_1^*) + z_2^2/u_2^* & \text{if } z_1 \ge 0 \text{ and } z_2 \le 0\\ z_1^2/u_1^* + z_2^2/u_2^* & \text{if } z_1 \le 0 \text{ and } z_2 \le 0 \end{cases}$$

Example: Controller

Controller for stochastic queueing network

$$u_{1}(t) = \begin{cases} 1 & \text{if } \frac{\mu_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) > \frac{\lambda_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ and } Q_{1}(t) > 0 \\ 0 & \text{if } \frac{\mu_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) < \frac{\lambda_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ or } Q_{1}(t) = 0 \\ u_{2}(t) = \begin{cases} 1 & \text{if } \frac{\lambda_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) < \frac{\mu_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ and } Q_{2}(t) > 0 \\ 0 & \text{if } \frac{\lambda_{2}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{1}(t) > \frac{\mu_{1}}{\mu_{1}\mu_{2}-\lambda_{1}\lambda_{2}}Q_{2}(t) \text{ or } Q_{2}(t) = 0 \end{cases}$$

Lyapunov function: cost-to-go from optimal control problem

$$V(z) = \begin{cases} z_1^2/(1-u_1^*) + z_2^2/(1-u_2^*) & \text{if } z_1 \ge 0 \text{ and } z_2 \ge 0\\ z_1^2/u_1^* + z_2^2/(1-u_2^*) & \text{if } z_1 \le 0 \text{ and } z_2 \ge 0\\ z_1^2/(1-u_1^*) + z_2^2/u_2^* & \text{if } z_1 \ge 0 \text{ and } z_2 \le 0\\ z_1^2/u_1^* + z_2^2/u_2^* & \text{if } z_1 \le 0 \text{ and } z_2 \le 0 \end{cases}$$

System

$$\begin{split} \dot{Q}(t) &= \alpha - \mathcal{R}u(t) & Q(0) = Q_0 \\ 0 &\leq Q(t) & 0 &\leq u(t) & \mathcal{C}u(t) \leq 1 \end{split}$$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$z(t) = u^* - u(t)$$
 $z(0) = z_0$
 $0 \le Rz(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Objective

$$\min_{u(t)}\int_0^\infty \|z(t)\|_1 dt$$

20/22

System

 $\dot{Q}(t) = lpha - Ru(t)$ $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$z(t) = u^* - u(t) \qquad z(0) = z_0$$

$$0 \le Rz(t) \qquad 0 \le u(t) \qquad Cu(t) \le 1$$

Objective

$$\min_{u(t)}\int_0^\infty \|z(t)\|_1 dt$$

20/22

System

 $\dot{Q}(t) = lpha - Ru(t)$ $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$egin{aligned} & z(t) = u^* - u(t) & z(0) = z_0 \ & 0 \leq Rz(t) & 0 \leq u(t) & Cu(t) \leq 1 \end{aligned}$$

Objective

$$\min_{u(t)}\int_0^\infty \|z(t)\|_1 dt$$

20/22

System

 $\dot{Q}(t) = lpha - Ru(t)$ $Q(0) = Q_0$ $0 \le Q(t)$ $0 \le u(t)$ $Cu(t) \le 1$

Change of coordinates: $z(t) = R^{-1}Q(t)$

Transformed system

$$egin{aligned} & z(t) = u^* - u(t) & z(0) = z_0 \ & 0 \leq Rz(t) & 0 \leq u(t) & Cu(t) \leq 1 \end{aligned}$$

Objective

$$\min_{u(t)}\int_0^\infty \|z(t)\|_1 dt$$

TU/e Technische Universiteit Eindhoven University of Technology

20/22

mpSCLP

Multi parametric Separated Continuous Linear Program:

$$\min_{u(t)}\int_0^\infty \|z_1(t)\|dt$$

subject to

$$\dot{z}(t) = u^* - u(t)$$
 $z(0) = z_0$
 $0 \le u(t)$ $Cu(t) \le 1$
 $0 \le Rz(t)$

Multi parametric since we want solution as function of z_0 .

Conjecture

mpSCLP can be solved explicitely and solution has nice structure

mpSCLP

Multi parametric Separated Continuous Linear Program:

$$\min_{u(t)}\int_0^\infty \|z_1(t)\|dt$$

subject to

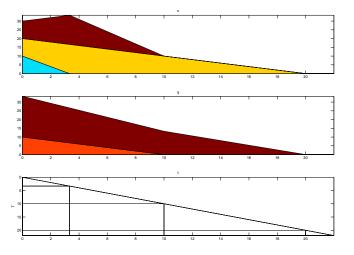
$$\dot{z}(t) = u^* - u(t)$$
 $z(0) = z_0$
 $0 \le u(t)$ $Cu(t) \le 1$
 $0 \le Rz(t)$

Multi parametric since we want solution as function of z_0 .

Conjecture

mpSCLP can be solved explicitely and solution has nice structure

mpSCLP: structure



TU/e Technische Universiteit Eindhoven University of Technology

22/22